Spark notes
From Simson Garfinkel
Jump to navigationJump to search
Spark on MacOS
1. Install anaconda. 2. pip install pyspark
Spark Ideas
File Management
Adding files to the nodes:
sc.addFile(filename)
- https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2
- https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2
Tuning
- https://stackoverflow.com/questions/37871194/how-to-tune-spark-executor-number-cores-and-executor-memory
- https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
- http://site.clairvoyantsoft.com/understanding-resource-allocation-configurations-spark-application/
Spark Practce
- https://developerzen.com/best-practices-writing-production-grade-pyspark-jobs-cb688ac4d20f (most about packaging and a shared context)
Demos
Find the nodes where you are running, entirely from within Spark (using EMR). Below was run on a 2-node cluster.
$ sudo pip-3.4 install ipython $ cat func.py def myfun(a): import socket,os return socket.gethostname()+"-"+str(os.getpid()) [hadoop@ip-10-239-83-234 ~]$ PYSPARK_DRIVER_PYTHON=ipython3 PYSPARK_PYTHON=python34 pyspark --py-files func.py Python 3.4.3 (default, Sep 1 2016, 23:33:38) Type 'copyright', 'credits' or 'license' for more information IPython 6.2.0 -- An enhanced Interactive Python. Type '?' for help. Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 17/09/21 18:11:49 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. 17/09/21 18:12:05 WARN CredentialsLegacyConfigLocationProvider: Found the legacy config profiles file at [/home/hadoop/.aws/config]. Please move it to the latest default location [~/.aws/credentials]. Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 2.2.0 /_/ Using Python version 3.4.3 (default, Sep 1 2016 23:33:38) SparkSession available as 'spark'. In [1]: from func import myfun In [2]: myfun(10) Out[2]: 'ip-10-239-83-234-24121' In [5]: a = sc.parallelize(range(1,10)).map(lambda num:myfun(num)) In [6]: a.take(10) Out[6]: ['ip-10-144-32-86-32083', 'ip-10-144-32-86-32083', 'ip-10-144-32-86-32091', 'ip-10-144-32-86-32091', 'ip-10-144-32-86-32088', 'ip-10-144-32-86-32088', 'ip-10-144-32-86-32094', 'ip-10-144-32-86-32094', 'ip-10-144-32-86-32094'] In [10]: sc.parallelize(range(1,10)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect() Out[10]: [('ip-10-144-32-86-32274', 3), ('ip-10-144-32-86-32271', 2), ('ip-10-144-32-86-32264', 2), ('ip-10-144-32-86-32267', 2)] In [11]: sc.parallelize(range(1,1000)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect() Out[11]: [('ip-10-144-32-86-32287', 249), ('ip-10-144-32-86-32290', 250), ('ip-10-144-32-86-32296', 250), ('ip-10-144-32-86-32284', 250)] In [12]: sc.parallelize(range(1,1000*1000)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect() Out[12]: [('ip-10-144-32-86-32323', 249999), ('ip-10-144-32-86-32330', 250000), ('ip-10-144-32-86-32320', 250000), ('ip-10-144-32-86-32326', 250000)]