Difference between revisions of "Spark notes"
From Simson Garfinkel
Jump to navigationJump to search
m |
|||
| (3 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
= Spark References = | |||
== Videos == | |||
* [https://www.youtube.com/playlist?list=PLIl5cUcspvNOS8wVc_O9Z5jzRXzkoTxa8 GU ANLY 502, 2017] (From the course I taught at Georgetown) | |||
== Books == | |||
* [https://www.amazon.com/Learning-Spark-Lightning-Fast-Data-Analysis/dp/1449358624/ref=sr_1_3?keywords=high+performance+spark&qid=1563459239&s=gateway&sr=8-3 Learning Spark] | |||
* [https://www.amazon.com/Spark-Definitive-Guide-Processing-Simple/dp/1491912219/ref=sr_1_4?keywords=high+performance+spark&qid=1563459239&s=gateway&sr=8-4 Spark: The Definitive Guide] | |||
* [https://www.amazon.com/High-Performance-Spark-Practices-Optimizing/dp/1491943203/ref=sr_1_1?keywords=high+performance+spark&qid=1563459239&s=gateway&sr=8-1 High Performance Spark] | |||
* [https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662/ref=sr_1_3?keywords=python+for+data+analytics&qid=1563459260&s=gateway&sr=8-3 Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython] | |||
=Spark Ideas= | |||
==Spark on MacOS== | ==Spark on MacOS== | ||
You can run Spark locally on a Mac without having a cluster. Spark will use all of your available CPUs. | |||
Use this: | |||
# Install anaconda | |||
# conda install pyspark | |||
==File Management== | |||
Adding files to the nodes: | Adding files to the nodes: | ||
| Line 9: | Line 24: | ||
* https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2 | * https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2 | ||
* https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2 | * https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2 | ||
| Line 20: | Line 32: | ||
== | ==Spark Practce== | ||
* https://developerzen.com/best-practices-writing-production-grade-pyspark-jobs-cb688ac4d20f (most about packaging and a shared context) | * https://developerzen.com/best-practices-writing-production-grade-pyspark-jobs-cb688ac4d20f (most about packaging and a shared context) | ||
==Demos== | |||
Find the nodes where you are running, entirely from within Spark (using EMR). Below was run on a 2-node cluster. | |||
<pre> | |||
$ sudo pip-3.4 install ipython | |||
$ cat func.py | |||
def myfun(a): | |||
import socket,os | |||
return socket.gethostname()+"-"+str(os.getpid()) | |||
[hadoop@ip-10-239-83-234 ~]$ PYSPARK_DRIVER_PYTHON=ipython3 PYSPARK_PYTHON=python34 pyspark --py-files func.py | |||
Python 3.4.3 (default, Sep 1 2016, 23:33:38) | |||
Type 'copyright', 'credits' or 'license' for more information | |||
IPython 6.2.0 -- An enhanced Interactive Python. Type '?' for help. | |||
Setting default log level to "WARN". | |||
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). | |||
17/09/21 18:11:49 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME. | |||
17/09/21 18:12:05 WARN CredentialsLegacyConfigLocationProvider: Found the legacy config profiles file at [/home/hadoop/.aws/config]. Please move it to the latest default location [~/.aws/credentials]. | |||
Welcome to | |||
____ __ | |||
/ __/__ ___ _____/ /__ | |||
_\ \/ _ \/ _ `/ __/ '_/ | |||
/__ / .__/\_,_/_/ /_/\_\ version 2.2.0 | |||
/_/ | |||
Using Python version 3.4.3 (default, Sep 1 2016 23:33:38) | |||
SparkSession available as 'spark'. | |||
In [1]: from func import myfun | |||
In [2]: myfun(10) | |||
Out[2]: 'ip-10-239-83-234-24121' | |||
In [5]: a = sc.parallelize(range(1,10)).map(lambda num:myfun(num)) | |||
In [6]: a.take(10) | |||
Out[6]: | |||
['ip-10-144-32-86-32083', | |||
'ip-10-144-32-86-32083', | |||
'ip-10-144-32-86-32091', | |||
'ip-10-144-32-86-32091', | |||
'ip-10-144-32-86-32088', | |||
'ip-10-144-32-86-32088', | |||
'ip-10-144-32-86-32094', | |||
'ip-10-144-32-86-32094', | |||
'ip-10-144-32-86-32094'] | |||
In [10]: sc.parallelize(range(1,10)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect() | |||
Out[10]: | |||
[('ip-10-144-32-86-32274', 3), | |||
('ip-10-144-32-86-32271', 2), | |||
('ip-10-144-32-86-32264', 2), | |||
('ip-10-144-32-86-32267', 2)] | |||
In [11]: sc.parallelize(range(1,1000)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect() | |||
Out[11]: | |||
[('ip-10-144-32-86-32287', 249), | |||
('ip-10-144-32-86-32290', 250), | |||
('ip-10-144-32-86-32296', 250), | |||
('ip-10-144-32-86-32284', 250)] | |||
In [12]: sc.parallelize(range(1,1000*1000)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect() | |||
Out[12]: | |||
[('ip-10-144-32-86-32323', 249999), | |||
('ip-10-144-32-86-32330', 250000), | |||
('ip-10-144-32-86-32320', 250000), | |||
('ip-10-144-32-86-32326', 250000)] | |||
</pre> | |||
Latest revision as of 04:29, 6 May 2020
Spark References
Videos
- GU ANLY 502, 2017 (From the course I taught at Georgetown)
Books
- Learning Spark
- Spark: The Definitive Guide
- High Performance Spark
- Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
Spark Ideas
Spark on MacOS
You can run Spark locally on a Mac without having a cluster. Spark will use all of your available CPUs.
Use this:
- Install anaconda
- conda install pyspark
File Management
Adding files to the nodes:
sc.addFile(filename)
- https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2
- https://medium.com/@rbahaguejr/adding-python-files-to-pyspark-job-b725e02c8ab2
Tuning
- https://stackoverflow.com/questions/37871194/how-to-tune-spark-executor-number-cores-and-executor-memory
- https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
- http://site.clairvoyantsoft.com/understanding-resource-allocation-configurations-spark-application/
Spark Practce
- https://developerzen.com/best-practices-writing-production-grade-pyspark-jobs-cb688ac4d20f (most about packaging and a shared context)
Demos
Find the nodes where you are running, entirely from within Spark (using EMR). Below was run on a 2-node cluster.
$ sudo pip-3.4 install ipython
$ cat func.py
def myfun(a):
import socket,os
return socket.gethostname()+"-"+str(os.getpid())
[hadoop@ip-10-239-83-234 ~]$ PYSPARK_DRIVER_PYTHON=ipython3 PYSPARK_PYTHON=python34 pyspark --py-files func.py
Python 3.4.3 (default, Sep 1 2016, 23:33:38)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.0 -- An enhanced Interactive Python. Type '?' for help.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/09/21 18:11:49 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/09/21 18:12:05 WARN CredentialsLegacyConfigLocationProvider: Found the legacy config profiles file at [/home/hadoop/.aws/config]. Please move it to the latest default location [~/.aws/credentials].
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.2.0
/_/
Using Python version 3.4.3 (default, Sep 1 2016 23:33:38)
SparkSession available as 'spark'.
In [1]: from func import myfun
In [2]: myfun(10)
Out[2]: 'ip-10-239-83-234-24121'
In [5]: a = sc.parallelize(range(1,10)).map(lambda num:myfun(num))
In [6]: a.take(10)
Out[6]:
['ip-10-144-32-86-32083',
'ip-10-144-32-86-32083',
'ip-10-144-32-86-32091',
'ip-10-144-32-86-32091',
'ip-10-144-32-86-32088',
'ip-10-144-32-86-32088',
'ip-10-144-32-86-32094',
'ip-10-144-32-86-32094',
'ip-10-144-32-86-32094']
In [10]: sc.parallelize(range(1,10)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect()
Out[10]:
[('ip-10-144-32-86-32274', 3),
('ip-10-144-32-86-32271', 2),
('ip-10-144-32-86-32264', 2),
('ip-10-144-32-86-32267', 2)]
In [11]: sc.parallelize(range(1,1000)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect()
Out[11]:
[('ip-10-144-32-86-32287', 249),
('ip-10-144-32-86-32290', 250),
('ip-10-144-32-86-32296', 250),
('ip-10-144-32-86-32284', 250)]
In [12]: sc.parallelize(range(1,1000*1000)).map(lambda num:(myfun(num),1)).reduceByKey(lambda a,b:a+b).collect()
Out[12]:
[('ip-10-144-32-86-32323', 249999),
('ip-10-144-32-86-32330', 250000),
('ip-10-144-32-86-32320', 250000),
('ip-10-144-32-86-32326', 250000)]