revolution is taking place

within the information rev-

olution. It involves harness-
ing hundreds, thousands, or even mil-
lions of computers to work rogether
on a single task. )

The technical and economic forces
spurring this revolution arise from
two important trends, On the one
hand is the dramatic improvement
over the past two decades in very-
large-scale-integrated (vLsI) circuits,
which now incorporate some
hundred-thousand components on a
silicon chip. The cost of computa-
tional power on chips has dropped
an average of 30 percent annually.
For less than $100 manufacturers can
now fabricate a microprocessor—the
computational core of a computer
etched on a single chip—capable of
performing more than a million in-
structions per second.

On the other hand, it is becoming
disproportionately expensive to con-
struct a single processor, using a
number of chips or other compo-
nents, that can perform calculations
appreciably faster than a micropro-
cessor. The world’s fastest com-
puters, with only 500 times the
performance of a microprocessor,
cost 200,000 times as much. More-
over, these large machines cannot be

N ew computing machimes
could not only be much faster and
cheaper, but could achieve the
elustve goals of recognizing
images, understanding
speech, and exhibiting
more intelligent
behavior.

ILLUSTRATION: TOM NORTON
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improved much further because they are pushing
against the ultimate limit: the speed of light. They
already perform one instruction every 2 billionths of
a second, but because electrical signals cannot travel
faster than light, information takes at least that long
just to move a couple of feet from one part of the
machine to another.

By harnessing many relatively inexpensive VLSI
processors together into a multiprocessor system—
sometimes also called a parallel- or concurrent-pro-
cessor system—we may significantly reduce the cost
of achieving today’s fastest computing speeds. More
important, there is no foreseeable limit to the speeds
we may be able to achieve through multiprocessing.
Many of us harbor expectations that this new breed
of machines will make possible some of our most
romantic and ambitious aspirations: with appropri-
ate programs, these new machines may recogmze
images, understand speech, and behave more intel-
ligently.

Even anthropomorphic evidence suggests that if
computers are to perform intelligently, many pro-
cessors must work together. Consider the human
eye, where millions of newrons in the retina, optic
nerve, and visual cortex cooperate to help us see. Or
consider the cerebellum, where over a trillion cells
share the complex task of higher-level thinking in
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yet unknown ways, What arrogant reasoning led us
to believe that a single processor capable of only a
few million instructions per second could ever ex-
hibit intelligence?

To my thinking, the massive quantitative increase
in computing power promised by the multiprocessor
revolution is a prerequisite to the much-touted qual-
itative increase in the intelligence of future com-
puters. Of course, merely throwing lots of computing
power at difficult artificial-intelligence problems will
not necessarily solve them. Otherwise, the use of
superfast single-processor computers would have al-
ready yielded more progress in this area. But estab-
lishing a technology in which an unlimited number
of processors can cooperate effectively sets both a
machine foundation and a mind set for tackling these
difficult problems in a new way. It is my hope and
expectation that the additional ingredients we need
to achieve greater artificial intelligence—further
study of biological intelligence and development of
new models for machine vision, hearing, and intel-
ligence—will flourish on this new multiprocessor
foundation.

Several dozen research groups in universities and
industry are exploring multiprocessor systems. A few
computers on the market already use several coop-
erating processors to solve large problems in high-
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could ever extubit intelligence?

energy physics, aerospace engineering, and compu-
ter-aided design of products such as computer chips
and airplanes.

The promise of the multiprocessor revolution en-
tices and seduces researchers. The outcome of our
efforts depends on developments in the three crucial
areas that 1 will discuss: designing architectures for
multiprocessors, programming them, and applying
them. The value of multiprocessor systems will ul-
timately rest on our ability to tackle bigger problems
simply by using more processors. This “‘computation
by the yard” approach may open the door to a new
and more useful world of information technology.

Uses of Multiprocessors

Some traditional information-processing ‘problems
require enormous number-crunching power—solv-
ing the equations required to predict the weather,
calculate the effects of nuclear explosions, or solve
certain quantum-mechanics problems. Multiproces-
sors are likely to be useful for such applications be-
cause these problems can typically be decomposed
into many intechinked subproblems that can be han-
dled concurrently. For example, a large calculation
to predict weather changes over a 1,000-square-mile
area could be broken down into 100 smaller cal-
culations, each covering a 10-square-mile cell. These
smaller calculations could be performed concur-
rently by 100 processors. Periodically, the processors
would communicate with one another about the
weather changes at the boundaries of their cells. Of
course, handling these number-crunching applica-
tions more effectively, while important, does not
constitute a multiprocessor revolution, since their
effect on our lives has been and will probably con-
tinue to be modest.

On the other hand, replacing mainframe com-
puters with multiprocessor systems that are even
slightly cheaper could have a significant economic
impact in banks, airlines, insurance companies, and
other large organizations. And the prospects for such
a change are good, since many business tasks can be
broken down into relatively independent subtasks.
For example, calculating and printing checks for
company employees could be done by many pro-
cessors working concurrently and almost independ-
ently. The processors would need to communicate
with one another only about total payroll, tax, and
benefit balances. In banks, multiprocessor systems

could assign each account to some processor alpha-
betically or by account number. Concurrent deposit
and withdrawal transactions would then be handled
by the responsible processors. Airlines might break
up centralized programs now used to book reser-
vations, issue tickets, compute fares, and balance
cargo. The work could go to several adjacent, com-
municating machines, corresponding perhaps to
each major metropolitan area.

But the revolutionary promise of multiprocessors
rests with their expected ability to achieve what is
difficult or impossible for conventional computers—
artificial intelligence (Al) applications involving
functions such as seeing, hearing, learning, reason-
ing, and advising,

To understand the utility of multiprocessors bet-
ter, I recently convened an M.LT. workshop on the
prospective usefulness of multiprocessors. The par-
ticipants included some 25 leading researchers who
are applying computers to a variety of fields, in-
cluding medical diagnosis, aerodynamic design, and
speech recognition. I asked them how many calcu-
lations could be carried out concurrently on future
multiprocessor systems to solve problems in their
areas. These specialists had to imagine how they
might decompose operations now performed se-
quentially into relatively independent subtasks that
processors could, with some intercommunication,
petform concurrently. This mental rask is difficult
and cannot be done precisely, but it is not as tough
as it sounds. It is similar, in terms of mental gym-
nastics, to what programmers must do today in de-
composing a large task into subtasks to be executed
in sequence, and into “‘utility subroutines”—sub-
programs executed frequently to carry out many of
the higher-level tasks.

[ also asked these researchers to identify the most
desirable “granularity” of multiprocessor systemns
tor their applications. Granularity is a measure of
the size and complexity of the processors in a system,

MICHAEL 1. DERTOUZOS is professor of computer science and
electrical engineering-at M.LT. He is director of M.LT.s Laboratory
for Computer Science, which developed time-shaved computers and bas
pioneered in multiprocessor research over the last 15 years. He steeved
the LCS into this area and helped the Defense Advanced Research Proj-
ects Agency launch s multiprocessor program. A member of the group
that founded the Microelectronics and Computer Technology Corp., be
got this consortium of computer and semiconductor firnts imterested in
multiprocessor research. Some of his prior research has been in personal
camputers, and in @ People Magazine interviewr 11 years ago, he pre-
dicted the revolution that later occurred in this field.
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Fine-grain systems have sors for their applications.
many simple processors {Numbers in parentheses
{each chip may contaln represaent differant re-
100). Conrse-grain systems searchers’ estimates.) Sen-
have fewer, powerful pro-  sory applications may use
cessors (each may contain millions of fine-grain pro-
100 chips). Specialists at cessors; deeper, cognitive
an M.LT. workshop estl- applications may use
mated the optimal number hundreds of coarse-grain
and granularity of proces: processors.

Coarse

A fine-grained multiprocessor system has small, sim-
ple processors, but generally many of them. By my
somewhat arbitrary definition, in a fine-grained mul-
tiprocessor, a single silicon chip has some 100 pro-
cessors on it. A system with 10,000 chips would have
1,000,000 processors. A medium-grained system has
more powerful processors, say 1 per chip. Such a
system might have 10,000 chips and the same num-
ber of processors. A coarse-grained system has even
more powerful processors—each one might be com-
posed of 100 chips—but it might have only 100
processors in all.

The results of my survey show that rasks such as
vision and speech recognition may profitably use mil-
lions of fine- and medium-grained processors work-
ing concurrently. Deeper cognitive applications and
more traditional computing jobs are perhaps better
handled through a few hundred coarse-grained pro-
cessors. This conclusion makes intuitive sense. Thou-
sands or even millions of hair-like cells in our ears
and retinal cells in our eyes are concurrently stim-
ulated by a single musical sound or a quick glance
through a car window. Yet after these stimult have
been processed by our brains for a while, we are left
with a more sequential, conceptual residue—"Aha
. . . the opening bars of Beethoven’s Fifth,” or, “He
veered to the right to miss the bicyclist and couldn’
avoid the pole.” Indeed, the very essence of reason-
ing or arguing a point seems at a deep conceptual
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level to be a sequential process. The survey results
mirror what [ believe is the case with the human
cognitive pyramid: the number of simultaneously
performed tasks seems to increase dramarically
toward the sensory base. .

Clever information-processing assistants that can
see, hear, and think a little will be a liberating and
welcome change from today’s machines. Advertising
notwithstanding, current computers are dumb and
unfriendly: witness the inexcusable 10-inch-thick
manuals that often accompany professional word-
processing programs. Instead of typing, users of mul-
tiprocessors will be able merely to issue verbal com-
mands and show graphs or text to the machine.
More important, users will be able to employ a more
natural and less precise idiom since, by virtue of their
increased intelligence, these new computers will be
more forgiving than their allegedly friendly prede-
Cessors.

Possible uses of multiprocessor systems beyond
speech recognition and machine vision include:

0 Automated clerical assistants.

[0 Tutors that can understand students’ progress
and can ask questions to correct weaknesses.

[J More intelligent retrieval systems that can un-
derstand what information the user wants—in fi-
nance, law, medicine, government, and other fields.
O Knowledge-based systems that know a great
deal—and can help users—in narrow areas of ex-
pertise such as investing and medical specialties.

O Robots that can perceive their environments and
act appropriately—perhaps to do hazardous work
such as cleaning up toxic waste or jobs requiring
great precision.

O Monitors that watch or listen to numerous events
and flag the most important for the human user to
review.

Architectures

Multiprocessor systems should not be confused with
the distributed computer networks that are already
becoming the backbone of office automation. In
these networks, relatively slow local or long-haul
connections generally link a number of geographi-
cally remote machines, communicating information
at a few hundred to a few hundred thousand char-
acters per second, Multiprocessor systems are in one
location and communicate data among their pro-
cessors at a few million to a few hundred million
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characters per second. More important, a distributed
system is a collection of predominantly autonomous
machines, each controlled by its own user but able
to communicate with other computers—such as in
sending electronic mail or requesting data. By con-
trast, in multiprocessor systems, many processors
work under a central control on a single problem.
In a loose analogy, a distributed network is like a
society of communicating individuals and organi-
zations, while a multiprocessor is like the aggregate
of neurons in a single human brain.

Today research groups in some 50 universities,
industrial research laboratories, and start-up com-
panies around the world are experimenting with
multiprocessors. While it is hard to classify these
machines precisely, I will describe a few of them to
convey a flavor of the different possible architectures
and the problems associated with each.

A typical “dataflow” multiprocessor is the Tagged
Token Datatlow Machine that Professor Arvind and
his group are building at the M.L.T. Laboratory for
Computer Science (LCS). Machines of this sort are
relatively coarse-grained—our machine at LCS has
50 to 100 processors. A communication network like
a railroad switchyard connects these processors.
Every time a processor produces a unit of data, it
incorporates a ‘“‘tag”—information on where the
data should be sent and how they should be used.
The “switchyard™ uses part of these tags to route
the data to another processor. Once there, the data
wait for any related data that may be required for
the next computation. When all the required data
have arrived, the new processor acts upon them,
following procedures designated by the rags. This
processor sends the results—new data, with new
tags—back to the network, where the whole process
repeats itself. In a properly working dataflow ma-
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n a “tagged token data-

flow"” machine, proces-
sors Issue data with
‘“tags.” Like a railroad
switchyard, the communl.
cation network uses part
of each tag to route data
to the processor that will
perform the next opera-
tion. Another part of the

tag telis this new proces-
sor what to do. In a prop-
erly working dataflow
machine, almost all of the
processors should be con-
tinuatly humming away, is-
suing tagged data that are
switched to other proces-
sors through the communi-
cation network.

chine, almost all the processors should be humming
away, issuing tagged data that are switched to other
processors through the network.

Invented at the MLLT. Artificial Intelligence Lab-
oratory and under construction by Thinking Ma-
chines Corp., the Connection Machine typifies
another approach. The first model of this machine
cousists of 65,536 fine-grained processors connected
to one another in three ways. First, the processors
are arranged on a grid, where each communicates
with its neighbors on four sides—the “North,”
“South,” “East,” and “West.” Second, the “‘broad-
cast network,” a slower communication line, passes
through every processor and links all of them to a
central control computer. Finally, a “16-dimen-
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sional-hypercube network™ also connects the pro-
Cessors.

~ To visualize such a hypercube, start with a two-
dimensional “hypercube”—an ordinary square. A
square has four corners, or vertices. To make a three-
dimensional hypercube (i.e., an ordinary cube), place
one square in front of another arid connect the cor-
responding vertices of the two squares with lines that
form four new edges. Now suppose there is a pro-
cessor at each vertex and a communication line along
each edge. That makes eight (2%} processors in all.
Any of these eight processors can communicate with
any other by sending a signal through no more than
three communtcation lines.

Now repeat the geometric construction process
using two three-dimensional cubes. In other words,
juxtapose the two cubes diagonally and connect the
corresponding vertices with eight new edges (diag-
onal lines). The result, which can be drawn in or-
dinary three-dimensional space, is what we will call
a four-dimensional hypercube. It, too, can be
thought of as having a processor at each vertex and
a communication line along each edge. But since it
is composed of two three-dimensional cubes, it has
twice as many processors—16 {or 2%). Any processor
can communicate with another by sending a signal
through ne more than four communication lines.

Similarly, yon can connect two 4-dimensional hy-
percubes to get a S-dimensional hypercube, and you
can extend the process to as many dimensions as you
wish. A 16-dimensional hypercube has 65,536 (or
2'%) processors, and each processor can communi-
cate with any other by sending a signal through at
most 16 communication lines. The hypercube net-
work is used in the Connection Machine and other
multiprocessors because it allows many processors
to communicate relatively quickly using a reasonable
number of wires. The alternative of connecting every
processor to every other would result in an impos-
sible wiring task, with over 2 billion wires.

The Connection Machine is a fine-grained multi-
processor, Each processor is quite small-having
around a thousandth the complexity of a processor
in a datatflow machine such as Arvind’s—and is ca-
pable of processing fewer instructions on smaller
chunks of data. The central computer initially feeds
the processors with data through the broadcast net-
work. The processors can then repeatedly compute
and send data to their North-South-East-West neigh-
bors, to their neighbors on the 16-dimensional hy-
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percube, or back to the central computer.

Machines like this will probably be especially use-
ful in sensory applications, where fine-grained pro-
cessors and adjacent communications are important.
For example, a two-dimensional “retina” could be
made to recognize lines or edges when adjacent
cells—i.e., adjacent processors—register a common
light value along a particular direction. To recognize
such lines or edges, processors would communicate
on the North-South, East-West grid. After identi-
fying such lines and edges, the multiprocessor system
could use them to build an abstract, higher-level
model of what the retina “sees.” Building such a
model could involve communication among more
distant processors on the hypercube.

Perhaps the most common multiprocessor archi-
tecture uses a ‘‘shared memory” to commnunicate
information among processors. In this scheme, each
processor resembles a conventional computer with
a local memory and peripheral devices such as sen-
sors, printers, and screens. A memory common to
all processors serves as a blackboard: any processor
can write informatien on it, which any other pro-
cessor can subsequently read. If processor A wishes
to communicate with processor B, it writes its mes-
sage on the shared memory, and B reads it. However,
while the writing and reading is going on, no other
processors can communicate. The common memory
thus becomes a bottleneck. To compensate for this
limitation, the shared memory is typically very fast
and is often augmented with auxiliary wiring so that
the system can accommodate several tens to several
hundreds of communicating processors.

Shared-memory architectures are relatively inex-
pensive and represent a conservative approach, since
they permit a gradual transition from today’s single-
processor, single-memory computers to multipro-
cessor systems. Companies such as Flexible Com-
puter Corp. of Dallas use machines with this kind
of architecture, marketing them for aerospace and
scientific applications.

Programming Multiprocessors

There are as many different approaches to program-
ming multiprocessor systems as there are to organ-
izing a multiprocessor architecture. In the
“functional-language” approach, the programmer
uses instructions that behave like mathematical func-
tions—taking particular inputs and producing oui-
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n the Connection Ma-

chine, numerous proces.
sors are connected to one
another in three ways.

First, a relatively slow
‘broadcast network” links
a central computer to
every processor. Second,
the processors are ar-
ranged on a “North-South-
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Each communicates with
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a “16-dimensional hyper-
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Top: Hiustration of the
geometric principle behind
the hypercube [explained
on page 50}, The hyper-
cube allows sach proces-
sor to communicate with
any other through no more
than 16 communication
lines. Machines like this
with numerous, relatively
simple processors and ad-
jacent communications
might be especially useful
in sensory applications.
For example, such a ma-
chine could work Ilke a
simple retina.

puts. One elementary function, PROD, might find the
product of inputs. For example, PrOD (3,10,4,5)
would have four inputs and one output—in this case,
IX10x4 x5, or 600, Another function, sQ, might
square its input if it is between 1 and 1,000 but leave
it unchanged if it is outside this range. Thus, sQ (5)
would be 25, and sq (2,000) would be 2,000.

Of course, functional languages use functions to
perform operations that are far more complex and
useful than these simple examples suggest. More im-
portant, functional languages allow basic functions
to be combined into aggregates, in which the outputs
of some functions become inputs to others. These
aggregates themselves behave like functions, in that
they take inputs and produce outputs. Thus, they
can be combined into yet more complex aggregates,
which also behave like functions. Functional pro-
grams can be thought of as huge diagrams of inter-
connected functions, in which the outputs of one
function are inputs to another, until they produce
one or more fnal results.

Significantly, functional programs like these have
only inputs and outputs and no “‘side effects.” Side
effects are operations that store certain results in
memory “‘on the side” while a program processes
inputs to produce outputs. Thus, a procedure may
take an inpur and square it to produce the output,
but may simultaneously increase a running total in
memory by the same amount as the output, Com-
pleting some later step in the program will require
referring to this running total. Today’s languages
encourage the use of side effects, and nearly all prac-
tical programs employ this device,

Functional languages may be harder to use, but
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they have several advantages. They result in pro-
grams with cleaner structures, precisely because
there are no confusing side effects 1o keep track of.
Moreover, one aggregate function can easily be re-
placed by another that produces the same outputs
from given inputs, but that has a simpler internal
structure and is therefore faster to execute. With the
functional approach, it is easier to verify that large
programs operate correctly, a task that is often dif-
ficult with today’s programs. And functional pro-
gramming makes it easier to specify a program—to
give a precise, brief description of everything it is
supposed to do before the programmer starts to
write it.

In the functional-language approach, the pro-
grammer can be fairly oblivious to the physical struc-
ture of the machine and is liberated from the task
of assigning operations to particular processors. In-
stead, another program, a multiprocessor compiler,
automatically splits the primary program into con-
current subprograms for different processors and
specifies the necessary intercommunications. This
permits the programmer to focus on the functions
to be done rather than on coordinating individual
computations. However, this approach may lead 1o
programs that are inefficient to execute. The com-
pilers that establish which operations should run
concurrently may miss shortcuts and opportunities
that programmers could specify.

In what [ would call the “concurrency-extension”
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approach to programming, a minimal set of instruc-
tions added to conventional computer languages
such as Fortran, C, or Lisp enables the programmer
to specify which processes should run concurrently.
Extended languages of this sort have names like
Pardo (parallet do)} Fortran, Concurrent C, and
MultiLisp. Programs written with this approach are
generally efficient to execute because programmers
can use their ingenuity in specifying which opera-
tions should run concurrently. But coordinating
large numbers of processors may take the program-
mer a lot of time. Shared-memory architects often
use concurrency extension because it is similar to
today’s single-processor languages, involving only
one or two New Instructions,

To get a clearer idea of how multiprocessor pro-
grams work, consider a very simple problem. Let a,
b, ¢, and d be any four numbers, and suppose you
want to calculate ac + ad + bc + bd. (As in cus-
tomary algebraic notation, ac indicates the product
of a and c.) Assume furthermore that each processor
can handle only two numbers at a time and that it
takes one microsecond for addition {(+) and five
microseconds for multiplication (x).

A conventional single-processor computer would
carry out the necessary additions and multiplications
sequentially. If T,, T,, and so on are intermediate
results that need to be operated on further to produce
the final result, the calculation might be done this
way:
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23 Total

The total time to perform the computation this way
is 23 microseconds.

In a multiprocessor system programmed in a func-
tional language, you need to break the problem
down into a set of elementary functions and direc-
tions for combining them. Let *“sum” be the addition
function—the output of sum (2,5,7) is the sum
2+5+7, or 14, Let “PROD” be the multiplication
function—the output of PROD (3,7) is the product
3 X7, or 21. The process of finding ac + ad + bc
+ bd can be expressed in functional terms as:

SUM (PROD (a,c), PROD {a,d), PrROD (b,c), PrROD (b,d)}
Given this functional expression, the compiler might
automatically apporton the calculation to several

processors, as shown below, where concurrent op-
erations are on the same line:

FHOTOGRARH: FRANEK SITEMAM
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Concurrent Computations Time
(microseconids)
Ti=axc T,=axd T,=bxc¢ T,=bxd §
T.=T,+T, T,=T.+T, 1
Answer = T, + T, ' 1
7 Total

Doing this calculation with four processors operat-
ing concurrently takes only 7 microseconds—prac-
tically a third the time it takes with only one
Processor.

In a language where the programmer can specify
concurrency explicitly, you might do the operation
another way. If you recognize the algebraic identity

ac +ad + bc + bd = (a + b){ic + d)

you can write the following:

Concurrent Computations Timne
{nricroseconds)
Do concurrently (T, =a+ b, o =c+ d) 1
Answer = T, x T, 5
6 Total

This would take only 6 microseconds to execute and
would require only two processors—the most effi-
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cient calculation yet in terms of time and computer
hardware.

Proponents of the functional approach would ar-
gue that the compiler spares programmers the cler-
ical work of deciding which operations to do
concurrently. Proponents of allowing the program-
mer to specify concurrency explicitly would counter
that allowing the programmer to specify concurrent
calculations saves computing time. Advocates of the
functional language approach might respond that ic
could achieve the same computing efficiency if the
programmer specified in the first place:

Answer = PROD (sUM (a,b)}, sum (c,d))

Researchers will undoubtedly continue to debate the
key question of how work should be apportioned
between automatic compilers and human program-
mers,

Yet another programming approach is based on
the belief that we will be able to run today’s single-
processor programs on tomorrow’s multiprocessors.
Some computer scientists are attempring to achieve
this goal by developing so-called “unraveling com-
pilers” that take as input a conventional Fortran
program and generate as their output an equivalent
program for a particular multiprocessor. This ap-
proach may prove feasible for smail multiprocessors
but not for larger machines, since the structure of
today’s programs is inextricably bound to the single
processors that we use. To expect that efficient mul-
tiprocessor programs can be automatically extracted
from single-processor programs is tantamount to
hoping that the procedures of a nineteenth-century
cobbler could be automatically transformed into
specifications for a modern shoe factory with thou-
sands of workers.

To my thinking, researchers must invent a whole
family of new languages for multiprocessor appli-
cations. 1 envision that these languages will auto-
matically detect and handle relatively simple, lower-
level tasks that can obviously be executed concur-
rently. But for higher level, more complex opera-
tions, these languages will permit programmers to
specify explicitly what should be done concurrently
and how processors should communicate. The
model I have in mind is like a huge data factory, full
of bins that store data, conveyor belts that transport
data, and assembly lines that process data. The pro-
grammer would tune this data factory, much as in-
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hared-memory architec-

tures such as this per-
mit a gradual transition
from today’s single-proces-
sor computers to multipro-
cessor systems. Each
processor resembles a
conventional computer
with a local memory and
peripheral devices such as

sensors and printers, A
coOmmon memaory serves as
a blackboard: any proces-
soF can write information
on it, which any other pro-
cessor can then read.
Shared-memaory machines
are already marketed for
aerospace and scientific
applications.

~———— Shared
memory

e —— PROCESSON

-——-- Peripheral
interface

Input/output
devices such
as terminals,
disks, and
SENSOrs

dustrial managers tune actual factories to optimize
production.

Finally, I believe that, regardless of the method
used, programming multiprocessor systems will
inevitably require more effort than programming to-
day’s single-processor systems, since the program-
mer will have to specify and coordinate so much
more,

Thinking Concurrency

Since computer science is a predominantly experi-
mental discipline, we can best design a new multi-
processor after simulating it on a computer, where
we can adjust parameters and assess performance.
However, such a simulation requires a huge number
of concurrent activities that cannot teasonably be
modeled by a conventional, single-processor com-
puter. Thus, we can effectively simulate a multipro-
cessor only on a multiprocessor—a circular
situation. Such problems are typical in computer sci-
ence. In this case, we take our best guess at designing
an inirial multiprocessor. Then we bootstrap our
way up by using this machine to simulate possible
new multiprocessor systems.

This is the idea behind the Multiprocessor Emu-
[ation Facility at the LCS. This facility consists of 50
to 100 machines connected by high-speed switches,
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L’L designing multiprocessors,
we could learn from our own bodies,
which handle numerous failures

effectively.

which can be used to create many different config-
urations of interconnections. For example, we can
create a North-South, East-West grid; a ring; or an
eight-dimensional hypercube. We plan to use this
Emulation Facility like a compurational sandbox,
where we can try out alternative designs for much
larger and different multiprocessor systems. A re-
searcher with a bright idea for constructing a 1,000-
processor retina could use the facility to emulate that
architecture, program it, test it {at a fraction of its
ultimate speed and cost), and make improvements.

This multiprocessor sandbox allows us to “think
concurrency.” We believe that such thinking will
allow us to invent richer languages and architectures
than we could if we used enly paper and pencil—or
if we simplified multiprocessor architectures to sim-
ulate them on single-processor machines. The latter
approach is as effective as trying to perceive a rich
image by sliding over it a piece of paper with a
peephole.

Reliability and the Swiss-Watch Syndrome

One of the drawbacks of a computer with many
processors is the increased opportunity for both
hardware and software malfunctions. Today’s sin-
gle-processor machines can run without a major
hardware fault for up to a few thousand hours. Soft-
watre errors can take place within tens or hundreds
of hours. At such rates, a 1,000-processor system
would have a hardware failure every tew hours and
a software failure every few minutes. We cannot
allow a single failure to cause an entire multipro-
cessor system to crash.

Some multiprocessor designers try to incorporate
error detection and correction into their architec-
tures. For example, the processors may check their
own soundness or that of other processors by run-
ning small test procedures. While the program is
being executed, the system assigns computations
only to those processors that are in good running
order. Such a multiprocessor is analogous to a fac-
tory in which management assigns the jobs of sick
employees to healthy ones.

We still have little practical experience in detecting
and correcting errors in large computer systems, and
some researchers are postponing work on this prob-
lem until they solve what they feel are more pressing
architectural and programming issues. I believe this
is a misguided approach, since reliability may tum
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out to be pivotal to the evolution of multiprocessors.
Today nearly all of our computers and their pro-
grams are like precision watches—one small flaw on
one small gear and the whole mechanism grinds to
a stop. In designing multiprocessors, we could learn
a great deal from our own bodies, which can handle
numerous failures effectively.

I believe we can accomplish this only through rad-
ical architectural innovations based on notions of
“continuiry” and “mushiness,” so that small changes
in one part of the system cause only small changes
in every other part. In imitation of the human ner-
vous system, we might compromise between digital
and analog modes ot encoding data. Most computers
record information digitally in a collection of on or
off signals; the sound-wave forms on conventional
LP records are analog. Digital recording can be as
accurate as required, but a little damage can result
in catastrophic change in the recorded data. Com-
parable damage to an analog recording is relatively
minor: a slightly scratched record still reproduces
the song. To incorporate the benefits of digital ac-
curacy and analog tolerance to faults, information
could be encoded as standard electrical pulses that
have the same size but are emitted at different rates.
The rates could vary continuously, so that a small
error in one signal or in the system would only cause
a small distortion in the output. But such “mushy”
systems may have to wait for yet another revolution
beyond the precision-oriented multiprocessors that
we are working on today.

The Global Race '

Only a few U.S. research laboratories pursued mul-
tiprocessing until 1980, when Japan announced its
Fifth Generation Computer Project. That effort, in-
volving some §1 billion over 10 years, aspires to
tackle Al problems—to translate automatically be-
tween Japanese and English and devise programs
that embody human expertise. To achieve these am-
bitious goals, the Japanese are pursuing multipro-
cessor machines intensely. The Institute for New
Generation Computer Technology (ICOT) spear-
heads this research and apportions it to participating
companies. Having established an advanced elec-
tronics infrastructure, the Japanese are now trying
to become familiar with the looser, more tentative
research approach required for Al

The United States has acted-—or reacted—in sev-
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By skewing research
toward immediate walitary objectives,
the U.S. may cede leadership

to Japan.

eral ways. The Microelectronics and Computer

Technology Corp. (MCC), a consortium of leading
U.S. semiconductor and computer firms, is financing
and sharing research of common interest to all the
firms. Multiprocessor systems are the most impor-
tant of MCC’s four research areas.

On a more traditional front, the Department of
Defense’s Advanced Research Projects Agency
(DARPA) has launched the Strategic Computing
Program. Multiprocessor research receives a major
part of the program’s $150 million annual budget.
Also, U.S. venture capitalists have begun to finance
companies that bulld multiprocessors. At this writ-
ing, there are over ten such start-ups, with about
half still doing R&D and the other half starting to
sell products, Big companies such as IBM have cau-
tiously begun advanced research in this area, too.

Europe has launched at least two multiprocessor
programs. The British Alvey effort, with fewer funds
than Japan’s, focuses primarily on forefront com-
puter research and on the kind of software necessary
for Al applications. The European Economic Com-
munity (EEC) has launched ESPRIT, a program with
funding comparable to the Japanese effort. ESPRIT
spans many areas of information technology and
involves many countries.

If Japan reaches its immediate objectives, it may
indeed approach its ultimate stated goal—world su-
premacy in information technology. Even if it does
not reach this goal, the country may gain substantial
benefits. For example, the Japanese could develop
products with capabilities for vision, speech, and
intelligence—such as a voice-controlled television set
or a car that can diagnose its malfunctions.

On the other hand, the United States stands a good
chance of retaining its leadership in information
technology if it pursues the multiprocessor challenge.
We need only use the proven mechanisms of
DARPA-funded programs and venture capital,
which have been responsible for the landmark in-
novations in information technology. DARPA-
funded research gave rise to time-shared computers,
araficial intelligence, expert systems, and computer
networks, while firms funded by venture capital de-
veloped the microprocessor and home computer.

The relative U.S. disadvantage in production—-
lacking highly organized, coherent teams of workers
that follow precise objectives—is our primary ad-
vantage in innovation. Forefront research in com-
puter science likes a flexible, experimental,

exploratory approach and does not react well to
detailed management or preset objectives.

However, several recent, disturbing trends could
impair just this flexible approach and hence U.S.
success. The government has become increasingly
preoccupied with possible leaks of research to mil-
itary adversaries and commercial competitors. The
government has also begun to seek research results
with more immediate military relevance, and it has
instituted increasingly lengthy and bureaucratic pro-
cesses for allocating funding to new projects, akin
to the competitive bidding for weapons contracts.
These trends reflect a well-intentioned desire to
tighten the government’s management of basic re-
search. However, because of the freedom that such
research requires, this trend toward increased man-
agement could do far more to damage innovation
than to accomplish the intended goals. As a result,
the United States could cede leadership in informa-
tion technology to Japan.

The EEC effort, spread thin by the large number
of participants and the inevitable political orienta-
tion of a consortium of nations, is not yet a major
contender in multiprocessor technology. However,
the EEC effort could surprise us because of the
strength of European theoretical researchers.

Technological leadership of the information rev-
olution is, in my opinion, ultimately linked to geo-
political strength. At the turn of this century,
England and the other leaders of the industrial rev-
olution held the reins of the world because of their
industrial might and knowhow. In the forthcoming
era of a service-dominated economy, information
will undoubtedly play a progressively greater role in
all facets of our professional and personal lives. The
nations that master this new revolution will exert
leadership in the economic and geopolitical arenas.

We are not yet sure whether multiprocessors will
offer as revolutionary a jump as we envision in the
use of computers. Nor are we certain whether they
will help us move much closer to the elusive and
seductive goal of greater machine intelligence. The
prospects look good, and the emotional temperature
is high with expectation. But we must wait for the
results of many experiments now in progress before
we can give a more unbiased and factual assessment.
The answers may well come within five years. Mean-
while, we can continue to dream, hope, and work
toward these new and exciting prospects in infor-
mation technology. O
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