Deploying Differential Privacy for the 2020 Census of Population and Housing Simson L. Garfinkel Senior Scientist, Confidentiality and Data Access U.S. Census Bureau July 16, 2019 Privacy Enhancing Technologies Symposium Stockholm, Sweden 2019 The views in this presentation are those of the author, and not those of the U.S. Census Bureau. # **Abstract** When differential privacy was created more than a decade ago, the motivating example was statistics published by an official statistics agency. In theory there is no difference between theory and practice, but in practice there is. In attempting to transition differential privacy from the theory to practice, and in particular for the 2020 Census of Population and Housing, the U.S. Census Bureau has encountered many challenges unanticipated by differential privacy's creators. Many of these challenges had less to do with the mathematics of differential privacy and more to do with operational requirements that differential privacy's creators had not discussed in their writings. These challenges included obtaining qualified personnel and a suitable computing environment, the difficulty of accounting for all uses of the confidential data, the lack of release mechanisms that align with the needs of data users, the expectation on the part of data users that they will have access to micro-data, the difficulty in setting the value of the privacy-loss parameter, ε (epsilon), and the lack of tools and trained individuals to verify the correctness of differential privacy, and push-back from same members of the data user community. Addressing these concerns required developing a novel hierarchical algorithm that makes extensive use of a high-performance commercial optimizer; transitioning the computing environment to the cloud; educating insiders about differential privacy; engaging with academics, data users, and the general public; and redesigning both data flows inside the Census Bureau and some of the final data publications to be in line with the demands of formal privacy. # Acknowledgments This presentation incorporates work by: Dan Kifer (Scientific Lead) John Abowd (Chief Scientist) Tammy Adams, Robert Ashmead, Aref Dajani, Jason Devine, Nathan Goldschlag, Michael Hay, Cynthia Hollingsworth, Meriton Ibrahimi, Michael Ikeda, Philip Leclerc, Ashwin Machanavajjhala, Christian Martindale, Gerome Miklau, Brett Moran, Ned Porter, Anne Ross, William Sexton, Lars Vilhuber, and Pavel Zhuravlev ### **Outline** ### **Motivation** The flow of census response data Disclosure Avoidance for the 2010 census Disclosure Avoidance for the 2018 census End-to-End test Disclosure Avoidance for the 2020 census Conclusion # **Motivation** The 2020 Census of Population and Housing Count everyone once, only once, and in the right place. # Motivation Article 1, Section 2 "...The actual **Enumeration shall be** made within three Years after the first Meeting of the Congress of the **United States, and within** every subsequent Term of ten Years, in such Manner as they shall by Law direct..." ### **Article 1, Section 2** The House of Representatives shall be composed of Members chosen every second Year by the People of the several States, and the Electors in each State shall have the Qualifications requisite for Electors of the most numerous Branch of the State Legislature. No Person shall be a Representative who shall not have attained to the Age of twenty five Years, and been seven Years a Citizen of the United States, and who shall not, when elected, be an Inhabitant of that State in which he shall be chosen. Representatives and direct Taxes shall be apportioned among the several States which may be included within this Union, according to their respective Numbers, which shall be determined by adding to the whole Number of free Persons, including those bound to Service for a Term of Years, and excluding Indians not taxed, three fifths of all other Persons. The actual Enumeration shall be made within three Years after the first Meeting of the Congress of the United States, and within every subsequent Term of ten Years, in such Manner as they shall by Law direct. The Number of Representatives shall not exceed one for every thirty Thousand, but each State shall have at Least one Representative; and until such enumeration shall be made, the State of New Hampshire shall be entitled to chuse three, Massachusetts eight, Rhode-Island and Providence Plantations one, Connecticut five, New-York six, New Jersey four, Pennsylvania eight, Delaware one, Maryland six, Virginia ten, North Carolina five, South Carolina five, and Georgia three. When vacancies happen in the Representation from any State, the Executive Authority thereof shall issue Writs of Election to fill such Vacancies. The House of Representatives shall chuse their Speaker and other Officers; and shall have the sole Power of Impeachment. # "in such Manner as they shall by Law direct." **Public Law 94-171** PUBLIC LAW 94-171-DEC. 23, 1975 89 STAT. 1023 Public Law 94-171 94th Congress To amend section 141 of title 13, United States Code, to provide for the transmittal to each of the several States of the tabulation of population of that State obtained in each decennial census and desired for the apportionment or districting of the legislative body or bodies of that State, in accordance with, and subject to the approval of the Secretary of Commerce, a plan and form suggested by that officer or public body having responsibility for legislative apportionment or districting of the State being tabulated, and for Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That section 141 Population, of title 13, United States Code, is amended by adding at the end thereof the following new subsection: "(c) The officers or public bodies having initial responsibility for the legislative apportionment or districting of each State may, not later than three years prior to the census date, submit to the Secretary a plan identifying the geographic areas for which specific tabulations of population are desired. Each such plan shall be developed in accordance with criteria established by the Secretary, which he shall furnish to such officers or public bodies not later than April 1 of the fourth year preceding the census date. Such criteria shall include requirements which assure that such plan shall be developed in a nonpartisan manner. Should the Secretary find that a plan submitted by such officers or public bodies does not meet the criteria established by him, he shall consult to the extent necessary with such officers or public bodies in order to achieve the alterations in such plan that he deems necessary to bring it into accord with such criteria. Any issues with respect to such plan remaining unresolved after such consultation shall be resolved by the Secretary, and in all cases he shall have final authority for determining the geographic format of such plan. Tabulations of population for the areas identified in any plan approved by the Secretary shall be completed by him as expeditiously as possible after the census date and reported to the Governor of the State involved and the officers or public bodies having responsibility for legislative apportionment or districting of such State, except that such tabulations of population of each State requesting a tabulation plan, and basic tabulations of population of each other State, shall, in any event, be completed, reported and transmitted to each respective State within one year after the census date.". Dec. 23, 1975 [H.R. 1753] State legislative 89 STAT. 1024 PUBLIC LAW 94-171-DEC. 23, 1975 SEC. 2. (a) The heading for section 141 of title 13, United States Code, is amended by adding at the end thereof the following: "; tabulation for legislative apportionment". (b) The table of sections for chapter 5 of title 13, United States Code, is amended by striking out the item relating to section 141 and inserting in lieu thereof the following: "141. Population, unemployment, and housing; tabulation for legislative Approved December 23, 1975. #### LEGISLATIVE HISTORY: HOUSE REPORT No. 94-456 (Comm. on Post Office and Civil Service). SENATE REPORT No. 94-539 (Comm. on Post Office and Civil Service). CONGRESSIONAL RECORD, Vol. 121 (1975): Nov. 7, considered and passed House. Dec. 15, considered and passed Senate. # Federal Register / Vol. 82, No. 215 / Nov 8, 2017 / Notices (for the 2018 End-to-End test) Dec. 31, 2018 We will report (per block): P1. RACE/ETHNICITY Universe: Total population Group by: BLOCK P2. RACE/ETHNICITY Universe: Total population age 18 and over H1. OCCUPANCY STATUS P42. GROUP QUARTERS POPULATION Universe: Population in Group Quarters #### **DEPARTMENT OF COMMERCE** **Bureau of the Census** [Docket Number 170824806-7806-01] Proposed Content for the Prototype 2020 Census Redistricting Data File **AGENCY:** Bureau of the Census, Department of Commerce. **ACTION:** Notice and request for comment. **SUMMARY:** The 2020 Census Redistricting Data Program provides states the opportunity to specify the small geographic areas for which they wish to receive 2020 decennial population totals for the purpose of reapportionment and redistricting. This notice pertains to Phase 3, the Data Delivery phase of the program, as the U.S. Census Bureau is providing notification and requesting comment on the content of the prototype 2020 Census Redistricting Data File that will be produced from the 2018 End-to-End Census Test. The Census Bureau anticipates publishing the content for the prototype 2020 Census Redistricting Data File from the 2018 End-to-End Census Test in the second quarter of fiscal year 2018 in a final notice. In that final notice, the Census Bureau also will respond to the comments received on this notice. # We need to protect privacy! 13 U.S. Code § 9 - Information as confidential; exception - (a) Neither the Secretary, nor any other officer
or employee of the Department of Commerce or bureau or agency thereof, or local government census liaison may, except as provided in section 8 or 16 or chapter 10 of this title or section 210 of the Departments of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act, 1998. - (1) Use the information furnished under the provisions of this title for any purpose other than the statistical purposes for which it is supplied; or - (2) Make any publication whereby the data furnished by any particular establishment or individual under this title can be identified; or - (3) Permit anyone other than the sworn officers and employees of the Department or bureau or agency thereof to examine the individual reports. No department, bureau, agency, officer, or employee of the Government, except the Secretary in carrying out the purposes of this title, shall require, for any reason, copies of census reports which have been retained by any such establishment or individual. Copies of census reports, which have been so retained, shall be immune from legal process, and shall not, without the consent of the individual or establishment concerned, be admitted as evidence or used for any purpose in any action, suit, or other judicial or administrative proceeding. - (b) The provisions of subsection (a) of this section relating to the confidential treatment of data for particular individuals and establishments, shall not apply to the censuses of governments provided for by subchapter III of chapter 5 of this title, nor to interim current data provided for by subchapter IV of chapter 5 of this title as to the subjects covered by censuses of governments, with respect to any information obtained therefore that is compiled from, or customarily provided in, public records. # Statistical agencies collect data under a pledge of confidentiality. # We pledge: Collected data will be used only for statistical purposes. Collected data will be kept *confidential*. Data from individuals or establishments won't be identifiable in any publication. ### IT'S IN OUR HANDS # Census Census 2010 # Disclosure Avoidance for the 2010 Census IT'S IN OUR HANDS Census 2010 # "Disclosure Avoidance" means preventing improper disclosures. # "This is the official form for all the people at this address." Form **D-61** (9-25-2008) This is the official form for all the people at this address. It is quick and easy, and your answers are protected by law. For another reason → If more people were counted in Question 1, continue with Person 2. | a blue or black pen. | | 5. | Please provide information for each person living here. Start with a person living here who owns or rents this house, apartment, or mobile | |--|----|-------------|--| | Start here | | | home. If the owner or renter lives somewhere else, start with any add | | Start Here | | | living here. This will be Person 1. What is Person 1's name? Print name below. | | | | | what is Person 1's hame? Phili hame below. | | Census must count every person living in the United es on April 1, 2010. | | | Last Name | | ore you answer Question 1, count the people living in house, apartment, or mobile home using our guidelines. | | | First Name MI | | Count all people, including babies, who live and sleep here most of the time. | | 6. | What is Person 1's sex? Mark X ONE box. Male Female | | Census Bureau also conducts counts in institutions other places, so: | | 7. | What is Person 1's age and what is Person 1's date of birth?
Please report babies as age 0 when the child is less than 1 year old. | | Do not count anyone living away either at college or in the Armed Forces. | | | Age on April 1, 2010 Print numbers in boxes. Month Day Year of birth | | Do not count anyone in a nursing home, jail, prison, detention facility, etc., on April 1, 2010. | | | | | Leave these people off your form, even if they will return to live here after they leave college, the nursing home, the | | | NOTE: Please answer BOTH Question 8 about Hispanic origin and Question 9 about race. For this census, Hispanic origins are not race. | | military, jail, etc. Otherwise, they may be counted twice. | | 8. | Is Person of Hispanic, Latino, or Spanish origin? | | Census must also include people without a permanent et to stay, so: | | | No, not of Hispanic, Latino, or Spanish origin Yes, Mexican, Mexican Am., Chicano | | If someone who has no permanent place to stay is staying here on April 1, 2010, count that person. Otherwise, he or she may be missed in the census. | 25 | | Yes, Puerto Rican Yes, Cuban Yes, another Hispanic, Latino, or Spanish origin — Print origin, for exan Argentinean, Colombian, Dominican, Wicaraguan, Salvadoran, Spaniard, and so on. 7 | | How many people were living or staying in this house, apartment, or mobile home on April 1, 2010? | | <i>></i> | Argenineau, Colombian, Dominican, Nicaleguan, Carraudian, Openinau, and So on. | | Number of people = | 7 | 9. | What is Person 1's race? Mark 🗷 one or more boxes. | | Were there any additional people staying here | | | White | | April 1, 2010 that you did not include in Question ?? Mark X all that apply. | | | ☐ Black, African Am., or Negro ☐ American Indian or Alaska Native — Print name of enrolled or principal tribe. | | Children, such as newborn babies or foster children | | | | | Relatives, such as adult children, cousins, or in-laws | | | | | Nonrelatives, such as roommates or live-in baby sitters People staying here temporarily. | | | ☐ Asian Indian ☐ Japanese ☐ Native Hawaiian ☐ Chinese ☐ Korean ☐ Guamanian or Chamorro | | No additional people | | | Filipino Vietnamese Samoan | | Is this house, apartment, or mobile home — Mark X ONE box. | | | ☐ Other Asian — Print race, for example, Hmong, Laotian, Thai, race, for example, Fijian, Tonga | | Owned by you or someone in this household with a mortgage or loan? <i>Include home equity loans</i> . | | | Pakistani, Cambodian, and so on. and so on. | | Owned by you or someone in this household free and clear (without a mortgage or loan)? | | | ☐ Some other race — Print race. ✓ | | Rented? | | | | | □ Occupied without payment of rent? What is your telephone number? We may call if we | | | | | don't understand an answer. | | 10. | Does Person 1 sometimes live or stay somewhere else? | | Area Code + Number | | | □ No □ Yes — Mark 🗷 all that apply. | | | | | ☐ In college housing ☐ For child custody ☐ In the military ☐ In jail or prison | | B No. 0607-0919-C: Approval Expires 12/31/2011. | | | ☐ At a seasonal ☐ In a nursing home or second residence ☐ For another reason | "It is quick and easy, and your answers are protected by law." ## The 2010 Census collected data on 308,745,538 people. # The 2000 and 2010 Confidentiality Mechanism operated as a filter on the Census Edited File: # For each person, we collected 6 variables (44 bits of data) | Variable | Range | Bits | |--------------|---|------| | Block | 6,207,027 inhabited blocks | 23 | | Sex | 2 (Female/Male) | 1 | | Age | 103 (0-99 single age year categories, 100-104, 105-109, 110+) | 7 | | Race | 63 allowable race combinations | 7 | | Ethnicity | 2 (Hispanic/Not) | 1 | | Relationship | 17 values | 5 | | Total | | 44 | 308,745,538 people x 6 variables = 1,852,473,228 measurements 308,745,538 people x 44 bits = 13,584,803,672 bits ≈ 1.7 GB # 2010 Census: Summary of Publications (approximate counts) | Publication | Released counts | |---|-----------------| | PL94-171 Redistricting | 2,771,998,263 | | Balance of Summary File 1 | 2,806,899,669 | | Summary File 2 | 2,093,683,376 | | Public-use micro data sample | 30,874,554 | | Lower bound on published statistics | 7,703,455,862 | | Published Statistics/person | 25 | | Recall: Collected variables/person: | 6 | | Published Statistics/collected variable | 25 ÷ 6 ≈ 4.2 | # **Question:** ### Is it possible to run the statistical process in reverse? ### **DRF** Raw data from respondents: Decennial Response File Reconstruction Processes 1,852,473,228 collected values (308,745,538 people x 6 variables/person) Pre-specified tabular summaries: PL94-171, SF1, SF2 Special tabulations and post-census research ### 2003: ### **Database Reconstruction** #### **ABSTRACT** We examine the tradeoff between privacy and usability of statistical databases. We model a statistical database by an n-bit string $d_1, ..., d_n$, with a query being a subset $q \subseteq [n]$ to be answered by $\sum_{i \in q} d_i$. Our main result is a polynomial reconstruction algorithm of data from noisy (perturbed) subset sums. Applying this reconstruction algorithm to statistical databases we show that in order to achieve privacy one has to add perturbation of magnitude $\Omega(\sqrt{n})$. That is, smaller perturbation always results in a strong violation of privacy. We show that this result is tight by exemplifying access algorithms for statistical databases that preserve privacy while adding perturbation of magnitude $\tilde{O}(\sqrt{n})$. For time-T bounded adversaries we demonstrate a privacypreserving access algorithm whose perturbation magnitude is $\approx \sqrt{T}$. U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU #### **Revealing Information while Preserving Privacy** Irit Dinur Kobbi Nissim NEC Research Institute 4 Independence Way Princeton, NJ 08540 {iritd,kobbi }@research.nj.nec.com #### ABSTRACT We examine the tradeoff between privacy and usability of research which is based (among other things) on statistics of the information in the database. On the other
hand, the hospital is obliged to keep the privacy of its patients, i.e. leak no medical information that could be related to a specific patient. The hospital needs an access mechanism to the database that allows certain 'statistical' queries to be answered, as long as they do not violate the privacy of any single patient. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. PODS 2003, June 9-12, 2003, San Diego, CA. Copyright 2003 ACM 1-58113-670-6/03/06 ...\$5,00 One simple tempting solution is to remove from the database all 'identifying' attributes such as the patients' names and in their comparative survey of privacy methods for statistical databases, Adam and Wortmann [2] classified the approaches taken into three main categories: (i) query restriction, (ii) data perturbation, and (iii) output perturbation. We give a brief review of these approaches below, and refer the reader to [2] for a detailed survey of the methods and their weaknesses. Query Restriction. In the query restriction approach, queries are required to obey a special structure, supposedly to prevent the querying adversary from gaining too much information about specific database entries. The limit of this approach is that it allows for a relatively small number of queries. A related idea is of query auditing [7], i.e. a log of the queries is kept, and every new query is checked for possible compromise, allowing/disallowing the query accordingly. ^{*}Work partly done when the author was at DIMACS, Rutgers University, and while visiting Microsoft Research Silicon Valley Lab. ¹A patient's gender, approximate age, approximate weight, ethnicity, and marital status − may already suffice for a complete identification of most patients in a database of a thousand patients. The situation is much worse if a relatively 'rare' attribute of some patient is known. For example, a patient having Cystic Fibrosis (frequency ≈ 1/3000) may be uniquely identified within about a million patients. # Attacking statistical databases ### Statistical agencies are trusted curators. ### Respondents # Confidential Database | Age Sex Race/MS | |-----------------| | 8 FBS | | 18 MWS | | 24 FWS | | 30 MWM | | 36 FBM | | 66 FBM | | 84 MBM | ### **Published Statistics** | # | Median
Age | Mean
Age | |---|----------------------------|-------------------------------------| | 7 | 30 | 38 | | 4 | 30 | 33.5 | | 3 | 30 | 44 | | 4 | 51 | 48.5 | | 3 | 24 | 24 | | 4 | 51 | 54 | | 3 | 36 | 36.7 | | | 7
4
3
4
3
4 | # Age 7 30 4 30 3 30 4 51 3 24 4 51 | ### This is the trusted curator model ### We now know "trusted curator" model is more complex. Every data publication results in some privacy loss. Publishing too many statistics results in the compromise of the entire confidential database. # Consider the statistics from a single household | | Count | Median | Mean | |----------|-------|--------|------| | Total | 1 | 24 | 24 | | # Female | 1 | 24 | 24 | | # white | 1 | 24 | 24 | | Single | 1 | 24 | 24 | | White F | 1 | 24 | 24 | 24 yrs Female White Single (24 FWS) # Publishing statistics for this household alone would result in an improper disclosure. | | Count | Median | Mean | |----------|-------|--------|------| | Total | (D) | (D) | (D) | | # Female | (D) | (D) | (D) | | # white | (D) | (D) | (D) | | Single | (D) | (D) | (D) | | White F | (D) | (D) | (D) | 24 yrs Female White Single (24 FWS) U.S. Department of Commerce Economics and Statistics Administration (D) Means suppressed to prevent an improper disclosure. # In the past, statistical agencies aggregated data from many households together into a single publication. | | Count | Median
Age | Mean
Age | |----------|-------|---------------|-------------| | Total | 7 | 30 | 38 | | # Female | 4 | 30 | 33.5 | | # male | 3 | 30 | 44 | | # black | 4 | 51 | 48.5 | | # white | 3 | 24 | 24 | | Married | 4 | 51 | 54 | | Black F | 3 | 36 | 36.7 | # We now know that this publication can be reverse-engineered to reveal the confidential database. | | Count | Median | Mean | |----------|-------|--------|------| | Total | 7 | 30 | 38 | | # Female | 4 | 30 | 33.5 | | # male | 3 | 30 | 44 | | # black | 4 | 51 | 48.5 | | # white | 3 | 24 | 24 | | Married | 4 | 51 | 54 | | Black F | 3 | 36 | 36.7 | **24 FWS** This table can be expressed by 164 equations. Solving those equations takes 0.2 seconds on a 2013 MacBook Pro. # The problem with publishing fewer statistics: it's hard to know how many statistics is "too many." | Solution #2 | |-------------| | 2 FBS | | 12 MWS | | 24 FWS | | 30 MBM | | 36 FWM | | 72 FBM | | 90 MBM | | | | | Count | Median | Mean | |----------|-------|--------|------| | Total | 7 | 30 | 38 | | # Female | 4 | 30 | 33.5 | | # male | 3 | 30 | 44 | | # black | 4 | 51 | 48.5 | | # white | 3 | 24 | 24 | | Married | 4 | 51 | 54 | | Black F | | | | # Here's what the system looks like: ### Variables: ``` #define FFMALE 0 #define MALE (int S1 FEMALE MALE) (int S2 FEMALE MALE) (int S3 FEMALE MALE) (int S4 FEMALE MALE) (int S5 FEMALE MALE) (int S6 FEMALE MALE) (int S7 FEMALE MALE) ``` ### **Constraints:** ``` ;; there are three males (= (+ (if (= S1 MALE) 1 0) (if (= S2 MALE) 1 0) (if (= S3 MALE) 1 0) (if (= S4 MALE) 1 0) (if (= S5 MALE) 1 0) (if (= S6 MALE) 1 0) (if (= S7 MALE) 1 0) 3) ``` # 2010 Census: Summary of Publications (approximate counts) | Publication | Released counts | |---|-----------------| | PL94-171 Redistricting | 2,771,998,263 | | Balance of Summary File 1 | 2,806,899,669 | | Summary File 2 | 2,093,683,376 | | Public-use micro data sample | 30,874,554 | | Lower bound on published statistics | 7,703,455,862 | | Published Statistics/person | 25 | | Recall: Collected variables/person: | 6 | | Published Statistics/collected variable | 25 ÷ 6 ≈ 4.2 | # We performed a database reconstruction and re-identification attack for all 308,745,538 people in 2010 Census - 1. Reconstructed 308,745,538 microdata records. - 2. Used 4 commercial databases of the 2010 US population acquired 2009-2011 in support of the 2010 Census - Commercial database had: NAME, ADDRESS, AGE, SEX - Linked reconstructed records to the commercial database records Linked database has: NAME, ADDRESS, AGE, SEX, ETHNICITY & RACE Link rate: 45% - 4. Compared linked database to Census Bureau confidential data - Question: How often did the attack get the all variables including race and ethnicity right? - Answer: 38% (17% of US population) # Our attack is good, but not perfect. An outside attacker would have a harder time. We confirmed re-identification of 38% (17% of US population) We did not reconstruct families. We did not recover detailed self-identified race codes ### An outside attacker: Would not know which re-identifications are correct. An outside attacker would need to confirm with another external data source. # The protection system used in 2000 and 2010 relied on swapping households. ### Some households were swapped with other households Swapped households had the same size. Swapping limited to within each state. ### Disadvantages: Swap rate and details of swapping not disclosed. Privacy protection was not quantified. Impact on data quality not quantified. # Confidentiality Mechanism Any State Swapping is called a "Disclosure Avoidance" technique. It's job is to prevent improper disclosures. # We now know that the disclosure avoidance techniques we used in the 2010 Census were flawed We released *exact population counts* for blocks, tracts and counties. We did not swap 100% of the households We released ≈25 statistics per person, but only collected six pieces of data per person: Block • Age • Sex • Race • Ethnicity • Relationship to Householder The Census Bureau did the best possible in 2010. The math for protecting a decennial census using formal privacy did not [yet] exist. ## Faced with "database reconstruction," statistical agencies have just two choices Option #1: Publish fewer statistics. Option #2: Publish statistics with less accuracy. ## Faced with "database reconstruction," statistical agencies have just two one choice Option #1: Publish fewer statistics. Option #2: Publish statistics with less accuracy. ## 2006: Differential Privacy **Abstract.** We continue a line of research initiated in [10, 11] on privacypreserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called *true answer* is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. Previous work focused on the case of noisy sums, in which $f = \sum_i g(x_i)$, where x_i denotes the *i*th row of the database and g maps database rows to [0,1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation results showing the increased value of interactive sanitization mechanisms over non-interactive. U.S. Department of Commerce Economics and Statistics Administration U.S.
CENSUS BUREAU census.gov #### Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork¹, Frank McSherry¹, Kobbi Nissim², and Adam Smith^{3*} - Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com Ben-Gurion University. kobbi@cs.bgu.ac.il - Weizmann Institute of Science. adam.smith@weizmann.ac.il **Abstract.** We continue a line of research initiated in [10, 11] on privacy-preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called *true answer* is the result of applying rms of ion reanisms \mathbf{Intr} indi sult over We contindatabases. database i in statistica tively, if the the goal o a privacy-preserving statistical database is to enable the user to learn proper ties of the population as a whole while protecting the privacy of the individua contributors. We assume the database is held by a trusted server. On input a query function f mapping databases to reals, the so-called $true\ answer$ is the result of applying j to the database. To protect privacy, the true answer is perturbed by the addition ^{*} Supported by the Louis L. and Anita M. Perlman Postdoctoral Fellowship. ## Differential privacy gives us a mathematical approach for balancing accuracy and privacy loss **Privacy Loss (epsilon): 0 to ∞** ### "Differential privacy" is really two things - 1 A mathematical definition of privacy loss. - 2 Specific mechanisms that allow us to: - ✓ Add the smallest amount of noise necessary for a given privacy outcome - ✓ Structure the noise to have minimal impact on the more important statistics ## Differential privacy — the big idea: Use "noise" to create uncertainty about private data 24 yrs Female White Single (24 FWS) 35 yrs Female Black Single (35 FBS) Impact of the noise ≈ impact of a single person Impact of noise on aggregate statistics decreases with larger population. ## Each time we go through the noise barrier, we get a different number | | | Age | Count | |-----------------|----------|-----|-------| | 1 person age 22 | BARRIER | 25 | 3 | | 1 person age 22 | NOISE BA | 17 | 1 | | 1 person age 22 | S | 27 | -1 | ### **Epsilon controls the amount of noise** | | | Epsilon | Age | |-----------------|----------|---------|------| | 1 person age 22 | BARRIER | 100 | 22 | | 1 person age 22 | NOISE BA | 1.0 | 24 | | 1 person age 22 | N | 0.1 | -115 | ## Understanding the impact of "noise:" Statistics based on 10,000 experiments, epsilon=1.0 | | | 5,000 (50%) runs | 9,500 (95%) runs | |------------------------|---------|----------------------|---------------------| | 1 person age 22 | BARRIER | Median(age): 9 → 73 | Median(age): 0→ 104 | | 10 people, all age 22 | SE | Median(age): 17 → 61 | Median(age): 0→ 103 | | 100 people, all age 22 | ON I | Median(age): 21 → 22 | Median(age): 21→ 22 | ## The noise also impacts the person counts | | | 5,000 (50%) runs | 9,500 (95%) runs | |------------------------|---------|--|---| | 1 person age 22 | RRIER | Median(age): 9 → 73
people: -9 → 11 | Median(age): 0→ 104
people: -29 → 30 | | 10 people, all age 22 | ISE BAI | Median(age): 17 → 61
people: 0 → 20 | Median(age): 0→ 103
people: -19 → 38 | | 100 people, all age 22 | ON | Median(age): 21 → 22
people: 90 → 110 | Median(age): 21→ 22
people: 71 → 129 | ## The 2020 census and differential privacy # DAS allows the Census Bureau to enforce global confidentiality protections ## The Census disclosure avoidance system uses differential privacy to defend against an accurate reconstruction attack ### Differential privacy provides: Provable bounds on the accuracy of the best possible database reconstruction given the released tabulations. Algorithms that allow policy makers to decide the trade-off between accuracy and privacy. Final privacy-loss budget determined by Data Stewardship Executive Policy Committee (DSEP) with recommendation from Disclosure Review Board (DRB) ## The Disclosure Avoidance System relies on injects formally private noise #### Advantages of noise injection with formal privacy: Transparency: the details can be explained to the public Tunable privacy guarantees Privacy guarantees do not depend on external data Protects against accurate database reconstruction Protects every member of the population #### Challenges: Entire country must be processed at once for best accuracy Every use of confidential data must be tallied in the *privacy-loss budget* ## There was no off-the-shelf system for applying differential privacy to a national census We had to create a new system that: Produced higher-quality statistics at more densely populated geographies Produced consistent tables We created new differential privacy algorithms and processing systems that: Produce highly accurate statistics for large populations (e.g. states, counties) Create protected microdata that can be used for any tabulation without additional privacy loss Fit into the decennial census production system ## How the 2020 System Works: High-level Overview Every record in the population may be modified But modifications are bounded by the global privacy budget. Records in the tabulation data have no exact counterpart in the confidential data There is no one-to-one mapping between CEF and MDF records. Explicitly protected tabulations (PL-94 and SF-1) have provable, public accuracy levels ### Basic approach for a DP Census Treat the *entire census* as a set of queries on histograms. Select the specific queries to measure Six *geolevels* (nation, state, county, tract, block group, block) Thousands of queries per *geounit* Billions of queries overall Histogram has billions of cells ## Protecting the data ## First effort: The block-by-block algorithm Independently protect each block (parallel composition) Measure queries for each block; privatize queries; convert results back to microdata ## Tested with data from 1940 #### 1940 hierarchy: - Nation - State - County - Enumeration District Download from usa.ipums.org ## DISTRICT-BY-DISTRICT DIFFERENTIAL PRIVACY ALGORITHMS (1940 CENSUS DATA) ### Block-by-block algorithm (also called bottomUp) #### Mechanism: Select, Measure, Reconstruct separately on each block #### Advantages: Simple and easy to parallelize Privacy cost does not depend on # of blocks Releasing DP for one block has same cost as releasing for all #### Disadvantages Significant error at higher level Error adds up Variance of each geounit is proportional to the number of blocks it contains ### New algorithm: the top-down mechanism - Step 1: Generate national histogram without geographic identifiers. - Step 2: Allocate counts in histogram to each geography "top down." National-level measurements - \mathcal{E}_{nat} State-level histograms - E_{state} County-level histograms - Ecounty Tract-level histograms - \mathcal{E}_{tract} Block-group level histograms - \$\&\xi_{\text{blockgroup}}\$ Block-level histograms - \mathcal{E}_{block} $$\mathcal{E} = \mathcal{E}_{nat} + \mathcal{E}_{state} + \mathcal{E}_{county} + \mathcal{E}_{tract} + \mathcal{E}_{blockgroup} + \mathcal{E}_{block}$$ ### The top-down algorithm... Using $\mathcal{E}_{\text{state}}$ generate state histograms: $$\widetilde{H}_{AK}^1, \, \widetilde{H}_{AL}^1, \dots \, \widetilde{H}_{WY}^1$$ All histograms are consistent: $$\sum_{s \in states} \widetilde{H}_s^1 = \widetilde{H}^0$$ Repeat for each geolevel ## New algorithm: the top-down mechanism ## Post-process for non-negativity and ### Top-down framework: alternative view National histogram equivalent to table of records: | Age Race Sex Ethnicity HHGQ | |-----------------------------| |-----------------------------| Extend to state-level histograms: | Age Race | Sex | Ethnicity | HHGQ | State | |----------|-----|-----------|------|-------| |----------|-----|-----------|------|-------| Add county: | Age | Race | Sex | Ethnicity | HHGQ | State | County | |-----|------|-----|-----------|------|-------|--------| | | | | | | | | Then add tract, block group, block ### **Top-Down Framework** ### Advantages: Easy to parallelize Each geo-unit can have its own strategy selection We use High Dimensional Matrix Mechanism [MMHM18] Parallel composition at each geo-level Reduced variance for many aggregate regions Sparsity discovery - e.g. very few 100+ aged people who combine 5 races - Once to—down decide a region has no such records in county A, no subregion will have them. ### **Post-processing** Each distribution involves (at least) two runs of an optimizer ### L₂ solve: Generates nonnegative fractional demographics histogram State histograms must add up to National histogram (etc.) #### L₁ solve: Converts fractional histogram to non-negative integer histogram Maintain consistency: child histograms must add up to parent Integer solutions are fast to find ### **Evaluating the algorithm** We released runs of the top-down algorithm on data from the 1940 Census. Epsilon values 0.25 .. 8.0 Multiple runs at each value of epsilon. #### Caveats: 1940 data had 4 geography levels: Nation, State, County, Enumeration District. 2020 data has 6 levels: Nation, State, County, Tract, Block Group and Block. 1940 data has 6 races races / 2020 data has 63 race combinations 1940 data has no citizenship (Citizen or non-Citizen) ## Top-Down: much more accurate! ## COMPARISON OF NATIONAL RESULTS BY ALGORITHM (1940 CENSUS DATA) ## COMPARISON OF DISTRICT RESULTS BY ALGORITHM (1940 CENSUS DATA) Each rectangle shows the population statistics for a different geographical area. The top is the total population (pop), followed by the number of females (f) and the number of males (m). ε specifies the privacy loss budget. Click **privatize!** to re-run the privacy mechanism with a different set of random noises. Try changing the number of females or males that was counted on a block and see how it changes the official
tabulations. Or choose one of the sample scenarios listed below. | select | scenario | |--------|--| | | balanced rural and urban blocks | | | One rural block with a LOT of males. | | | One urban block with a LOT of females. | Note: The simulator uses hypothetical (fake) data provided by the user. ## Two public policy choices: What is the correct value of epsilon? Where should the accuracy be allocated? ## **Managing the Tradeoff** ### Policy Issue: Setting Epsilon ### Policy Decisions: Setting privacy loss budget (ε) Global privacy loss budget Geographic levels Fraction of ε allocated to each level **Tables** Fraction of ε allocated to each table or relationship # Policy Issues for the 2020 Census: Invariants For the 2018 End-to-End test, policy makers wanted exact counts: Number of people on each block Number of people on each block of voting age Number of residences & group quarters on each block We implemented invariants before we understood their mathematical impact on differential privacy semantics. We then scaled back to four invariants: C1: Total population (invariant at the county level for the 2018 E2E) C2: Voting-age population (population age 18 and older) (eliminated for the 2018 E2E) C3: Number of housing units (invariant at the block level) C4: Number of occupied housing units (invariant at the block level) C5: Number of group quarters facilities by group quarters type (invariant at the block level) # Scientific Issues for the 2020 Census: Person-Household Joins The Census creates two kinds of tables: Person tables Household tables We can create P & H today. We are working on P x H and Detailed P, H Q(P): # of men living on a block. Q(H): # of occupied houses on a block. Q(P x H): # of children in houses headed by a single man. # Scientific Issue for any use of DP: Quality Metrics What is the measure of "quality" or "utility" in a complex data product? ### Options: L1 error between "true" data set and "protected" data set Impact on an algorithm that uses the data (e.g., redistricting and Voting Rights Act enforcement) # The Choice Problem for Redistricting Tabulations Is More Challenging In the redistricting application, the fitness-for-use is based on: Supreme Court one-person one-vote decision (All legislative districts must have approximately equal populations; there is judicially approved variation) Is statistical disclosure limitation a "statistical method" (permitted by Utah v. Evans) or "sampling" (prohibited by the Census Act, confirmed in Commerce v. House of Representatives)? Voting Rights Act, Section 2: requires majority-minority districts at all levels, when certain criteria are met #### The privacy interest is based on: Title 13 requirement not to publish exact identifying information The public policy implications of uses of detailed race, ethnicity and citizenship ## Organizational Challenges #### Process documentation All uses of confidential data need to be tracked and accounted. #### Workload identification All desired queries on MDF should be known in advance. Required accuracy for various queries should be understood. Queries outside of MDF must also be pre-specified ### Correctness and Quality control Verifying implementation correctness. Data quality checks on tables cannot be done by looking at raw data. ### Data User Challenges Differential privacy is not widely known or understood. Many data users want highly accurate data reports on small areas. Some are anxious about the intentional addition of noise. Some are concerned that previous studies done with swapped data might not be replicated if they used DP data. Many data users believe they require access to Public Use Microdata. Users in 2000 and 2010 didn't know the error introduced by swapping and other protections applied to the tables and PUMS. ### **Concerns and Responses** ### **Redistricting and Exact Counts** In the US, legislative districts must have equal size. Decennial Census counts of each block are the "official counts." Some data users are concerned that adding noise to the counts will make them unfit for use. ### However: Evaluation of districts is based on official decennial counts; these data are used for 10 years. Noise added by DP is significantly less than noise added by other statistical methods currently in use #### STEVEN RUGGLES Regents Professor of History and Population Str Director, Institute for Social Research and Data Innovation 50 Willey Hall University of Minnesota ruggles@umn.edu (612) 624-5818 ### **Ruggles Concerns** Differential privacy is not a measure of identifiability Differential privacy does not measure disclosure risk "Differential Privacy is not concerned with re-identification of respondents - "DP prohibits revealing characteristics of an individual even if the identity of that individual is effectively concealed - "This is a radical departure from established census law and precedent - "The Census Bureau has been disseminating individual-level characteristics routinely since the first microdata in 1962 # Organized attack on the move to differential privacy Regents Professor of History and Population Studi Director, Institute for Social Research and Data Innovation 50 Willey Hall University of Minnesota ruggles@umn.edu (612) 624-5818 ### Concerns: - "Differential privacy will degrade the quality of data available about the population, and will probably make scientifically useful public use microdata impossible - The differential privacy approach is inconsistent with the statutory obligations, history, and core mission of the Census Bureau" # Analysis of population variances David Van Riper & Tracy Kugler, IPUMS (APDU 2019) # Analysis of population variances David Van Riper & Tracy Kugler, IPUMS (APDU 2019) # Analysis of population variances David Van Riper & Tracy Kugler, IPUMS (APDU 2019) # For more information... #### practice DOI:10.1145/3287287 Article development led by ICMQUEUE These attacks on statistical databases are no longer a theoretical danger. BY SIMSON GARFINKEL, JOHN M. ABOWD, AND CHRISTIAN MARTINDALE #### Understanding Database Reconstruction Attacks on Public Data IN 2020, THE U.S. Census Bureau will conduct the Constitutionally mandated decennial Census of Population and Housing. Because a census involves collecting large amounts of private data under the promise of confidentiality, traditionally statistics are published only at high levels of aggregation. Published statistical tables are vulnerable to database reconstruction attacks (DRAs), in which the underlying microdata is recovered merely by finding a set of microdata that is consistent with the published statistical tabulations. A DRA can be performed by using the tables to create a set of mathematical constraints and then solving the resulting set of simultaneous equations. This article shows how such an attack can be addressed by adding noise to the published tabulations, so the reconstruction no longer results in the original data. This has implications for the 2020 census. The goal of the census is to count every person once, and only once, and in the correct place. The results are used to fulfill the Constitutional requirement to apportion the seats in the U.S. House of Representatives among the states according to their respective numbers. In addition to this primary purpose of the decennial census, the U.S. Congress has mandated many other uses for the data. For example, the U.S. Department of Justice uses block-byblock counts by race for enforcing the Voting Rights Act. More generally, the results of the decennial census, combined with other data, are used to help distribute more than \$675 billion in federal funds to states and local organizations. Beyond collecting and distributing data on U.S. citizens, the Census Bureau is also charged with protecting the privacy and confidentiality of survey responses. All census publications must uphold the confidentiality standard specified by Title 13, Section 9 of the U.S. Code, which states that Census Bureau publications are prohibited from identifying "the data furnished by any particular establishment or individual." This section prohibits the Census Bureau from publishing respondents' names, addresses, or any other information that might identify a specific person or establishment. Upholding this confidentiality requirement frequently poses a challenge, because many statistics can inadvertently provide information in a way that can be attributed to a particular entity. For example, if a statistical agency accurately reports there are two persons living on a block and the average age of the block's residents is 35, that would constitute an improper disclosure of personal information, because one of the residents could look up the data, subtract their contribution, and infer the age of the other. 46 COMMUNICATIONS OF THE ACM | MARCH 2019 | VOL. 62 | NO. 3 •Can a set of equations keep U.S. census data private? By <u>Jeffrey Mervis</u> Science Jan. 4, 2019, 2:50 PM http://bit.ly/Science2019C1 TO COMMUNICATIONS OF THE ACM | MARCH 2018 | VOL. 82 | NO. Communications of ACM March 2019 Garfinkel & Abowd # More Background on the 2020 Disclosure Avoidance System September 14, 2017 CSAC (overall design) https://www2.census.gov/cac/sac/meetings/2017-09/ga https://www2.census.gov/cac/sac/meetings/2017-09/garfinkel-modernizing-disclosure-avoidance.pdf August, 2018 KDD'18 (top-down v. block-by-block) https://digitalcommons.ilr.cornell.edu/ldi/49/ October, 2018 WPES (implementation issues) https://arxiv.org/abs/1809.02201 October, 2018 <u>ACMQueue</u> (understanding database reconstruction) https://digitalcommons.ilr.cornell.edu/ldi/50/ or https://queue.acm.org/detail.cfm?id=3295691 Memorandum
2019.13: Disclosure Avoidance System Design Parameters https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/memo-series/2020-memo-2019_13.html