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Status Check:

• AWS EMR Tricks

• PS03 In Progress


Student Presentations:


Guest Presentation — Donald Miner


Pig


Future Deliverables:

• PS04 will be assigned on Friday! Now due March 18

• PS05 will is being revised — Now due April 1st (Something with text or image processing)

• Start thinking about final projects — Proposals due March 22nd


Outline for today’s lesson
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AWS EMR Tricks
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EMR Bootstrap code — s3://gu-anly502/bootstrap.sh

• Bootstrap specified in EMR creation sequence.


EMR startup code — create your own! Mine is at s3://gu-anly502/startup.sh

• I run it with: 


$	aws	s3	cp	s3://gu-anly502/startup.sh	-	|	bash	

Make your time more efficient
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s3://gu-anly502/bootstrap.sh
s3://gu-anly502/startup.sh


[ec2-user@ip-172-31-58-163	~]$	aws	s3	ls	s3://gu-anly502/ps03/forensicswiki	|	head	
Unable	to	locate	credentials.	You	can	configure	credentials	by	running	"aws	configure".	

IAM roles let you "burn in" account authentication.


Tired of typing your AWS authorization credentials? Try IAM roles.

 5

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



 6

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



 7

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



 8

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



 9

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



 10

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



 11

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



 12

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



No, when you create the new VM, specify the IAM Role 
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(by the way — you can leave a t2.micro running at the "free tier" without cost.)
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[Dance	~	10:17:21]$	ssh	-A	ec2-user@52.87.205.16	
The	authenticity	of	host	'52.87.205.16	(52.87.205.16)'	can't	be	established.	
ECDSA	key	fingerprint	is	SHA256:ddrORYwqYlMcvH9rwIjil6q4kx+2nSpJYrlljJC85fs.	
Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes	
Warning:	Permanently	added	'52.87.205.16'	(ECDSA)	to	the	list	of	known	hosts.	

							__|		__|_		)	
							_|		(					/			Amazon	Linux	AMI	
						___|\___|___|	

https://aws.amazon.com/amazon-linux-ami/2015.09-release-notes/	
[ec2-user@ip-172-31-61-18	~]$	aws	s3	ls	s3://gu-anly502/ps03/forensicswiki	
																										PRE	forensicswiki/	
[ec2-user@ip-172-31-61-18	~]$	aws	s3	ls	s3://gu-anly502/ps03/forensicswiki/	|	head	
2016-02-14	20:55:54					507604	access.log.2012-01-01.gz	
2016-02-14	20:55:54					652899	access.log.2012-01-02.gz	
2016-02-14	20:55:54					823445	access.log.2012-01-03.gz	
2016-02-14	20:55:54					813495	access.log.2012-01-04.gz	
2016-02-14	20:55:54					867034	access.log.2012-01-05.gz	
2016-02-14	20:55:54					748648	access.log.2012-01-06.gz	
2016-02-14	20:55:54					565061	access.log.2012-01-07.gz	
2016-02-14	20:55:54					639396	access.log.2012-01-08.gz	
2016-02-14	20:55:54					956386	access.log.2012-01-09.gz	
2016-02-14	20:55:54					862819	access.log.2012-01-10.gz	

Now, when you log-in, you are pre-authenticated!
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EMR_DefaultRole is how EMR reads & writes to S3
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Bucket policies are specified by JSON.

I have added a bucket policy to gu-anly502 so that all principals can perform s3:GetObject


S3 Bucket Policies — All objects in the bucket get the same policy
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Built-in

Easy to download or upload a file

Modify permissions.

Set policies. 

“Definitive.”

AWS S3-Browser
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Drag & Drop Files

Select to edit permissions

Single-click editing

Cyberduck (Mac)
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File Systems Compatible with Amazon EMR 
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-file-systems.html
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File System Prefix Description

HDFS hdfs://(or no prefix) HDFS is a distributed, scalable, and portable file system for Hadoop. An advantage of HDFS is data awareness 
between the Hadoop cluster nodes managing the clusters and the Hadoop cluster nodes managing the individual 
steps. For more information about how HDFS works, go to the Hadoop documentation.  
 
HDFS is used by the master and core nodes. One advantage is that it's fast; a disadvantage is that it's ephemeral 
storage which is reclaimed when the cluster ends. It's best used for caching the results produced by intermediate 
job-flow steps.

EMRFS s3:// EMRFS is an implementation of HDFS used for reading and writing regular files from Amazon EMR directly to 
Amazon S3. EMRFS provides the convenience of storing persistent data in Amazon S3 for use with Hadoop while 
also providing features like Amazon S3 server-side encryption, read-after-write consistency, and list consistency. 

 
Note: Previously, Amazon EMR used the S3 Native FileSystem with the URI scheme,s3n. While this still works, we 
recommend that you use the s3 URI scheme for the best performance, security, and reliability.

local file 
system

  The local file system refers to a locally connected disk. When a Hadoop cluster is created, each node is created 
from an EC2 instance that comes with a preconfigured block of preattached disk storage called an instance store. 
Data on instance store volumes persists only during the life of its EC2 instance. Instance store volumes are ideal 
for storing temporary data that is continually changing, such as buffers, caches, scratch data, and other 
temporary content. For more information, see Amazon EC2 Instance Storage.

(Legacy) 
Amazon S3 
block file 
system

s3bfs:// The Amazon S3 block file system is a legacy file storage system. We strongly discourage the use of this system. 
Important

IMPORTANT: We recommend that you do not use this file system because it can trigger a race condition 
that might cause your cluster to fail. However, it might be required by legacy applications.

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-file-systems.html
http://hadoop.apache.org/docs/stable
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html


Sat Feb 13: Copy 2009-01-12-articles.tsv to HDFS:

[hadoop@ip-172-31-42-90	~]$	time	hdfs	dfs	-put	/wikipedia/rawd/freebase-wex-2009-01-12-articles.tsv	hdfs:///user/hadoop/infiles/	

real	84m35.733s	
user	1m12.176s	
sys	 0m59.660s	

Sat Feb 13: Copy 2009-01-12-articles.tsv to S3:

[hadoop@ip-172-31-42-90	~]$	time	aws	s3	cp	/wikipedia/rawd/freebase-wex-2009-01-12-articles.tsv	s3://anly502-slg/infiles/freebase-
wex-2009-01-12-articles.tsv	
upload:	../../wikipedia/rawd/freebase-wex-2009-01-12-articles.tsv	to	s3://anly502-slg/infiles/freebase-wex-2009-01-12-articles.tsv	

real	55m32.932s	
user	4m43.408s	
sys	 2m6.236s	

Sat Feb. 20 Copy to HDFS: 

$	hdfs	dfs	-put	/wikipedia/rawd/freebase-wex-2009-01-12-articles.tsv	hdfs:///freebase-wex-2009-01-12-articles.tsv	
681	seconds	

Sat Feb. 20 Copy to S3:

$	aws	s3	cp	/wikipedia/rawd/freebase-wex-2009-01-12-articles.tsv	s3://gu-anly502/	
574	seconds

EMR times are highly variable. 
However, it seems that there was a problem on Feb 13:
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PS03 In Progress
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I downloaded them to /mnt and ran them locally:

[last:	0s][~/ANLY502_SOLUTIONS/PS03]$	python	join1.py	/mnt/fwiki/	
using	configs	in	/home/hadoop/.mrjob.conf	
creating	tmp	directory	/tmp/join1.hadoop.20160220.203904.676391	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00000	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00001	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00002	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00003	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00004	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00005	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00006	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00007	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00008	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00009	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00010	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00011	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00012	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00013	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00014	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00015	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00016	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00017	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00018	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00019	
...

mrjob could not read all of the forensicswiki access.2012-??-??.gz files
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writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00117	
writing	to	/tmp/join1.hadoop.20160220.203904.676391/step-0-mapper_part-00118	
Traceback	(most	recent	call	last):	
		File	"join1.py",	line	52,	in	<module>	
				FwikiMaxmindJoin.run()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	461,	in	run	
				mr_job.execute()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	479,	in	execute	
				super(MRJob,	self).execute()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/launch.py",	line	153,	in	execute	
				self.run_job()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/launch.py",	line	216,	in	run_job	
				runner.run()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/runner.py",	line	470,	in	run	
				self._run()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/sim.py",	line	173,	in	_run	
				self._invoke_step(step_num,	'mapper')	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/sim.py",	line	260,	in	_invoke_step	
				working_dir,	env)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/inline.py",	line	160,	in	_run_step	
				child_instance.execute()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	470,	in	execute	
				self.run_mapper(self.options.step_num)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	536,	in	run_mapper	
				write_line(out_key,	out_value)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	707,	in	write_line	
				print	>>	self.stdout,	write(key,	value)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/protocol.py",	line	75,	in	write	
				self._dumps(value))	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/protocol.py",	line	88,	in	_dumps	
				return	json.dumps(value)	
		File	"/usr/local/lib64/python2.7/site-packages/simplejson/__init__.py",	line	261,	in	dumps	
				return	_default_encoder.encode(obj)	
		File	"/usr/local/lib64/python2.7/site-packages/simplejson/encoder.py",	line	208,	in	encode	
				return	encode_basestring_ascii(o)	
UnicodeDecodeError:	'utf8'	codec	can't	decode	byte	0xcf	in	position	119:	invalid	continuation	byte	
[last:	1342s][~/ANLY502_SOLUTIONS/PS03]$		

Bad Data in PS03!
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Scanning program:


#!/usr/bin/python2.7	

from	__future__	import	print_function	
import	sys	

for	fname	in	sys.argv[1:]:	
				print(fname)	
				with	open(fname,"r")	as	f:	
								for	line	in	f:	
												line.decode('utf8')	

Run it:

$	python	scan.py	/mnt/fwiki/*	
/mnt/fwiki/access.log.2012-01-01	
/mnt/fwiki/access.log.2012-01-02	
/mnt/fwiki/access.log.2012-01-03	
/mnt/fwiki/access.log.2012-01-04	
/mnt/fwiki/access.log.2012-01-05	
...		
/mnt/fwiki/access.log.2012-02-21	
/mnt/fwiki/access.log.2012-02-22	
Traceback	(most	recent	call	last):	
		File	"scan.py",	line	10,	in	<module>	
				line.decode('utf8')	
		File	"/usr/lib64/python2.7/encodings/utf_8.py",	line	16,	in	decode	
				return	codecs.utf_8_decode(input,	errors,	True)	
UnicodeDecodeError:	'utf8'	codec	can't	decode	byte	0xae	in	position	366:	invalid	start	byte	
			

I wrote a small program to scan for the bad data.
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New version:

from	__future__	import	print_function	
import	sys	

for	fname	in	sys.argv[1:]:	
				print(fname)	
				with	open(fname,"r")	as	f:	
								number	=	0	
								for	line	in	f:	
												number	+=	1	
												try:	
																line.decode('utf8')	
												except	UnicodeDecodeError:	
																print("bad	line	{}:	{}".format(number,line))	

Output:

$	python	scan.py	/mnt/fwiki/access.log.2012-02-22	
/mnt/fwiki/access.log.2012-02-22	
bad	line	8606:	72.199.97.164	-	-	[22/Feb/2012:05:12:23	-0800]	"GET	/wiki/Tools	HTTP/1.1"	200	15246	"http://www.google.com/url?
sa=t&rct=j&q=backtrack+5+bulk+extractor+on+pc+drive+c&source=web&cd=3&ved=0CDIQFjAC&url=http%3A%2F%2Fwww.forensicswiki.org%2Fwiki
%2FTools&ei=culET7-HPK6DsAKw5_DCDw&usg=AFQjCNF25Wt28dse6kfr2zWDOqOTRFgEZg&sig2=nw5yN2XYKAgw1Pab2RJ7-A"	"Mozilla/5.0	(CaLiKiNgZ?;	U;	
CPU	OS	4_3_3	like	Mac	OS	X;	en-us)	AppleWebKit/533.17.9	(KHTML,	like	Gecko)	Version/5.0.2	Mobile/8J3	Safari/6533.18.5"	

bad	line	8607:	72.199.97.164	-	-	[22/Feb/2012:05:12:23	-0800]	"GET	/w/load.php?
debug=false&lang=en&modules=site&only=styles&skin=monobook&*	HTTP/1.1"	200	1547	"http://www.forensicswiki.org/wiki/Tools"	"Mozilla/5.0	
(CaLiKiNgZ?;	U;	CPU	OS	4_3_3	like	Mac	OS	X;	en-us)	AppleWebKit/533.17.9	(KHTML,	like	Gecko)	Version/5.0.2	Mobile/8J3	Safari/6533.18.5"	

I modified program to print the line number of the bad data:
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[last:	684s][~/ANLY502_SOLUTIONS/PS03]$	python	join1.py	/mnt/fwiki/access.log.2012-02-22	
using	configs	in	/home/hadoop/.mrjob.conf	
creating	tmp	directory	/tmp/join1.hadoop.20160220.213828.279090	
writing	to	/tmp/join1.hadoop.20160220.213828.279090/step-0-mapper_part-00000	
Traceback	(most	recent	call	last):	
		File	"join1.py",	line	52,	in	<module>	
				FwikiMaxmindJoin.run()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	461,	in	run	
				mr_job.execute()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	479,	in	execute	
				super(MRJob,	self).execute()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/launch.py",	line	153,	in	execute	
				self.run_job()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/launch.py",	line	216,	in	run_job	
				runner.run()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/runner.py",	line	470,	in	run	
				self._run()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/sim.py",	line	173,	in	_run	
				self._invoke_step(step_num,	'mapper')	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/sim.py",	line	260,	in	_invoke_step	
				working_dir,	env)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/inline.py",	line	160,	in	_run_step	
				child_instance.execute()	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	470,	in	execute	
				self.run_mapper(self.options.step_num)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	536,	in	run_mapper	
				write_line(out_key,	out_value)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/job.py",	line	707,	in	write_line	
				print	>>	self.stdout,	write(key,	value)	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/protocol.py",	line	75,	in	write	
				self._dumps(value))	
		File	"/usr/local/lib/python2.7/site-packages/mrjob/protocol.py",	line	88,	in	_dumps	
				return	json.dumps(value)	
		File	"/usr/local/lib64/python2.7/site-packages/simplejson/__init__.py",	line	261,	in	dumps	
				return	_default_encoder.encode(obj)	
		File	"/usr/local/lib64/python2.7/site-packages/simplejson/encoder.py",	line	208,	in	encode	
				return	encode_basestring_ascii(o)	
UnicodeDecodeError:	'utf8'	codec	can't	decode	byte	0xae	in	position	366:	invalid	start	byte	
[last:	2s][~/ANLY502_SOLUTIONS/PS03]$		

Verify the bug by running join1.py with just the suspicious file
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Note: This is happening in mrjob's 
write_line() function inside 
run_mapper(). 

Our code never sees the bad data.



[last:	5s][~]$	egrep	-v	'GET|POST|HEAD|OPTIONS|PUT|PROPFIND|LOCK'	/mnt/access.log-filtered.txt		
205	 1	 1	 180	
14920	 206	 11	 2	 129715	
14920	 207	 2	 2	 16366	
14920	 208	 1	 1	 8488	
14920	 209	 7	 7	 85566	
14920	 210	 7	 4	 21788	
14920	 211	 30	 4	 276107	
14920	 215	 1	 1	 180	
14920	 216	 3	 3	 22117	
14920	 218	 7	 7	 65194	
14920	 219	 2	 2	 10109	

You need to handle bad data:


• Instead of this

o	=	Weblog(line)	

• Use this:

try: 
				o	=	Weblog(line) 
except	ValueError: 
				return 

There were other errors — non HTTP access logs in the access.log file
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$	aws	s3	ls	s3://gu-anly502/ps03/	
																											PRE	forensicswiki.2012-01.unzipped/	
																											PRE	forensicswiki/	
																											PRE	maxmind/	
2016-02-20	18:13:20	4268793922	forensicswiki.2012.txt	
2016-02-20	15:44:37	32788306263	freebase-wex-2009-01-12-articles.tsv	
$		

Performance issues — the small file problem
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s3://gu-anly502/ps03/forensicswiki/ s3://gu-anly502/ps03/forensicswiki.2012.txt
1547 seconds 1026 seconds

365 .gz files ≈ 1MB each ≈ 330 MB 1 file, 4GB

Time to read 2012 forensicswiki files with a 3-m3xlarge node cluster:

s3://gu-anly502/ps03/forensicswiki.2012.txt


AWS Price List API

• Offers — Services AWS is offering

• Products — e.g. VM instances

• Terms — e.g. OnDemand, Annual, etc.


Example:

				"RDXNGJU5DRW4G5ZK"	:	{	
						"sku"	:	"RDXNGJU5DRW4G5ZK",	
						"productFamily"	:	"Compute	Instance",	
						"attributes"	:	{	
								"servicecode"	:	"AmazonEC2",	
								"location"	:	"South	America	(Sao	Paulo)",	
								"locationType"	:	"AWS	Region",	
								"instanceType"	:	"c3.large",	
								"currentGeneration"	:	"Yes",	
								"instanceFamily"	:	"Compute	optimized",	
								"vcpu"	:	"2",	
								"physicalProcessor"	:	"Intel	Xeon	E5-2680	v2	(Ivy	Bridge)",	
								"clockSpeed"	:	"2.8	GHz",	
								"memory"	:	"3.75	GiB",	
								"storage"	:	"2	x	16	SSD",	
								"networkPerformance"	:	"Moderate",	
								"processorArchitecture"	:	"32-bit	or	64-bit",	
								"tenancy"	:	"Host",	
								"operatingSystem"	:	"Linux",	
								"licenseModel"	:	"No	License	required",	
								"usagetype"	:	"SAE1-HostBoxUsage:c3.large",	
								"operation"	:	"RunInstances",	
								"enhancedNetworkingSupported"	:	"Yes",	
								"preInstalledSw"	:	"NA",	
								"processorFeatures"	:	"Intel	AVX;	Intel	Turbo"	
						}	
				},	

Using Amazon’s API to find out about real-time pricing
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#!/usr/bin/env	python3.5	
offer_index_url	=	"https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/index.json"	
import	json,urllib.request	
from	tabulate	import	tabulate	

if	__name__=="__main__":	
				offers	=	json.loads(urllib.request.urlopen(offer_index_url).read().decode('utf-8'))	
				assert(offers['formatVersion']=='v1.0')	

				table	=	[["Offer","offerCode","currentVersionUrl"]]	

				for	name	in	offers['offers']:	
								od	=	offers['offers'][name]	
								table.append([name,od['offerCode'],od['currentVersionUrl']])	
				print("The	following	offers	are	available:")	
				print(tabulate(table,headers="firstrow",tablefmt="simple"))	

• Output:

$	./aws_costing.py		
The	following	offers	are	available:	
Offer														offerCode										currentVersionUrl	
-----------------		-----------------		-----------------------------------------------------	
AmazonRedshift					AmazonRedshift					/offers/v1.0/aws/AmazonRedshift/current/index.json	
AmazonSimpleDB					AmazonSimpleDB					/offers/v1.0/aws/AmazonSimpleDB/current/index.json	
AmazonRDS										AmazonRDS										/offers/v1.0/aws/AmazonRDS/current/index.json	
AmazonSES										AmazonSES										/offers/v1.0/aws/AmazonSES/current/index.json	
AmazonRoute53						AmazonRoute53						/offers/v1.0/aws/AmazonRoute53/current/index.json	
AmazonVPC										AmazonVPC										/offers/v1.0/aws/AmazonVPC/current/index.json	
awskms													awskms													/offers/v1.0/aws/awskms/current/index.json	
AmazonEC2										AmazonEC2										/offers/v1.0/aws/AmazonEC2/current/index.json	
AmazonElastiCache		AmazonElastiCache		/offers/v1.0/aws/AmazonElastiCache/current/index.json	
AmazonS3											AmazonS3											/offers/v1.0/aws/AmazonS3/current/index.json	
AmazonCloudFront			AmazonCloudFront			/offers/v1.0/aws/AmazonCloudFront/current/index.json	
AmazonDynamoDB					AmazonDynamoDB					/offers/v1.0/aws/AmazonDynamoDB/current/index.json	
AmazonGlacier						AmazonGlacier						/offers/v1.0/aws/AmazonGlacier/current/index.json	

Print the offers:
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				#	Get	the	EC2	offers																																																																																																							
				assert	ec2_code	in	offers['offers']	
				ec2_url		=	base+offers['offers'][ec2_code]['currentVersionUrl']																																																											
				ec2_json	=	urllib.request.urlopen(ec2_url).read().decode('utf-8')																																																									

				#	Get	all	of	the	current	ec2	offers																																																																																								
				ec2_products	=	ec2_info['products']	
				print("Number	of	products	available:	{}".format(len(ec2_products)))	
				ec2_terms				=	ec2_info['terms']	
				print("Terms	available:	{}".format("	".join(ec2_terms)))	

				#	Assemble	an	array	of	the	instance	types																																																																																		

				instances	=	[]	
				for	(product,vals)	in	ec2_products.items():	
								try:	
															patts	=	vals['attributes']	
															for(pk,pv)	in		ec2_terms['OnDemand'][product].items():	
																				for(dk,dv)	in	pv['priceDimensions'].items():	
																								gb			=	float(patts['memory'].replace("GiB",""))	
																								vcpu	=	float(patts['vcpu'])	
																								row	=	(product,	#	row[0]																																																																															
																															patts['instanceType'],	#	row[1]																																																																	
																															vcpu,									#	row[2]																																																																										
																															gb,	#	row[3]																																																																																				
																															gb/vcpu,																	#	row[4]																																																															
																															float(dv['pricePerUnit']['USD']))	#	row[5]																																																						
																								instances.append(row)	
								except	KeyError:	
												#	Missing	data																																																																																																					
												pass	

Print the VMs:
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product											instanceType						vCPU				Memory				GiB/cpu				pricePerUnit	
----------------		--------------		------		--------		---------		--------------	
SZAG69AWYJF676BA		d2.4xlarge										16			122								7.625												0	
DSG34N2933CDGRJJ		c4.xlarge												4					7.5						1.875												0	
PYCJPPPYA7FXP2KM		m4.large													2					8								4																0	
J28DJ6QCZ8VU7DZQ		d2.8xlarge										36			244								6.77778										6.198	
62G57MU6KCQ2AQS8		t1.micro													1					0.613				0.613												0.08	
7MVN3GT6EP25KDUJ		cc2.8xlarge									32				60.5						1.89062										2	
232CDFDW89ENUXRB		d2.8xlarge										36			244								6.77778										0	
H3H6PVAND793CJ85		c4.8xlarge										36				60								1.66667										0	
86FEVXHAJVJ75D5R		c4.2xlarge											8				15								1.875												0.773	
K4FQKJH96JE6DDW2		m3.xlarge												4				15								3.75													0	
QZS65ZVZAUNM545N		hi1.4xlarge									16				60.5						3.78125										3.23	
XBYJG3BUDTPN8NB9		cc2.8xlarge									32				60.5						1.89062										2.57	
TB8JSDKA7MEGTRXV		m4.large													2					8								4																0.132	
Q73NFXYCVJRVJD5P		i2.8xlarge										32			244								7.625												9.836	
VN8JS6C4CHVEY8WD		i2.4xlarge										16			122								7.625												0.1	
ERPWM7KEFVQABEK6		m3.xlarge												4				15								3.75													0	
MHX8TSHV6Z45N5KU		d2.xlarge												4				30.5						7.625												0.759	
GK3JQYYZHNZAHQ66		r3.2xlarge											8				61								7.625												0	
FRR3BPV6Y433HGXY		d2.8xlarge										36			244								6.77778										6.198	
PA99ECAE74DADX5J		c4.4xlarge										16				30								1.875												2.408	
...	

9699 different product codes...
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				#	Get	the	EC2	offers																																																																																																							
				assert	ec2_code	in	offers['offers']	
				ec2_url		=	base+offers['offers'][ec2_code]['currentVersionUrl']																																																											
				ec2_json	=	urllib.request.urlopen(ec2_url).read().decode('utf-8')																																																									

				#	Get	all	of	the	current	ec2	offers																																																																																								
				ec2_products	=	ec2_info['products']	
				print("Number	of	products	available:	{}".format(len(ec2_products)))	
				ec2_terms				=	ec2_info['terms']	
				print("Terms	available:	{}".format("	".join(ec2_terms)))	

				#	Assemble	an	array	of	the	instance	types																																																																																		

				instances	=	[]	
				for	(product,vals)	in	ec2_products.items():	
								try:	
												patts	=	vals['attributes']	
												if	patts['location']=='US	East	(N.	Virginia)'	and	\	
																				patts['tenancy']=='Shared'	and	\	
																				patts['operatingSystem']	==	'Linux':	
																for(pk,pv)	in		ec2_terms['OnDemand'][product].items():	
																				for(dk,dv)	in	pv['priceDimensions'].items():	
																								gb			=	float(patts['memory'].replace("GiB",""))	
																								vcpu	=	float(patts['vcpu'])	
																								row	=	(product,	#	row[0]																																																																															
																															patts['instanceType'],	#	row[1]																																																																	
																															vcpu,									#	row[2]																																																																										
																															gb,	#	row[3]																																																																																				
																															gb/vcpu,																	#	row[4]																																																															
																															float(dv['pricePerUnit']['USD']))	#	row[5]																																																						
																								#	Convert	values	as	necessary																																																																										
																								if	row[4]>0:	
																												instances.append(row)	
								except	KeyError:	
												#	Missing	data																																																																																																					
												pass	

Restrict to N. Virginia, Shared, Linux, and price>0
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product											instanceType						vCPU				Memory				GiB/cpu				pricePerUnit	
----------------		--------------		------		--------		---------		--------------	
RJZ63YZJGC58TPTS		hi1.4xlarge									16				60.5						3.78125										3.1	
AGHHWVT6KDRBWTWP		t2.nano														1					0.5						0.5														0.0065	
3DX9M63484ZSZFJV		cc2.8xlarge									32				60.5						1.89062										2	
3UP33R2RXCADSPSX		m4.4xlarge										16				64								4																0.958	
VHC3YWSZ6ZFZPJN4		m4.2xlarge											8				32								4																0.479	
QY3YSEST3C6FQNQH		t2.medium												2					4								2																0.052	
A67CJDV9B3YBP6N6		g2.8xlarge										32				60								1.875												2.6	
2GCTBU78G22TGEXZ		m1.small													1					1.7						1.7														0.044	
5KHB4S5E8M74C6ES		i2.xlarge												4				30.5						7.625												0.853	
ZESHW7CZVERW2BN2		i2.4xlarge										16			122								7.625												3.41	
6TEX73KEE94WMEED		c1.xlarge												8					7								0.875												0.52	
P63NKZQXED5H7HUK		d2.2xlarge											8				61								7.625												1.38	
RKCQDTMY5DZS4JWT		m2.4xlarge											8				68.4						8.55													0.98	
X4RWGEB2DKQGCWC2		c1.medium												2					1.7						0.85													0.13	
ASDZTDFMC5425T7P		m3.medium												1					3.75					3.75													0.067	
QG5G45WKDWDDHTFV		t2.large													2					8								4																0.104	
48VURD6MVAZ3M5JX		g2.2xlarge											8				15								1.875												0.65	
639ZEB9D49ASFB26		t1.micro													1					0.613				0.613												0.02	
U7343ZA6ABZUXFZ9		d2.xlarge												4				30.5						7.625												0.69	
NARXYND9H74FTC7A		i2.8xlarge										32			244								7.625												6.82	
ZJC9VZJF5NZNYSVK		d2.4xlarge										16			122								7.625												2.76	
J4T9ZF4AJ2DXE7SA		m4.10xlarge									40			160								4																2.394	
3RUU5T58T7XAFAAF		cr1.8xlarge									32			244								7.625												3.5	
YGU2QZY8VPP94FSR		m3.large													2					7.5						3.75													0.133	
4TCUDNKW7PMPSUT2		r3.8xlarge										32			244								7.625												2.66	
MU4QGTJYWR6T73MZ		i2.2xlarge											8				61								7.625												1.705	
HZC9FAP4F9Y8JW67		t2.micro													1					1								1																0.013	
...	

54 total
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Always develop with a small data set. 

• If you can, develop with -r local  or -r inline  (data must be in local file system)


Remember:
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Student Presentations
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4 presentations in 20 minutes!
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Xiuli Wang Paper
YFCC100M: the new data in multimedia 

research

Jianze Zhou Paper The Beckman report on database research

Daodao Wang Program Apache Mahout Clustering

Ron Graf Paper
GraphLab: A New Framework For Parallel 

Machine Learning



Don Miner
40



Guest Speaker: Donald Miner
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Pig
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Started at Yahoo! Research

• Easier approach for MapReduce

• Procedural language

• PigLatin scripts interpreted and run as MapReduce jobs.


Pig Advantages:

• Easier to program than MapReduce.

• Declarative statements directly describe data 

transformations.

• Optimizer makes efficient decisions.

• Debugging operators: 


—DESCRIBE, EXPLAIN, ILLUSTRATE 
• Can run “locally” or on Hadoop.


Pig Disadvantages:

• Simple statements may generate many MapReduce jobs.

• Can be hard to debug.

• Keywords are case insensitive


—LOAD, USING, AS, GROUP, BY, ... 
• Functions, relations, fields are case sensitive:


—PigStorage, COUNT, 

Apache Pig
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Pig reference materials in Readings/L05 Databases
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Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience

Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath,
Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed,

Santhosh Srinivasan, Utkarsh Srivastava

Yahoo!, Inc.
⇤

ABSTRACT
Increasingly, organizations capture, transform and analyze
enormous data sets. Prominent examples include internet
companies and e-science. The Map-Reduce scalable dataflow
paradigm has become popular for these applications. Its
simple, explicit dataflow programming model is favored by
some over the traditional high-level declarative approach:
SQL. On the other hand, the extreme simplicity of Map-
Reduce leads to much low-level hacking to deal with the
many-step, branching dataflows that arise in practice. More-
over, users must repeatedly code standard operations such
as join by hand. These practices waste time, introduce bugs,
harm readability, and impede optimizations.

Pig is a high-level dataflow system that aims at a sweet
spot between SQL and Map-Reduce. Pig o↵ers SQL-style
high-level data manipulation constructs, which can be as-
sembled in an explicit dataflow and interleaved with custom
Map- and Reduce-style functions or executables. Pig pro-
grams are compiled into sequences of Map-Reduce jobs, and
executed in the Hadoop Map-Reduce environment. Both Pig
and Hadoop are open-source projects administered by the
Apache Software Foundation.

This paper describes the challenges we faced in develop-
ing Pig, and reports performance comparisons between Pig
execution and raw Map-Reduce execution.

1. INTRODUCTION
Organizations increasingly rely on ultra-large-scale data

processing in their day-to-day operations. For example,
modern internet companies routinely process petabytes of
web content and usage logs to populate search indexes and
perform ad-hoc mining tasks for research purposes. The
data includes unstructured elements (e.g., web page text;
images) as well as structured elements (e.g., web page click

⇤Author email addresses: {gates, olgan, shubhamc,
pradeepk, shravanm, olston, breed, sms, utkarsh}
@yahoo-inc.com.
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records; extracted entity-relationship models). The process-
ing combines generic relational-style operations (e.g., fil-
ter; join; count) with specialized domain-specific operations
(e.g., part-of-speech tagging; face detection). A similar sit-
uation arises in e-science, national intelligence, and other
domains.

The popular Map-Reduce [8] scalable data processing frame-
work, and its open-source realization Hadoop [1], cater to
these workloads and o↵er a simple dataflow programming
model that appeals to many users. However, in practice, the
extreme simplicity of the Map-Reduce programming model
leads to several problems. First, it does not directly sup-
port complex N -step dataflows, which often arise in prac-
tice. Map-Reduce also lacks explicit support for combined
processing of multiple data sets (e.g., joins and other data
matching operations), a crucial aspect of knowledge discov-
ery. Lastly, frequently-needed data manipulation primitives
like filtering, aggregation and top-k thresholding must be
coded by hand.

Consequently, users end up stitching together Map-Reduce
dataflows by hand, hacking multi-input flows, and repeat-
edly implementing standard operations inside black-box func-
tions. These practices slow down data analysis, introduce
mistakes, make data processing programs di�cult to read,
and impede automated optimization.

Our Pig system [4] o↵ers composable high-level data ma-
nipulation constructs in the spirit of SQL, while at the same
time retaining the properties of Map-Reduce systems that
make them attractive for certain users, data types, and
workloads. In particular, as with Map-Reduce, Pig pro-
grams encode explicit dataflow graphs, as opposed to im-
plicit dataflow as in SQL. As one user from Adobe put it:

“Pig seems to give the necessary parallel pro-
gramming constructs (FOREACH, FLATTEN,
COGROUP .. etc) and also give su�cient control
back to the programmer (which a purely declara-
tive approach like [SQL on top of Map-Reduce]1

doesn’t).”

Pig dataflows can interleave built-in relational-style op-
erations like filter and join, with user-provided executables
(scripts or pre-compiled binaries) that perform custom pro-
cessing. Schemas for the relational-style operations can be
supplied at the last minute, which is convenient when work-
ing with temporary data for which system-managed meta-
data is more of a burden than a benefit. For data used

1Reference to specific software project removed.

Gates 2009 The Pig Experience

Pig Latin: A Not-So-Foreign Language for Data Processing

Christopher Olston
⇤
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ABSTRACT
There is a growing need for ad-hoc analysis of extremely
large data sets, especially at internet companies where inno-
vation critically depends on being able to analyze terabytes
of data collected every day. Parallel database products, e.g.,
Teradata, o↵er a solution, but are usually prohibitively ex-
pensive at this scale. Besides, many of the people who ana-
lyze this data are entrenched procedural programmers, who
find the declarative, SQL style to be unnatural. The success
of the more procedural map-reduce programming model, and
its associated scalable implementations on commodity hard-
ware, is evidence of the above. However, the map-reduce
paradigm is too low-level and rigid, and leads to a great deal
of custom user code that is hard to maintain, and reuse.

We describe a new language called Pig Latin that we have
designed to fit in a sweet spot between the declarative style
of SQL, and the low-level, procedural style of map-reduce.
The accompanying system, Pig, is fully implemented, and
compiles Pig Latin into physical plans that are executed
over Hadoop, an open-source, map-reduce implementation.
We give a few examples of how engineers at Yahoo! are using
Pig to dramatically reduce the time required for the develop-
ment and execution of their data analysis tasks, compared to
using Hadoop directly. We also report on a novel debugging
environment that comes integrated with Pig, that can lead
to even higher productivity gains. Pig is an open-source,
Apache-incubator project, and available for general use.

Categories and Subject Descriptors:

H.2.3 Database Management: Languages

General Terms: Languages.
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1. INTRODUCTION
At a growing number of organizations, innovation revolves

around the collection and analysis of enormous data sets
such as web crawls, search logs, and click streams. Inter-
net companies such as Amazon, Google, Microsoft, and Ya-
hoo! are prime examples. Analysis of this data constitutes
the innermost loop of the product improvement cycle. For
example, the engineers who develop search engine ranking
algorithms spend much of their time analyzing search logs
looking for exploitable trends.

The sheer size of these data sets dictates that it be stored
and processed on highly parallel systems, such as shared-
nothing clusters. Parallel database products, e.g., Teradata,
Oracle RAC, Netezza, o↵er a solution by providing a simple
SQL query interface and hiding the complexity of the phys-
ical cluster. These products however, can be prohibitively
expensive at web scale. Besides, they wrench programmers
away from their preferred method of analyzing data, namely
writing imperative scripts or code, toward writing declara-
tive queries in SQL, which they often find unnatural, and
overly restrictive.

As evidence of the above, programmers have been flock-
ing to the more procedural map-reduce [4] programming
model. A map-reduce program essentially performs a group-
by-aggregation in parallel over a cluster of machines. The
programmer provides a map function that dictates how the
grouping is performed, and a reduce function that performs
the aggregation. What is appealing to programmers about
this model is that there are only two high-level declarative
primitives (map and reduce) to enable parallel processing,
but the rest of the code, i.e., the map and reduce functions,
can be written in any programming language of choice, and
without worrying about parallelism.

Unfortunately, the map-reduce model has its own set of
limitations. Its one-input, two-stage data flow is extremely
rigid. To perform tasks having a di↵erent data flow, e.g.,
joins or n stages, inelegant workarounds have to be devised.
Also, custom code has to be written for even the most com-
mon operations, e.g., projection and filtering. These factors
lead to code that is di�cult to reuse and maintain, and in
which the semantics of the analysis task are obscured. More-
over, the opaque nature of the map and reduce functions
impedes the ability of the system to perform optimizations.

We have developed a new language called Pig Latin that
combines the best of both worlds: high-level declarative
querying in the spirit of SQL, and low-level, procedural pro-
gramming à la map-reduce.

Olston 2008 Pig Latin
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Users				=	load	'users'	as	(name,	age);	
Filtered	=	filter	Users	by	age	>=	18	and	age	<=	25;		
Pages				=	load	'pages'	as	(user,	url);	
Joined			=	join	Filtered	by	name,	Pages	by	user;	
Grouped		=	group	Joined	by	url;	
Summed			=	foreach	Grouped	generate	group,		
											count(Joined)	as	clicks;	
Sorted			=	order	Summed	by	clicks	desc;	
Top5					=	limit	Sorted	5;	
store	Top5	into	'top5sites';

Famous example:  
Pig program to find top 5 websites for Twitter users age 18-25
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Equivalent MapReduce program (in Java)
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Pig takes your program and compiles it into a Hadoop job.
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Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience

Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath,
Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed,

Santhosh Srinivasan, Utkarsh Srivastava

Yahoo!, Inc.
⇤

ABSTRACT
Increasingly, organizations capture, transform and analyze
enormous data sets. Prominent examples include internet
companies and e-science. The Map-Reduce scalable dataflow
paradigm has become popular for these applications. Its
simple, explicit dataflow programming model is favored by
some over the traditional high-level declarative approach:
SQL. On the other hand, the extreme simplicity of Map-
Reduce leads to much low-level hacking to deal with the
many-step, branching dataflows that arise in practice. More-
over, users must repeatedly code standard operations such
as join by hand. These practices waste time, introduce bugs,
harm readability, and impede optimizations.

Pig is a high-level dataflow system that aims at a sweet
spot between SQL and Map-Reduce. Pig o↵ers SQL-style
high-level data manipulation constructs, which can be as-
sembled in an explicit dataflow and interleaved with custom
Map- and Reduce-style functions or executables. Pig pro-
grams are compiled into sequences of Map-Reduce jobs, and
executed in the Hadoop Map-Reduce environment. Both Pig
and Hadoop are open-source projects administered by the
Apache Software Foundation.

This paper describes the challenges we faced in develop-
ing Pig, and reports performance comparisons between Pig
execution and raw Map-Reduce execution.

1. INTRODUCTION
Organizations increasingly rely on ultra-large-scale data

processing in their day-to-day operations. For example,
modern internet companies routinely process petabytes of
web content and usage logs to populate search indexes and
perform ad-hoc mining tasks for research purposes. The
data includes unstructured elements (e.g., web page text;
images) as well as structured elements (e.g., web page click
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records; extracted entity-relationship models). The process-
ing combines generic relational-style operations (e.g., fil-
ter; join; count) with specialized domain-specific operations
(e.g., part-of-speech tagging; face detection). A similar sit-
uation arises in e-science, national intelligence, and other
domains.

The popular Map-Reduce [8] scalable data processing frame-
work, and its open-source realization Hadoop [1], cater to
these workloads and o↵er a simple dataflow programming
model that appeals to many users. However, in practice, the
extreme simplicity of the Map-Reduce programming model
leads to several problems. First, it does not directly sup-
port complex N -step dataflows, which often arise in prac-
tice. Map-Reduce also lacks explicit support for combined
processing of multiple data sets (e.g., joins and other data
matching operations), a crucial aspect of knowledge discov-
ery. Lastly, frequently-needed data manipulation primitives
like filtering, aggregation and top-k thresholding must be
coded by hand.

Consequently, users end up stitching together Map-Reduce
dataflows by hand, hacking multi-input flows, and repeat-
edly implementing standard operations inside black-box func-
tions. These practices slow down data analysis, introduce
mistakes, make data processing programs di�cult to read,
and impede automated optimization.

Our Pig system [4] o↵ers composable high-level data ma-
nipulation constructs in the spirit of SQL, while at the same
time retaining the properties of Map-Reduce systems that
make them attractive for certain users, data types, and
workloads. In particular, as with Map-Reduce, Pig pro-
grams encode explicit dataflow graphs, as opposed to im-
plicit dataflow as in SQL. As one user from Adobe put it:

“Pig seems to give the necessary parallel pro-
gramming constructs (FOREACH, FLATTEN,
COGROUP .. etc) and also give su�cient control
back to the programmer (which a purely declara-
tive approach like [SQL on top of Map-Reduce]1

doesn’t).”

Pig dataflows can interleave built-in relational-style op-
erations like filter and join, with user-provided executables
(scripts or pre-compiled binaries) that perform custom pro-
cessing. Schemas for the relational-style operations can be
supplied at the last minute, which is convenient when work-
ing with temporary data for which system-managed meta-
data is more of a burden than a benefit. For data used

1Reference to specific software project removed.

exclusively in non-relational operations, schemas need not
be described at all.

Pig compiles these dataflow programs, which are written
in a language called Pig Latin [15], into sets of Hadoop Map-
Reduce jobs, and coordinates their execution. By relying
on Hadoop for its underlying execution engine, Pig benefits
from its impressive scalability and fault-tolerance properties.
On the other hand, Pig currently misses out on optimized
storage structures like indexes and column groups. There
are several ongoing e↵orts to add these features to Hadoop.

Despite leaving room for improvement on many fronts, Pig
has been widely adopted in Yahoo, with hundreds of users
and thousands of jobs executed daily, and is also gaining
traction externally with many successful use cases reported.
This paper describes the challenges we faced in developing
Pig, including implementation obstacles as well as challenges
in transferring the project from a research team to a devel-
opment team and converting it to open-source. It also re-
ports performance measurements comparing Pig execution
and raw Hadoop execution.

1.1 Related Work
For the most part, Pig is merely a combination of known

techniques that fulfills a practical need. That need appears
to be widespread, as several other systems are emerging that
also o↵er high-level languages for Map-Reduce-like environ-
ments: DryadLINQ [20], Hive [3], Jaql [5], Sawzall [16] and
Scope [6]. With the exception of Sawzall, which provides
a constrained filter-aggregate abstraction on top of a single
Map-Reduce job, these systems appear to have been devel-
oped after or concurrently with Pig. Some of these systems
adopt SQL syntax (or a close variant), whereas others in-
tentionally depart from SQL, presumably motivated by sce-
narios for which SQL was not deemed the best fit.

1.2 Outline
Rather than trying to be comprehensive, this paper fo-

cuses on aspects of Pig that are somewhat non-standard
compared to conventional SQL database systems. After giv-
ing an overview of the system, we describe Pig’s type sys-
tem (including nested types, type inference and lazy cast-
ing), generation, optimization and execution of query plans
in the Map-Reduce context, and piping data through user-
supplied executables (“streaming”). We then present per-
formance numbers, comparing Pig execution against hand-
coded Map-Reduce execution. At the end of the paper, we
describe some of our experiences building and deploying Pig,
and mention some of the ways Pig is being used (both inside
and outside of Yahoo).

2. SYSTEM OVERVIEW
The Pig system takes a Pig Latin program as input, com-

piles it into one or more Map-Reduce jobs, and then exe-
cutes those jobs on a given Hadoop cluster. We first give
the reader a flavor of Pig Latin through a quick example,
and then describe the various steps that are carried out by
Pig to execute a given Pig Latin program.

Example 1. Consider a data set urls: (url, category,
pagerank). The following Pig Latin program finds, for each
su�ciently large category, the top ten urls in that category
by pagerank.

Figure 1: Pig compilation and execution stages.

urls = LOAD ‘dataset’ AS (url, category, pagerank);
groups = GROUP urls BY category;
bigGroups = FILTER groups BY COUNT(urls)>1000000;
result = FOREACH bigGroups GENERATE

group, top10(urls);
STORE result INTO ‘myOutput’;

Some of the salient features of Pig Latin as demonstrated
by the above example include (a) a step-by-step dataflow
language where computation steps are chained together
through the use of variables, (b) the use of high-level trans-
formations, e.g., GROUP, FILTER, (c) the ability to specify
schemas as part of issuing a program, and (d) the use of user-
defined functions (e.g., top10) as first-class citizens. More
details about Pig Latin and the motivations for its design
are given in [15].

Pig allows three modes of user interaction:

1. Interactive mode: In this mode, the user is pre-
sented with an interactive shell (called Grunt), which
accepts Pig commands. Plan compilation and exe-
cution is triggered only when the user asks for out-
put through the STORE command. (This practice en-
ables Pig to plan over large blocks of program logic.
There are no transactional consistency concerns, be-
cause Hadoop data is immutable.)

2. Batch mode: In this mode, a user submits a pre-
written script containing a series of Pig commands,
typically ending with STORE. The semantics are iden-
tical to interactive mode.

3. Embedded mode: Pig is also provided as a Java li-
brary allowing Pig Latin commands to be submitted
via method invocations from a Java program. This
option permits dynamic construction of Pig Latin pro-
grams, as well as dynamic control flow, e.g. looping for
a non-predetermined number of iterations, which is not
currently supported in Pig Latin directly.

In interactive mode, two commands are available to help
the user reason about the program she is using or creating:
DESCRIBE and ILLUSTRATE. The DESCRIBE command displays
the schema of a variable (e.g. DESCRIBE urls, DESCRIBE
bigGroups). The ILLUSTRATE command displays a small
amount of example data for a variable and the variables in



Pig builds a "data flow" model from your program.
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Figure 2: Pig Latin to logical plan translation.

3.2 Lazy Conversion of Types
When Pig does need to cast a bytearray to another type

because the program applies a type-specific operator, it de-
lays that cast to the point where it is actually necessary.
Consider this example:

students = LOAD ‘data’ USING BinStorage
AS (name, status, possiblePoints, earnedPoints);

paid = FILTER students BY status == ‘paid’;
gpa = FOREACH paid GENERATE name,

earnedPoints / possiblePoints;

In this example, status will need to be cast to a chararray
(since it is compared to constant of type chararray), and
earnedPoints and possiblePoints will need to be cast to
double since they are operands of the division operator.
However, these casts will not be done when the data is
loaded. Instead, they will be done as part of the comparison
and division operations, which avoids casting values that are
removed by the filter before the result of the cast is used.

4. COMPILATION TO MAP-REDUCE
This section describes the process of translating a logical

query plan into a Map-Reduce execution plan. We describe
each type of plan, and then explain how Pig translates be-
tween them and optimizes the Map-Reduce plan.

4.1 Logical Plan Structure
Recall from Section 2 that a Pig Latin program is trans-

lated in a one-to-one fashion to a logical plan. Figure 2
shows an example. Each operator is annotated with the
schema of its output data, with braces indicating a bag of
tuples.2 With the exception of nested plans (Section 5.1.1)
and streaming (Section 6), a Pig logical query plan resem-
bles relational algebra with user-defined functions and ag-
gregates.

Pig currently performs a limited suite of logical optimiza-
tions to transform the logical plan, before the compilation
into a Map-Reduce plan. We are currently enriching the
set of optimizations performed, to include standard System-

2Note that the keyword “group” is used both as a com-
mand (as in “GROUP D BY ...”) and as the automatically-
assigned field name of the group key in the output of a group-
by expression (as in “FOREACH E GENERATE group, ...”).

Figure 3: Map-Reduce execution stages.

R-style heuristics like filter pushdown, among others. Join
ordering does not appear to be an important issue in the
Pig/Hadoop context, because data is generally kept in non-
normalized form (after all, it is read-only); in practice Pig
programs seldom perform more than one join. On the other
hand, due to the prevalence of “wide” data tables, we do
expect to encounter optimization opportunities of the form
studied in the column-store context (e.g. deferred stitching),
once column-wise storage structures are added to Hadoop.

4.2 Map-Reduce Execution Model
A Hadoop Map-Reduce job consists of a series of execution

stages, shown in Figure 3. The map stage processes the
raw input data, one data item at a time, and produces a
stream of data items annotated with keys. A subsequent
local sort stage orders the data produced by each machine’s
map stage by key. The locally-ordered data is then passed
to an (optional) combiner stage for partial aggregation by
key.

The shu✏e stage then redistributes data among machines
to achieve a global organization of data by key (e.g. globally
hashed or ordered). All data received at a particular ma-
chine is combined into a single ordered stream in the merge
stage. If the number of incoming streams is large (relative
to a configured threshold), a multi-pass merge operation is
employed; if applicable, the combiner is invoked after each
intermediate merge step. Lastly, a reduce stage processes
the data associated with each key in turn, often performing
some sort of aggregation.

4.3 Logical-to-Map-Reduce Compilation
Pig first translates a logical plan into a physical plan, and

then embeds each physical operator inside a Map-Reduce
stage to arrive at a Map-Reduce plan.3

3Pig can also target platforms other than Map-Reduce. For
example, Pig supports a “local” execution mode in which
physical plans are executed in a single JVM on one machine
(the final physical-to-Map-Reduce phase is not performed in
this case). A student at UMass Amherst extended Pig to
execute in the Galago [19] parallel data processing environ-
ment.



The data flow is translated into a series of MapReduce steps.
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Figure 2: Pig Latin to logical plan translation.

3.2 Lazy Conversion of Types
When Pig does need to cast a bytearray to another type

because the program applies a type-specific operator, it de-
lays that cast to the point where it is actually necessary.
Consider this example:

students = LOAD ‘data’ USING BinStorage
AS (name, status, possiblePoints, earnedPoints);

paid = FILTER students BY status == ‘paid’;
gpa = FOREACH paid GENERATE name,

earnedPoints / possiblePoints;

In this example, status will need to be cast to a chararray
(since it is compared to constant of type chararray), and
earnedPoints and possiblePoints will need to be cast to
double since they are operands of the division operator.
However, these casts will not be done when the data is
loaded. Instead, they will be done as part of the comparison
and division operations, which avoids casting values that are
removed by the filter before the result of the cast is used.

4. COMPILATION TO MAP-REDUCE
This section describes the process of translating a logical

query plan into a Map-Reduce execution plan. We describe
each type of plan, and then explain how Pig translates be-
tween them and optimizes the Map-Reduce plan.

4.1 Logical Plan Structure
Recall from Section 2 that a Pig Latin program is trans-

lated in a one-to-one fashion to a logical plan. Figure 2
shows an example. Each operator is annotated with the
schema of its output data, with braces indicating a bag of
tuples.2 With the exception of nested plans (Section 5.1.1)
and streaming (Section 6), a Pig logical query plan resem-
bles relational algebra with user-defined functions and ag-
gregates.

Pig currently performs a limited suite of logical optimiza-
tions to transform the logical plan, before the compilation
into a Map-Reduce plan. We are currently enriching the
set of optimizations performed, to include standard System-

2Note that the keyword “group” is used both as a com-
mand (as in “GROUP D BY ...”) and as the automatically-
assigned field name of the group key in the output of a group-
by expression (as in “FOREACH E GENERATE group, ...”).
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R-style heuristics like filter pushdown, among others. Join
ordering does not appear to be an important issue in the
Pig/Hadoop context, because data is generally kept in non-
normalized form (after all, it is read-only); in practice Pig
programs seldom perform more than one join. On the other
hand, due to the prevalence of “wide” data tables, we do
expect to encounter optimization opportunities of the form
studied in the column-store context (e.g. deferred stitching),
once column-wise storage structures are added to Hadoop.

4.2 Map-Reduce Execution Model
A Hadoop Map-Reduce job consists of a series of execution

stages, shown in Figure 3. The map stage processes the
raw input data, one data item at a time, and produces a
stream of data items annotated with keys. A subsequent
local sort stage orders the data produced by each machine’s
map stage by key. The locally-ordered data is then passed
to an (optional) combiner stage for partial aggregation by
key.

The shu✏e stage then redistributes data among machines
to achieve a global organization of data by key (e.g. globally
hashed or ordered). All data received at a particular ma-
chine is combined into a single ordered stream in the merge
stage. If the number of incoming streams is large (relative
to a configured threshold), a multi-pass merge operation is
employed; if applicable, the combiner is invoked after each
intermediate merge step. Lastly, a reduce stage processes
the data associated with each key in turn, often performing
some sort of aggregation.

4.3 Logical-to-Map-Reduce Compilation
Pig first translates a logical plan into a physical plan, and

then embeds each physical operator inside a Map-Reduce
stage to arrive at a Map-Reduce plan.3

3Pig can also target platforms other than Map-Reduce. For
example, Pig supports a “local” execution mode in which
physical plans are executed in a single JVM on one machine
(the final physical-to-Map-Reduce phase is not performed in
this case). A student at UMass Amherst extended Pig to
execute in the Galago [19] parallel data processing environ-
ment.
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When Pig does need to cast a bytearray to another type

because the program applies a type-specific operator, it de-
lays that cast to the point where it is actually necessary.
Consider this example:

students = LOAD ‘data’ USING BinStorage
AS (name, status, possiblePoints, earnedPoints);

paid = FILTER students BY status == ‘paid’;
gpa = FOREACH paid GENERATE name,

earnedPoints / possiblePoints;

In this example, status will need to be cast to a chararray
(since it is compared to constant of type chararray), and
earnedPoints and possiblePoints will need to be cast to
double since they are operands of the division operator.
However, these casts will not be done when the data is
loaded. Instead, they will be done as part of the comparison
and division operations, which avoids casting values that are
removed by the filter before the result of the cast is used.

4. COMPILATION TO MAP-REDUCE
This section describes the process of translating a logical

query plan into a Map-Reduce execution plan. We describe
each type of plan, and then explain how Pig translates be-
tween them and optimizes the Map-Reduce plan.

4.1 Logical Plan Structure
Recall from Section 2 that a Pig Latin program is trans-

lated in a one-to-one fashion to a logical plan. Figure 2
shows an example. Each operator is annotated with the
schema of its output data, with braces indicating a bag of
tuples.2 With the exception of nested plans (Section 5.1.1)
and streaming (Section 6), a Pig logical query plan resem-
bles relational algebra with user-defined functions and ag-
gregates.

Pig currently performs a limited suite of logical optimiza-
tions to transform the logical plan, before the compilation
into a Map-Reduce plan. We are currently enriching the
set of optimizations performed, to include standard System-

2Note that the keyword “group” is used both as a com-
mand (as in “GROUP D BY ...”) and as the automatically-
assigned field name of the group key in the output of a group-
by expression (as in “FOREACH E GENERATE group, ...”).
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R-style heuristics like filter pushdown, among others. Join
ordering does not appear to be an important issue in the
Pig/Hadoop context, because data is generally kept in non-
normalized form (after all, it is read-only); in practice Pig
programs seldom perform more than one join. On the other
hand, due to the prevalence of “wide” data tables, we do
expect to encounter optimization opportunities of the form
studied in the column-store context (e.g. deferred stitching),
once column-wise storage structures are added to Hadoop.

4.2 Map-Reduce Execution Model
A Hadoop Map-Reduce job consists of a series of execution

stages, shown in Figure 3. The map stage processes the
raw input data, one data item at a time, and produces a
stream of data items annotated with keys. A subsequent
local sort stage orders the data produced by each machine’s
map stage by key. The locally-ordered data is then passed
to an (optional) combiner stage for partial aggregation by
key.

The shu✏e stage then redistributes data among machines
to achieve a global organization of data by key (e.g. globally
hashed or ordered). All data received at a particular ma-
chine is combined into a single ordered stream in the merge
stage. If the number of incoming streams is large (relative
to a configured threshold), a multi-pass merge operation is
employed; if applicable, the combiner is invoked after each
intermediate merge step. Lastly, a reduce stage processes
the data associated with each key in turn, often performing
some sort of aggregation.

4.3 Logical-to-Map-Reduce Compilation
Pig first translates a logical plan into a physical plan, and

then embeds each physical operator inside a Map-Reduce
stage to arrive at a Map-Reduce plan.3

3Pig can also target platforms other than Map-Reduce. For
example, Pig supports a “local” execution mode in which
physical plans are executed in a single JVM on one machine
(the final physical-to-Map-Reduce phase is not performed in
this case). A student at UMass Amherst extended Pig to
execute in the Galago [19] parallel data processing environ-
ment.
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Figure 4 shows our example logical plan translated to a
physical plan. For clarity each logical operator is shown with
an id. Physical operators that are produced by the transla-
tion of a logical operator are shown with the same id. For
the most part, each logical operator becomes a correspond-
ing physical operator.

The logical (CO)GROUP operator becomes a series of three
physical operators: local rearrange, global rearrange, and
package. Rearrange is a term that stands for either hashing
or sorting by key. The combination of local and global rear-
range results in the data being arranged such that all tuples
having the same group-by key wind up on the same machine
and adjacent in the data stream. In the case of cogrouping
multiple incoming streams, the local rearrange operator first
annotates each tuple in a way that indicates its stream of
origin. The package operator places adjacent same-key tu-
ples into a single-tuple “package,” which consists of the key
followed by one bag of tuples per stream of origin.

The JOIN operator is handled in one of two ways: (1)
rewrite into COGROUP followed by a FOREACH operator to per-
form “flattening” (see [15]), as shown in Figure 4, which
yields a parallel hash-join or sort-merge join, or (2) fragment-
replicate join [10], which executes entirely in the map stage
or entirely in the reduce stage (depending on the surround-
ing operations). The choice of join strategy is controlled
via syntax (a future version of Pig may o↵er the option to
automate this choice).

Having constructed a physical plan, Pig assigns physical
operators to Hadoop stages (Section 4.2), with the goal of
minimizing the number of reduce stages employed. Figure 5
shows the assignment of physical operators to Hadoop stages
for our running example (only the map and reduce stages are
shown). In the Map-Reduce plan, the local rearrange opera-
tor simply annotates tuples with keys and stream identifiers,

Figure 5: Physical plan to map reduce plan transla-

tion.

and lets the Hadoop local sort stage do the work. Global
rearrange operators are removed because their logic is im-
plemented by the Hadoop shu✏e and merge stages. Load
and store operators are also removed, because the Hadoop
framework takes care of reading and writing data.

4.3.1 Branching Plans

If a Pig Latin program contains more than one STORE com-
mand, the generated physical plan contains a SPLIT physical
operator. The following program contains a logical SPLIT
command and ends with two STORE commands, one for each
branch of the split:

clicks = LOAD ‘clicks’
AS (userid, pageid, linkid, viewedat);

SPLIT clicks INTO
pages IF pageid IS NOT NULL,
links IF linkid IS NOT NULL;

cpages = FOREACH pages GENERATE userid,
CanonicalizePage(pageid) AS cpage,
viewedat;

clinks = FOREACH links GENERATE userid,
CanonicalizeLink(linkid) AS clink,
viewedat;

STORE cpages INTO ‘pages’;
STORE clinks INTO ‘links’;

The Map-Reduce plan for this program is shown in Figure 6
(in this case, we have a “Map-only” plan, in which the Re-
duce step is disabled). Pig physical plans may contain nested
sub-plans, as this example illustrates. Here, the split opera-
tor feeds a copy of its input to two nested sub-plans, one for
each branch of the logical split operation. (The reason for
using a nested operator model for split has to do with flow
control during execution, as discussed later in Section 5.1.)

Figure 4: Logical plan to physical plan translation.
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annotates each tuple in a way that indicates its stream of
origin. The package operator places adjacent same-key tu-
ples into a single-tuple “package,” which consists of the key
followed by one bag of tuples per stream of origin.

The JOIN operator is handled in one of two ways: (1)
rewrite into COGROUP followed by a FOREACH operator to per-
form “flattening” (see [15]), as shown in Figure 4, which
yields a parallel hash-join or sort-merge join, or (2) fragment-
replicate join [10], which executes entirely in the map stage
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ing operations). The choice of join strategy is controlled
via syntax (a future version of Pig may o↵er the option to
automate this choice).

Having constructed a physical plan, Pig assigns physical
operators to Hadoop stages (Section 4.2), with the goal of
minimizing the number of reduce stages employed. Figure 5
shows the assignment of physical operators to Hadoop stages
for our running example (only the map and reduce stages are
shown). In the Map-Reduce plan, the local rearrange opera-
tor simply annotates tuples with keys and stream identifiers,
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tion.

and lets the Hadoop local sort stage do the work. Global
rearrange operators are removed because their logic is im-
plemented by the Hadoop shu✏e and merge stages. Load
and store operators are also removed, because the Hadoop
framework takes care of reading and writing data.

4.3.1 Branching Plans

If a Pig Latin program contains more than one STORE com-
mand, the generated physical plan contains a SPLIT physical
operator. The following program contains a logical SPLIT
command and ends with two STORE commands, one for each
branch of the split:

clicks = LOAD ‘clicks’
AS (userid, pageid, linkid, viewedat);

SPLIT clicks INTO
pages IF pageid IS NOT NULL,
links IF linkid IS NOT NULL;

cpages = FOREACH pages GENERATE userid,
CanonicalizePage(pageid) AS cpage,
viewedat;

clinks = FOREACH links GENERATE userid,
CanonicalizeLink(linkid) AS clink,
viewedat;

STORE cpages INTO ‘pages’;
STORE clinks INTO ‘links’;

The Map-Reduce plan for this program is shown in Figure 6
(in this case, we have a “Map-only” plan, in which the Re-
duce step is disabled). Pig physical plans may contain nested
sub-plans, as this example illustrates. Here, the split opera-
tor feeds a copy of its input to two nested sub-plans, one for
each branch of the logical split operation. (The reason for
using a nested operator model for split has to do with flow
control during execution, as discussed later in Section 5.1.)



Basic Pig Latin program:

• LOAD data from a file system (HDFS or S3)

• Transform the data.

• STORE to file system or DUMP to output.


Pig Data Loading Functions:

• A = LOAD filename [USING function] [AS schema];       


e.g.:

• A = LOAD 'file';

• A = LOAD filename USING BinStorage(); 

• A = LOAD filename USING PigStorage(field_delimiter);

• A = LOAD filename USING PigStorage() AS (field_desc);


Pig Latin Program — Basic Program Design

 51

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



Basic Pig Latin program:

• LOAD data from a file system (HDFS or S3)

• Transform the data.

• STORE to file system or DUMP to output.


Pig transformation examples:


• FILTER

B	=	FILTER	A	BY	$1	==	1;	
B	=	FILTER	A	BY	date	==	“1980-01-01”;	
B	=	FILTER	A	BY	$1	>	50;	

• ORDER BY

C	=	ORDER	B	BY	$0;	
C	=	ORDER	B	BY	date;	

• LIMIT

D	=	LIMIT	B	30;	

• JOIN

D	=	JOIN	C	BY	$1,	B	BY	$1;	
D	=	JOIN	C	BY	ipaddress,	D	BY	ipaddress;

Pig Latin Program — Basic Program Design
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Basic Pig Latin program:

• LOAD data from a file system (HDFS or S3)

• Transform the data.

• STORE to file system or DUMP to output.


Pig Storage examples:


• STORE

STORE	A	INTO	'outputfile';	
STORE	A	INTO	'outputfile.gz';	

--	Store	UTF-8:	
STORE	A	INTO	'output'	USING	PigDump();		

--	Store	in	Binary	
STORE	A	INTO	'output'	USING	BinStorage();		

---	Store	with	delimiters:	
STORE	A	INTO	'output'	USING	PigStorage('*');	

Pig Latin Program — Basic Program Design
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Which version am I running?

$	pig	-help	

Pig modes of operation:


Pig can run locally or on MapReduce
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Local Mode MapReduce Mode

Interactive
$ pig -x local $ pig -x mapreduce

Batch
$ pig -x local filename.pig $ pig -x mapreduce filename.pig

Warning: EMR has problems with pig -x local



A relation is a "bag."

• A bag is a collection of tuples.

• A tuple is an ordered set of fields

• A field is a piece of data.


Pig Data Types:

• Scalar types: int, long, double, chararray

• map — An “associative array” (like a python dictionary)


chararray	:	anytype	

—e.g. 
“first”	:	“George”	
“last”		:	“Washington”	
“born”		:	1732	

• tuple

(v0,	v1,	v2,	...)	

• bag — a collection of tuples

((a,	b,	c),	
	(d,	e,	f),	
	...	
)	

Example (from reference guide)


A	=	LOAD	'student'	USING	PigStorage()	 
									AS	(name:chararray,	age:int,	gpa:float);	
DUMP	A;	
(John,18,4.0F)	
(Mary,19,3.8F)	
(Bill,20,3.9F)	
(Joe,18,3.8F)	

Pig Latin statements work with relations. 
A = LOAD 'foo.txt'   A is a relation.
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First Field SecondField Third Field

Data Type chararray int float

Positional 
notation $0 $1 $2

Possible name name age gpa

Field value John 18 4.0

It's best to use names!



FOREACH ... GENERATE creates new 
relations from old ones.

Example (from reference guide):


A	=	LOAD	'student'	USING	PigStorage()	 
AS	(name:chararray,	age:int,	gpa:float);	
DUMP	A;	
(John,18,4.0F)	
(Mary,19,3.8F)	
(Bill,20,3.9F)	
(Joe,18,3.8F)	

X	=	FOREACH	A	GENERATE	name,$2;	
DUMP	X;	
(John,4.0F)	
(Mary,3.8F)	
(Bill,3.9F)	
(Joe,3.8F)	

Pig Latin FOREACH ... GENERATE
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(1,4,7) (3,7,5)
(2,5,8) (9,5,8)

A = LOAD 'data' AS (t1:tuple(t1a:int,
t1b:int,t1c:int),t2:tuple(t2a:int,t2b:int,t2c:int));

DUMP A;
((3,8,9),(4,5,6))
((1,4,7),(3,7,5))
((2,5,8),(9,5,8))

X = FOREACH A GENERATE t1.t1a,t2.$0;

DUMP X;
(3,4)
(1,3)
(2,9)

2.2. Data Types

2.2.1. Simple and Complex

Simple Data Types Description Example

Scalars

int Signed 32-bit integer 10

long Signed 64-bit integer Data: 10L or 10l

Display: 10L

float 32-bit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data: 10.5 or 10.5e2 or 10.5E2

Display: 10.5 or 1050.0

Arrays

chararray Character array (string) in Unicode
UTF-8 format

hello world

Pig Latin Reference Manual 2

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Simple data types:

bytearray Byte array (blob)

Complex Data Types

tuple An ordered set of fields. (19,2)

bag An collection of tuples. {(19,2), (18,1)}

map A set of key value pairs. [open#apache]

Note the following general observations about data types:
• Use schemas to assign types to fields. If you don't assign types, fields default to type

bytearray and implicit conversions are applied to the data depending on the context in
which that data is used. For example, in relation B, f1 is converted to integer because 5 is
integer. In relation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

A = LOAD 'data' AS (f1,f2,f3);
B = FOREACH A GENERATE f1 + 5;
C = FOREACH A generate f1 + f2;

• If a schema is defined as part of a load statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

• If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE (int)name;

This will cause an error …

• If Pig cannot resolve incompatible types through implicit casts, an error will occur. For
example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE name + gpa;

Pig Latin Reference Manual 2

Page 8
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Functions:

• +, -, *, /, %,


NULL:

• Operations can return NULL;  

NULL is ignored by AVG(), MIN(),  
MAX(), SUM(), COUNT()


Conditions:

• ==, !=, >, <, >=, <=


Conditionals:

• NO IF STATEMENT!

• conditional ? if-true : if-false

Pig is a complete data flow programming language
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A = LOAD 'data' AS (f1:int, f2:int, :bag{T:tuple(t1:int,t2:int)});
DUMP A;
(10,1,{(2,3),(4,6)})
(10,3,{(2,3),(4,6)})
(10,6,{(2,3),(4,6),(5,7)})

X = FOREACH A GENERATE f1, f2, f1%f2;
DUMP X;
(10,1,0)
(10,3,1)
(10,6,4)

X = FOREACH A GENERATE f2, (f2==1?1:COUNT(B));
DUMP X;
(1,1L)
(3,2L)
(6,3L)

Example from Pig Latin Reference Manual:



lines					=	LOAD	's3://gu-anly502/ps02/tobe.txt'	as	(line:chararray);	
words					=	FOREACH	lines	generate	flatten(TOKENIZE(line))	as	word;	
grouped			=	GROUP	words	by	word;	
wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
dump	wordcount;	

LOAD — Loads the data

FOREACH — TOKENIZEs each line. Creates a "words" alias where each tuple is a "word"

GROUP — combines words that have the same word

FOREACH — counts the number of words  in each group.

DUMP — sends to standard output.


Note:

• Put spaces around the equals sign (=) !

• Most Pig words are case-sensitive. (Exception: built-in statements like LOAD, FOREACH, GROUP and GENERATE).

Word Count with Pig
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grunt>	help	
Commands:	
<pig	latin	statement>;	-	See	the	PigLatin	manual	for	details:	http://hadoop.apache.org/pig	
File	system	commands:	
				fs	<fs	arguments>	-	Equivalent	to	Hadoop	dfs	command:	http://hadoop.apache.org/common/docs/current/hdfs_shell.html	
Diagnostic	commands:	
				describe	<alias>[::<alias]	-	Show	the	schema	for	the	alias.	Inner	aliases	can	be	described	as	A::B.	
				explain	[-script	<pigscript>]	[-out	<path>]	[-brief]	[-dot|-xml]	[-param	<param_name>=<param_value>]	
								[-param_file	<file_name>]	[<alias>]	-	Show	the	execution	plan	to	compute	the	alias	or	for	entire	script.	
								-script	-	Explain	the	entire	script.	
								-out	-	Store	the	output	into	directory	rather	than	print	to	stdout.	
								-brief	-	Don't	expand	nested	plans	(presenting	a	smaller	graph	for	overview).	
								-dot	-	Generate	the	output	in	.dot	format.	Default	is	text	format.	
								-xml	-	Generate	the	output	in	.xml	format.	Default	is	text	format.	
								-param	<param_name	-	See	parameter	substitution	for	details.	
								-param_file	<file_name>	-	See	parameter	substitution	for	details.	
								alias	-	Alias	to	explain.	
				dump	<alias>	-	Compute	the	alias	and	writes	the	results	to	stdout.	
Utility	Commands:	
				exec	[-param	<param_name>=param_value]	[-param_file	<file_name>]	<script>	-		
								Execute	the	script	with	access	to	grunt	environment	including	aliases.	
								-param	<param_name	-	See	parameter	substitution	for	details.	
								-param_file	<file_name>	-	See	parameter	substitution	for	details.	
								script	-	Script	to	be	executed.	
				run	[-param	<param_name>=param_value]	[-param_file	<file_name>]	<script>	-		
								Execute	the	script	with	access	to	grunt	environment.		
								-param	<param_name	-	See	parameter	substitution	for	details.	
								-param_file	<file_name>	-	See	parameter	substitution	for	details.	
								script	-	Script	to	be	executed.	
				sh		<shell	command>	-	Invoke	a	shell	command.	
				kill	<job_id>	-	Kill	the	hadoop	job	specified	by	the	hadoop	job	id.	
				set	<key>	<value>	-	Provide	execution	parameters	to	Pig.	Keys	and	values	are	case	sensitive.	
								The	following	keys	are	supported:		
								default_parallel	-	Script-level	reduce	parallelism.	Basic	input	size	heuristics	used	by	default.	
								debug	-	Set	debug	on	or	off.	Default	is	off.	
								job.name	-	Single-quoted	name	for	jobs.	Default	is	PigLatin:<script	name>	
								job.priority	-	Priority	for	jobs.	Values:	very_low,	low,	normal,	high,	very_high.	Default	is	normal	
								stream.skippath	-	String	that	contains	the	path.	This	is	used	by	streaming.	
								any	hadoop	property.	
				help	-	Display	this	message.	
				history	[-n]	-	Display	the	list	statements	in	cache.	
								-n	Hide	line	numbers.		
				quit	-	Quit	the	grunt	shell.	
grunt>	

grunt> — the Pig command line
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Always ask for "help" 

Always read the documentation



grunt>	ls	s3://gu-anly502/	
16/02/15	15:48:52	INFO	s3n.S3NativeFileSystem:	listStatus	s3://gu-anly502/	with	recursive	false	
s3://gu-anly502/bootstrap.sh<r	1>	 936	
s3://gu-anly502/gutenberg	 <dir>	
s3://gu-anly502/ps02	 <dir>	
s3://gu-anly502/ps03	 <dir>	
s3://gu-anly502/ps04	 <dir>	
grunt>	

grunt>	ls	s3://gu-anly502/ps02/	
16/02/15	15:49:01	INFO	s3n.S3NativeFileSystem:	listStatus	s3://gu-anly502/ps02	with	recursive	
false	
s3://gu-anly502/ps02/hamlet.txt<r	1>	 1644	
s3://gu-anly502/ps02/tobe.txt<r	1>	43	
grunt>	

grunt>	cat	s3://gu-anly502/ps02/tobe.txt	
16/02/15	15:49:05	INFO	s3n.S3NativeFileSystem:	Opening	's3://gu-anly502/ps02/tobe.txt'	for	
reading	
To	be,	or	not	to	be-	that	is	the	question:	
grunt>		

Grunt supports many Unix commands: 
ls, cat, 
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Pig uses log4j to log. Make a copy of the existing log4j.properties file and edit it:

$	cp	/etc/pig/conf.dist/log4j.properties	log4j_WARN	

—set these lines: 
#	*****	Set	root	logger	level	to	DEBUG	and	its	only	appender	to	A.	
log4j.rootLogger=ERROR,	A	
log4j.logger.org.apache.pig=warn,A	
log4j.logger.org.apache.hadoop=warn,A	

When you run pig, type:

$	pig	-4	log4j_WARN	

To minimize Pig output — lower the warning level
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$	pig	-4	log4j_WARN	
grunt>	lines	=	load	's3://gu-anly502/ps02/tobe.txt'	as	(line:chararray);	
...	
grunt>	dump	lines;	
...	
(To	be,	or	not	to	be-	)	
(that	is	the	question:)	
grunt>	
...	
grunt>	words	=	FOREACH	lines	generate	flatten(TOKENIZE(line))	as	word;	
grunt>	grouped	=	GROUP	words	by	word;	
grunt>	wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
grunt>	dump	wordcount;	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	set.		User	classes	may	not	be	found.	
See	Job	or	Job#setJar(String).	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	set.		User	classes	may	not	be	found.	
See	Job	or	Job#setJar(String).	
68934	[DataStreamer	for	file	/tmp/hadoop-yarn/staging/hadoop/.staging/job_1455488005182_0020/job.xml	block	
BP-1229375385-172.31.42.104-1455487984302:blk_1073742532_7091]	INFO		amazon.emr.metrics.MetricsSaver		-	1	aggregated	HDFSWriteDelay	
113	raw	values	into	1	aggregated	values,	total	1	
(To,1)	
(be,1)	
(is,1)	
(or,1)	
(to,1)	
(be-,1)	
(not,1)	
(the,1)	
(that,1)	
(question:,1)	
grunt>		

Hadoop Word Count in Pig
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grunt>	dump	wordcount;	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	set.		User	classes	may	not	be	found.	
See	Job	or	Job#setJar(String).	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	set.		User	classes	may	not	be	found.	
See	Job	or	Job#setJar(String).	
68934	[DataStreamer	for	file	/tmp/hadoop-yarn/staging/hadoop/.staging/job_1455488005182_0020/job.xml	block	
BP-1229375385-172.31.42.104-1455487984302:blk_1073742532_7091]	INFO		amazon.emr.metrics.MetricsSaver		-	1	aggregated	HDFSWriteDelay	
113	raw	values	into	1	aggregated	values,	total	1	
(To,1)	
(be,1)	
(is,1)	
(or,1)	
(to,1)	
(be-,1)	
(not,1)	
(the,1)	
(that,1)	
(question:,1)	

grunt>	sorted_wordcount	=	ORDER	wordcount	by	$0;	
grunt>	dump	sorted_wordcount;	
(To,1)	
(be,1)	
(be-,1)	
(is,1)	
(not,1)	
(or,1)	
(question:,1)	
(that,1)	
(the,1)	
(to,1)

Sorting the output...
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grunt>	hamlet	=	LOAD	's3://gu-anly502/ps02/hamlet.txt'	AS	(line:chararray);	
grunt>	words	=	foreach	hamlet	generate	flatten(TOKENIZE(line))	as	word;	
grunt>	grouped	=	GROUP	words	by	word;	
grunt>	wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
grunt>	sorted_words	=	ORDER	wordcount	BY	$1	DESC;	
grunt>	sorted_words20	=	limit	sorted_words	20;	
grunt>	dump	sorted_words20;	
(of,14)	
(the,14)	
(to,9)	
(and,7)	
(The,6)	
(a,5)	
(To,5)	
(And,5)	
(that,4)	
(we,4)	
(bear,3)	
(That,3)	
(us,3)	
(in,3)	
(make,2)	
(end,2)	
(makes,2)	
(all,2)	
(For,2)	
(have,2)	
grunt>		

Working with a larger data set — use LIMIT to limit output.
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$	cat	top20.pig	
hamlet	=	LOAD	's3://gu-anly502/ps02/hamlet.txt'	AS	(line:chararray);	
words	=	foreach	hamlet	generate	flatten(TOKENIZE(line))	as	word;	
grouped	=	GROUP	words	by	word;	
wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
sorted_words	=	ORDER	wordcount	BY	$1	DESC;	
sorted_words20	=	limit	sorted_words	20;	
dump	sorted_words20;	
quit;	
$	pig	top20.pig	-stop-on-failure	
...	
(of,14)	
(the,14)	
(to,9)	
(and,7)	
(The,6)	
(a,5)	
(To,5)	
(And,5)	
(that,4)	
(we,4)	
(bear,3)	
(That,3)	
(us,3)	
(in,3)	
(make,2)	
(end,2)	
(makes,2)	
(all,2)	
(For,2)	
(have,2)	
$	

Pig Latin scripts can be put in files and run from the command line (like mrjob).
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-stop-on-failure is recommended



4064342	[main]	INFO		org.apache.pig.tools.pigstats.mapreduce.SimplePigStats		-	Script	Statistics:		

HadoopVersion	 PigVersion	UserId	 StartedAt	 FinishedAt	Features	
2.7.1-amzn-0	 0.14.0-amzn-0	 hadoop	 2016-02-15	17:10:13	 2016-02-15	17:10:34	 UNKNOWN	

Success!	

Job	Stats	(time	in	seconds):	
JobId	 Maps	 Reduces	 MaxMapTime	MinMapTime	AvgMapTime	MedianMapTime	 MaxReduceTime	 MinReduceTime
	 AvgReduceTime	 MedianReducetime	 Alias	 Feature	 Outputs	
job_1455488005182_0036	 1	 0	 6	 6	 6	 6	 0	 0	 0	 0
	 lines	 MAP_ONLY	 hdfs://ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile,	

Input(s):	
Successfully	read	2	records	(356	bytes)	from:	"s3://gu-anly502/ps02/tobe.txt"	

Output(s):	
Successfully	stored	2	records	(44	bytes)	in:	"hdfs://ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile"	

Counters:	
Total	records	written	:	2	
Total	bytes	written	:	44	
Spillable	Memory	Manager	spill	count	:	0	
Total	bags	proactively	spilled:	0	
Total	records	proactively	spilled:	0	

Job	DAG:	
job_1455488005182_0036	

...

Pig Status — don't just ignore it. 
Use store lines into 'outputfile'; to write output to a file.
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16/02/15	17:10:34	INFO	mapreduce.SimplePigStats:	Script	Statistics:		

HadoopVersion	 PigVersion	UserId	 StartedAt	 FinishedAt	Features	
2.7.1-amzn-0	 0.14.0-amzn-0	 hadoop	 2016-02-15	17:10:13	 2016-02-15	17:10:34	 UNKNOWN	

Success!	

Job	Stats	(time	in	seconds):	
JobId	 Maps	 Reduces	 MaxMapTime	MinMapTime	AvgMapTime	MedianMapTime	 MaxReduceTime	 MinReduceTime
	 AvgReduceTime	 MedianReducetime	 Alias	 Feature	 Outputs	
job_1455488005182_0036	 1	 0	 6	 6	 6	 6	 0	 0	 0	 0
	 lines	 MAP_ONLY	 hdfs://ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile,	

Input(s):	
Successfully	read	2	records	(356	bytes)	from:	"s3://gu-anly502/ps02/tobe.txt"	

Output(s):	
Successfully	stored	2	records	(44	bytes)	in:	"hdfs://ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile"	

Counters:	
Total	records	written	:	2	
Total	bytes	written	:	44	
Spillable	Memory	Manager	spill	count	:	0	
Total	bags	proactively	spilled:	0	
Total	records	proactively	spilled:	0	

Job	DAG:	
job_1455488005182_0036

 67

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

grunt> cat hdfs:///user/hadoop/outputfile 
cat hdfs:///user/hadoop/outputfile 
To be, or not to be-  
that is the question: 
grunt>  



Was	expecting	one	of:	
				<EOF>		
				"cat"	...	
				"clear"	...	
				"fs"	...	
				"sh"	...	
				"cd"	...	
				"cp"	...	
				"copyFromLocal"	...	
				"copyToLocal"	...	
				"dump"	...	
				"\\d"	...	
				"describe"	...	
				"\\de"	...	
				"aliases"	...	
				"explain"	...	
				"\\e"	...	
				"help"	...	
				"history"	...	
				"kill"	...	
				"ls"	...	
				"mv"	...	
				"mkdir"	...	
				"pwd"	...	
				"quit"	...	
				"\\q"	...	
				"register"	...	
				"rm"	...	
				"rmf"	...	
				"set"	...	
				"illustrate"	...	
				"\\i"	...	

				"run"	...	
				"exec"	...	
				"scriptDone"	...	
				""	...	
				""	...	
				<EOL>	...	
				";"	...	

grunt>	describe	lines	
describe	lines	
16/02/15	17:14:10	INFO	Configuration.deprecation:	
fs.default.name	is	deprecated.	Instead,	use	fs.defaultFS	
lines:	{line:	chararray}	

grunt>	illustrate	lines;	
-------------------------------------	
|	lines					|	line:chararray								|		
-------------------------------------	
|											|	that	is	the	question:	|		
-------------------------------------	
grunt>	

Grunt built-in commands:
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Describe and Illustrate 
show the structure of  
relations.



UDFs expand Pig's functionality.

• Parse input lines

• Perform complex operations.

• Example — a UDF could search the MaxMind IP address geolocation database 


—provided that the database is on each node. 

Coding Options:

• Write in Java — import as registered jar files.

• Write in jython — (Python that generates jar files) — import as registered jar files.

• Write in python — Access with "pig streaming API" (similar to Hadoop streaming)

Pig User Defined Functions (UDFs)
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Piggybank — a collection of algorithms for pig.

• CommonLogLoader — 


• https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CommonLogLoader.html


• CombinedLogLoader:

• https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CombinedLogLoader.html


raw	=	LOAD	'combined_log'	USING	org.apache.pig.piggybank.storage.apachelog.CombinedLogLoader	AS	(remoteAddr,	remoteLogname,	user,	
time,	method,	uri,	proto,	status,	bytes,	referer,	userAgent);	

• Note: I was not able to get CombinedLogLoader to work with the ForensicsWiki logs!


I used REGEX_EXTRACT to extract the log file entries:

logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(	EXTRACT(	line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([\\w/]+):(\\d{2}:\\d{2}:\\d{2})	[+\\-]\\d{4}\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	
"([^"]*)"'	
					)	)	AS	(	
					host:	chararray,	identity:	chararray,	user:	chararray,	date:	chararray,	time:	chararray,	verb:	chararray,	url:	chararray,	
request:	chararray,	status:	int,	
					size:	chararray,	referrer:	chararray,	agent:	chararray	
					);	

Pig can process any tab-delimited data. 
How do you process data that aren't tab-delimited? (e.g. Apache log files)
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https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CommonLogLoader.html
https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CombinedLogLoader.html


DEFINE	EXTRACT							org.apache.pig.piggybank.evaluation.string.EXTRACT();	

raw_logs	=	load	's3://gu-anly502/ps03/forensicswiki.2012.txt'	as	(line:chararray);	

logs_base	=	
		FOREACH	raw_logs	GENERATE	FLATTEN	(		
					EXTRACT(	line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([\\w/]+):(\\d{2}:\\d{2}:\\d{2})	[+\\-]\\d{4}\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	
"([^"]*)"'	
					)	)	AS	(	
					host:	chararray,	identity:	chararray,	user:	chararray,	date:	chararray,	time:	chararray,	verb:	chararray,	url:	chararray,	
request:	chararray,	status:	int,	
					size:	chararray,	referrer:	chararray,	agent:	chararray	
					);	

by_date	=	GROUP	logs_base	BY	(date);	

date_counts	=	FOREACH	by_date	GENERATE	
				group	as	date,						--	the	key	you	grouped	on	
				COUNT(logs_base);			--	the	number	of	log	lines	wiht	this	date	

dump	date_counts;	

Pig program to produce hits-by-day
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$	pig	parse_apache.pig		
16/02/21	20:18:47	INFO	pig.ExecTypeProvider:	Trying	ExecType	:	LOCAL	
16/02/21	20:18:47	INFO	pig.ExecTypeProvider:	Trying	ExecType	:	MAPREDUCE	
16/02/21	20:18:47	INFO	pig.ExecTypeProvider:	Picked	MAPREDUCE	as	the	ExecType	
45			[main]	INFO		org.apache.pig.Main		-	Apache	Pig	version	0.14.0-amzn-0	(r:	unknown)	compiled	Jan	14	2016,	02:55:53	
16/02/21	20:18:47	INFO	pig.Main:	Apache	Pig	version	0.14.0-amzn-0	(r:	unknown)	compiled	Jan	14	2016,	02:55:53	
...	
16/02/21	20:23:09	INFO	util.MapRedUtil:	Total	input	paths	to	process	:	5	
(01/Jul/2012,35039)	
(01/Sep/2012,33272)	
(02/Jul/2012,46445)	
(02/Sep/2012,36225)	
(03/Jul/2012,43922)	
(03/Sep/2012,40703)	
(04/Jul/2012,38576)	
...	
(30/Jul/2012,45488)	
(30/Sep/2012,37817)	
(31/Jul/2012,48353)	
263298	[main]	INFO		org.apache.pig.Main		-	Pig	script	completed	in	4	minutes,	23	seconds	and	386	milliseconds	(263386	ms)	
16/02/21	20:23:10	INFO	pig.Main:	Pig	script	completed	in	4	minutes,	23	seconds	and	386	milliseconds	(263386	ms)	

[20:23:11	last:	266s][~/ANLY502/L05]	
$		

Pig output
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266 seconds to process 4GB file!



Old regular expression:

logs_base	=	
		FOREACH	raw_logs	GENERATE	FLATTEN	(		
					EXTRACT(	line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([\\w/]+):(\\d{2}:\\d{2}:\\d{2})	[+\\-]\\d{4}\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	
"([^"]*)"'	
					)	)	AS	(	
					host:	chararray,	identity:	chararray,	user:	chararray,	date:	chararray,	time:	chararray,	verb:	chararray,	url:	chararray,	
request:	chararray,	status:	int,	
					size:	chararray,	referrer:	chararray,	agent:	chararray);	

New:

logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(	EXTRACT(	line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([^\\]]+)\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	"([^"]*)"'	
					)	)	AS	(	
					host:	chararray,	identity:	chararray,	user:	chararray,	datetime_str:	chararray,	verb:	chararray,	url:	chararray,	request:	
chararray,	status:	int,	
					size:	int,	referrer:	chararray,	agent:	chararray	
					);	

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	date,	host,	url,	size;	

Parse the date as a "datetime" and create a new relation with just the desired fields.
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logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:


"describe" and "explain"
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Explain "Logical Plan"

Explain Physical Plan
Explain Map Reduce Plan



Program:

raw_logs	=	load	's3://gu-anly502/ps03/forensicswiki.2012.txt'	as	(line:chararray);	
logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(	EXTRACT(	line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([^\\]]+)\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	"([^"]*)"'	
					)	)	AS	(	
					host:	chararray,	identity:	chararray,	user:	chararray,	datetime_str:	chararray,	verb:	chararray,	url:	chararray,	request:	chararray,	
status:	int,	
					size:	int,	referrer:	chararray,	agent:	chararray	
					);	

by_date	=	GROUP	logs	BY	(date);	
date_counts	=	FOREACH	by_date	GENERATE	
				group	as	date,						--	the	key	you	grouped	on	
				COUNT(logs_base);			--	the	number	of	log	lines	wiht	this	date	
dump	date_counts;	

Output:

(,0)	
(2012-01-01T00:00:00.000Z,29116)	
(2012-01-02T00:00:00.000Z,38188)	
...	
(2012-12-31T00:00:00.000Z,36631)	
(2013-01-01T00:00:00.000Z,1283)	
329255	[main]	INFO		org.apache.pig.Main		-	Pig	script	completed	in	5	minutes,	29	seconds	and	337	milliseconds	(329337	ms)	
16/02/22	00:43:57	INFO	pig.Main:	Pig	script	completed	in	5	minutes,	29	seconds	and	337	milliseconds	(329337	ms)	

[00:43:58	last:	331s][~/ANLY502/L05]	
$		

Final demo: list of forensicswiki hits by date:
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Add a second GENERATE:

logs		=	FOREACH	logs_base	GENERATE	ToDate(SUBSTRING(datetime_str,0,11),'dd/MMM/yyyy')	AS	date,	host,	url,	size;	
logs2	=	FOREACH	logs						GENERATE	SUBSTRING(ToString(date),0,10)	AS	date,	host,	url,	size;	

by_date	=	GROUP	logs2	BY	(date);	
date_counts	=	FOREACH	by_date	GENERATE	
				group	AS	date,				--	the	key	you	grouped	on	
				COUNT(logs2);						--	the	number	of	log	lines	wiht	this	date	

date_counts_sorted	=	ORDER	date_counts	BY	date;	
dump	date_counts_sorted;	

And run...

(2012-12-28,39090)	
(2012-12-29,54360)	
(2012-12-30,40828)	
(2012-12-31,36631)	
(2013-01-01,1283)	
368896	[main]	INFO		org.apache.pig.Main		-	Pig	script	completed	in	6	minutes,	8	seconds	and	977	milliseconds	(368977	ms)	
16/02/22	01:21:35	INFO	pig.Main:	Pig	script	completed	in	6	minutes,	8	seconds	and	977	milliseconds	(368977	ms)	
[hadoop@ip-172-31-37-188	L05]$	%	

368 seconds (up from 331)

A little cleaner — (2012-12-31T00:00:00.000Z,36631) -> (2012-12-31,36631) 
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DEFINE	EXTRACT							org.apache.pig.piggybank.evaluation.string.EXTRACT();	

raw_logs	=	load	's3://gu-anly502/ps03/forensicswiki.2012.txt'	as	(line:chararray);	

maxmind		=	load	's3://gu-anly502/ps03/maxmind'	as	(ipaddr:chararray,	country:chararray);	

logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(	EXTRACT(	line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([^\\]]+)\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	"([^"]*)"'	
					)	)	AS	(	
					host:	chararray,	identity:	chararray,	user:	chararray,	datetime_str:	chararray,	verb:	chararray,	url:	chararray,	request:	
chararray,	status:	int,	
					size:	int,	referrer:	chararray,	agent:	chararray	
					);	

geolocated_logs	=	JOIN	logs_base	BY	host,	maxmind	BY	ipaddr;	
geolocated_50	=	LIMIT	geolocated_logs	50;	
dump	geolocated_50;	
...	
(180.76.5.67,-,-,01/Jan/2012:13:02:39	-0800,GET,/wiki/Special:WhatLinksHere/User_talk:Marc_Yu,200,3799,-,Mozilla/5.0	(compatible;	
Baiduspider/2.0;	+http://www.baidu.com/search/spider.html),180.76.5.67,China)	
(180.76.5.89,-,-,01/Jan/2012:02:27:53	-0800,GET,/wiki/Special:RecentChangesLinked/Libvshadow,200,4391,-,Mozilla/5.0	(compatible;	
Baiduspider/2.0;	+http://www.baidu.com/search/spider.html),180.76.5.89,China)	
(180.76.5.89,-,-,01/Jan/2012:21:47:55	-0800,GET,/images/7/79/?C=S;O=D,200,553,-,Mozilla/5.0	(compatible;	Baiduspider/2.0;	+http://
www.baidu.com/search/spider.html),180.76.5.89,China)	

PS04 will involve doing the full join with the original maxmind data!

MaxMind Join with the Forensicswiki Data
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Next Week
78



Mon Feb 22 — Today!

• L05 — Pig


Fri Feb 26th 

• PS03a Due	 


—let me know if you are having problems! 
—Check the new source code at ANLY502/PS03 
—Be careful about error checking. Massive data is always messy data. 

Mon Feb 29 — Next week

• L06 — Spark

• PS04 — Released — Pig & Spark

Schedule for next two weeks
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Fair Information Practice
80



Source data: Baltimore City Employee Salaries FY2014

• https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2014/2j28-xzd7


Remember this data set from L02?
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Example from Donald Miner  PyCon 2015 https://www.youtube.com/watch?v=b8HLYUp_fA8

https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2014/2j28-xzd7
https://www.youtube.com/watch?v=b8HLYUp_fA8


For every Baltimore employee, it has:


This is public information because these people are city employees.


Issues:

• What’s missing?

• What happens if these data are incorrect?

This is a pretty creepy data set.
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Example from Donald Miner  PyCon 2015 https://www.youtube.com/watch?v=b8HLYUp_fA8

https://www.youtube.com/watch?v=b8HLYUp_fA8


Photography as we know it was invented in the 1860s.

Modern concerns with privacy date back to the 1880s
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http://www.antiquecameras.net/photographers18601900.html



Suddenly cameras were portable, affordable, and easy-to-use.

• “You press the button — we do the rest.”


• https://en.wikipedia.org/wiki/Kodak

In 1888 George Eastman’s Kodak company invented the box camera with roll film 
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1888 box camera

https://en.wikipedia.org/wiki/Kodak


"The Right to Privacy," Samuel D. Warren and Louis D. Brandeis, 

• Harvard Law Review, Vol. IV, No. 5, December 15, 1890

• http://groups.csail.mit.edu/mac/classes/6.805/articles/privacy/Privacy_brand_warr2.html


Famously called privacy "the right to be let alone."*

• Said technology threatened to take "what is whispered in the closet" and have it "proclaimed from the house-tops."

• Key technologies of concern: photography & low-cost newspapers.

• Argued that Tort Law should be used to protect the right of privacy.


Today we see the article articulating four different kinds of privacy:

• Appropriation of a person's name or likeness. 

• Intrusion into a person's seclusion or private affairs

• Disclosure of embarrassing private facts

• Publicity that places a person in false light

In 1890 Samuel Warren and Louis Brandeis identified technology as a primary threat to 
privacy.
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*Others had used the phrase before. See http://www.rbs2.com/privacy.htm

http://groups.csail.mit.edu/mac/classes/6.805/articles/privacy/Privacy_brand_warr2.html
http://www.rbs2.com/privacy.htm


Abigail Roberson posed for a drawing. 

Franklin Mills Flour hired Rochester Folding Box Co.  
to make flour boxes.

• A lithograph of Roberson was put by Folding Box Co. on the container. 

• "Flour of the Family"


Roberson sued for privacy invasion. Roberson lost!

• "It will be observed that there is no complaint made that plaintiff was libeled by this publication of her portrait. The likeness 

is said to be a very good one, and one that her friends and acquaintances were able to recognize; indeed, her grievance is 
that a good portrait of her, and,  [***10]  therefore, one easily recognized, has been used to attract attention  [**443]  toward 
the paper upon which defendant mill company's advertisements appear."


1903: New York Legislature enacts a law giving people the right to sue for commercial use of 
their image without permission.

• http://faculty.uml.edu/sgallagher/Roberson.htm

1902: Roberson v. Rochester Folding Box Co.
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http://faculty.uml.edu/sgallagher/Roberson.htm


1899 — Retail Credit founded in Atlanta by Cator and Guy Woolford

• Created "Merchant Guide" for Atlanta Grocers


—List of customers who paid and who didn't pay 
—Sold to grocers for $25/year 

• Eagerly adopted computers in the 1960s

• Changed name to Equifax in 1979


Databanks also date to the 1890s
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Woolford



Designed to prevent adverse selection:

—John is diagnosed with heart condition. 
—Buys a lot of life insurance from company X. 
—John dies. 
—Company X has big payout to John’s family.  

Designed to prevent insurance shopping:

—John applies to company X for life insurance 
—John tells company X: I have a heart condition! 
—Company X denies life insurance. 
—John applies to Company Y, doesn’t mention heart or X. 
—Company Y writes a policy for John. 
—John has a heart attack, dies. 

1902 — The Medical Information Burea is created in Boston 
A cooperative organization for life insurance firms to share information.
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This is "The Bad People” problem.

• The world is filled with bad people.

• You can’t put them all in prison.


Databases let businesses learn from the mistakes of others.


Retail Credit

• List of people “known” not to reply their debts


Medical Information Bureau (est. 1902)

• List of people with “known” medical problems


Chicago-area merchants (1950s)

• List of “known” shoplifters

Private databanks were created for tracking reputation.
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Blacklisting — the original goal.

• Make a list of the bad people.

• Don’t do business with anybody on the list.


Reform

• Track ill-deeds and gave them a chance to make amends.

• "Penitentiary" as a place to "make penance."

• This was never the goal of private databanks.

Goals in tracking bad people.
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Contained both “factual” and “investigative” information.

• Contained information that was hearsay or just plain wrong.


Records confused between individuals.


No “statute of limitations” on the information.


People frequently prohibited from seeing their own records. 

By the 1960s, Credit report files were a mess.
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Typical "Investigative" Credit Report, circa 1965:

• “Retired Army Lieutenant Colonel”

• “A rather wild-tempered, unreasonably, and uncouth person…. 

“who abused his rank and wasn’t considered a well-adjusted person. 
“He was known to roam the reservation at Ft. Hood and shoot cattle belonging to ranchers who had leased the grazing land 
from the Army.”

—Retail Credit Co. of Atlanta, Ga : hearing before a subcommittee of the Committee on Government Operations,  

House of Representatives, Ninetieth Congress, second session. May 16, 1968 Hearings on the Retail Credit Company,  
• http://lccn.loc.gov/71602454

• KF27 .G665 1968a


"Supposedly confidential reports done by private investigative agencies for the FHA [Federal 
Housing Administration], on marital stability of FHA applicants, can be bought by private 
mortgage lenders for $1.50 each"

• Privacy and Freedom, Westin, (1970 edition), p. 160

1968: Congress held hearings on the database industry
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FCRA created five rights:

• Right to see your credit report.

• Right to challenge incorrect information.

• Right to have information expire.


—Most information automatically removed from report after 7 years 
—Bankruptcy information remains for 10 years 

• Right to know who accesses your report.

• Right to a free credit report if you are denied credit.

Fair Credit Reporting Act, 1970
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Developed by the Department of Health, Education and Welfare following the passage of the 
FCRA


1.There must be no personal data record-keeping systems whose very existence is secret.   

2.There must be a way for a person to find out what information about the person is in a record and how it is used.  

3.There must be a way for a person to prevent information about the person that was obtained for one purpose from being 

used or made available for other purposes without the person's consent. 

4.There must be a way for a person to correct or amend a record of identifiable information about the person. 

5.Any organization creating, maintaining, using, or disseminating records of identifiable personal data must assure the 

reliability of the data for their intended use and must take precautions to prevent misuses of the data.

1973: Code of Fair Information Practice Practice.
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US:

• Right to Financial Privacy Act (1970)

• Privacy Act of 1974 (5 USC §552a)

• Family Education Rights and Privacy Act (1974)

• Cable Communications Policy Act of 1984

• Video Privacy Protection Act of 1988 (18 USC 2710)

• Computer Matching and Privacy Protection Act of 1988 (PL 100-503)

• Telephone Consumer Protection Act of 1991

• Driver’s Privacy Protection Act of 1994

• Health Insurance Portability and Accountability Act (1996)

• Children’s Online Privacy Protection Act (1998)

• Gramm-Leach-Bliley (Final rule, May 24, 2000)

• Do-Not-Call Implementation Act of 2003


• http://www.cdt.org/privacy/guide/protect/laws.php

• http://epic.org/privacy/

The Code of Fair Information Practice was never passed, but inspired many other laws. 
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http://www.cdt.org/privacy/guide/protect/laws.php
http://epic.org/privacy/


Judge Robert Bork was nominated to serve on the Supreme Court by Ronald Regan


Washington DC's City Paper obtained Judge Bork's rental records from a local video store. 


Congressmen realized that if Bork's records could be obtained, anybody's records could be 
obtained!

• Hearings were held in which many testified that rental records had been used in many divorce cases.

• The Cable Act had provided protection to pay-per-view records


Congress passed the Video Privacy Protection Act of 1988.

Video Privacy Protection Act of 1988 (18 USC 2710)
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Actress Rebecca Schaeffer was murdered in 1989 by a crazed fan.

• The fan had been stalking her for three years.

• Schaeffer obtained a PO Box to hide her home address.

• The fan had hired a private detective to find Schaeffer's home address.

• The detective had bought the DMV records from State of California for $250.


—California required Schaeffer to provide her physical address to the DMV. 
• Five years later, Congress passed VPAA

Driver's Privacy Protection Act of 1994
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Rebecca Schaeffer 
1967 - 1989



DPPA limits what states can do with data:

• Motor vehicle or driver safety and theft; motor vehicle emissions; motor vehicle product alterations, recalls, or advisories; 

performance monitoring of motor vehicles and details; removal of non-owner records from original owner records. 

• For use by any government agency, including any court or law enforcement agency, in carrying out its functions.

• For use in the normal course of business by a legitimate business, but only:


—To verify the accuracy of personal information submitted. 
—To correct information that's been submitted. 

• Research, provided that personal information is not published.

• Insurance; Providing notice to owners of impounded 

• For use by any licensed private investigative agency or license security service "for any purpose permitted under this 

subsection."

• For use by employers to veirfy information relating to a commercial driver's license.

• Tolls; Surveys; Any other use authorized by state law.


In 2003, New Hampshire Supreme Court held investigation firms liable for the harm they cause 
for divulging personal information.

Driver's Privacy Protection Act of 1994
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http://www.accessreports.com/statutes/DPPA1.htm


Key Provisions:

• Largely about health insurance portability, not about privacy

• Privacy mandates are largely about security:


—Firewalls, anti-virus, etc. 
—Designate a privacy officer 
—Post privacy policy 
—Require outsourcing companies to protect information. 
—Access to health information; procedures for correcting errors. 

• Enforced by the States (unfunded mandate); HHS enforces in “extreme cases.”


_______ 
*privacy rule passed 2002

HIPAA:  
Health Insurance Portability and Accountability Act of 1996*
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Key Provisions:

• Applies to online collection information on children under 13

• Requires “verifiable parental consent” 


—Very hard in most cases; letter, fax or phone call 
—Some exceptions — one time response to “homework help” 

• Privacy notice must be posted on website


http://www.ftc.gov/opa/1999/9910/childfinal.htm

COPPA:  
Children's Online Privacy Protection Act (1998).
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Unregulated Market

• Industry Standards (Voluntary)

• “Codes of conduct”  — Limited enforcement through licensing

• Enforcement through “market forces;" limited enforcement from government


State and Federal Government

• Forcing companies to comply with their privacy policies. 


—Federal Trade Commission Act of 1914 prohibits "unfair and deceptive trade practices." 
• Enforcement of privacy laws by regulatory agencies, states, etc.


Private Action

• Enforcement through private suit. (It's hard to prove damages.)

Approaches to Privacy Enforcement
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