L03a: Filter, Join & SQL

ANLY 502: Massive Data Fundamentals Simson Garfinkel & Ghaleb Abdulla January 25, 2016

Snowzilla Recap!

Administrivia

PS01 – Redux

Student Presentations

Filter, Top 10, and Join with Map Reduce

Filter, Order & Join with SQL

PS02 – Preview

Review of RAM errors paper

MASSIVE DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY

Thanks for attending L02

Q Search SG Simson Garfinkel (Host, a arifali 🏀 Daodao W 🙎 Jianxian Wu JianzeZhou JH John Hotchkiss jordanBramble joshuakaplan liutongyang L Lorraine L Lu n nathan.hauke QG Qinkai Ge R RonGraf SL Shawn Liu Tim WJ Wang Jiayao WD Weiye Deng xw xiuli wang YH Yu Hu YY Yu YU ZL Zhengning Li

Mute All

Unmute All

MASSIVE DATA FUNDAMENTALS

Participants (22)	
, me, participant ID:85)	• 🏂 🖿
	🎍 🏴
	1
	<u>//</u>
	1
	<u>×</u> 📈
	<u>×</u> 📈
	<u>¥</u> 🟴
	<u>×</u>
	<u>×</u>
	<u>¥</u> 🟴
	<u>¥</u> 🟴
	<u>¥</u> 🟴
	1/2 📈
	1/2 📈
	e.
	1/2 📈
	1/2 📈
	1/2 📈
	1/2 📈
	1
	🎍 🏴
	More >

Administrivia 2 — GitHub Repo

Git hub was down!

https://github.com/simsong/ANLY502

Backup repository at bitbucket

https://bitbucket.org/simson_garfinkel/anly502

Two services avoids single point of failure.

• I need to push to each.

ANLY502 git repository will have:

- Sample code for problem sets
- Sample code from class slides

Git commands:

- git clone
- git stash; git pull; git stash apply

home login signup!

PS01

You needed to be able to:

- Run VMWare
- Run Cloudera Quickstart VM

Part 1 — WordCount in Java

- Put files in HDFS
- Java program provided. You had to compile & run Java MapReduce Program
- Report the Top 10 and their frequency count (to minimize grading). You were expected to use "sort & head"

Part 2 — WordCount using Streaming API

- Python program provided. You had to run with command line.
- Report Top 10 and their frquency.

Part 3 — WordCount using mrjob.

- Had to install mrjob.
- -r local ; -r hadoop.

BIG TEACHER GOOFS:

- Neglected to specify format for submission.
- Neglected to tell students to put their names in all submitted source-code.
- Bad input data:
 - Included invalid file
 - Included original dist file EMACS backup.
- Spelled "Shakespeare" wrong.

PS01 — Data Quality Issues

Three Issues:

- _MACOS directory
- .txt
- t8.shakespear.txt~

These files resulted in different results.

• Inconsistent implementations.

Found 40 it -rw-r--r--- rw-r--r---rw-r--r--[cloudera@q

MASSIVE DATA FUNDAMENTALS

[cloudera@quickstart L03]\$ hdfs dfs -ls Shakespear

		-				
ems 1	cloudera	cloudera	113/00	2015-11-20	16.00	Shakespear/ tyt
1	cloudera	cloudera	161/0	2015-11-29	16.13	Shakespear / LOVER'S COMPLATNE tyt
1	cloudera	cloudera	10145	2015-11-29	16.12	Shakespear/A MIDSUMMER NIGHT'S DREAM tyt
1	cloudera	cloudera	147270	2015-11-29	16.00	Shakespear/ALLS WELL THAT ENDS WELL tyt
1	cloudera	cloudera	1333	2015-11-29	16.09	Shakespear/AS VOILLIKE IT tyt
1	cloudera	cloudera	177660	2015-11-29	16.09	Shakespear/CYMBELINE tyt
1	cloudera	cloudera	159769	2015-11-29	16.05	Shakespear/KING HENRY THE EIGHTH tyt
1	cloudera	cloudera	133614	2015-11-29	16.12	Shakespear/KING 10HN tyt
1	cloudera	cloudera	194754	2015-11-29	16.12	Shakespear/KING BICHARD III tyt
1	cloudera	cloudera	144486	2015-11-29	16.12	Shakespear/KING RICHARD THE SECOND tyt
1	cloudera	cloudera	141839	2015-11-29	16.12	Shakespear/LOVE'S LABOUR'S LOST tyt
1	cloudera	cloudera	139971	2015-11-29	16.12	Shakespear/MEASURE FOR MEASURE tyt
1	cloudera	cloudera	1321/2	2015-11-29	16.12	Shakespear/MICH ADO ABOUT NOTHING tyt
1	cloudera	cloudera	168700	2015-11-29	16.12	Shakespear/SECOND DART OF KING HENRY IV tyt
1	cloudera	cloudera	116104	2015-11-29	16.00	Shakespear/JHE COMEDY OF ERRORS tyt
1	cloudera	cloudera	1/7910	2015-11-29	16.12	Shakespear/THE ETRST DART OF HENRY THE STYTH tyt
1	cloudera	cloudera	154042	2015-11-29	16.12	Shakespear/THE FIRST PART OF KING HENRY THE FOURTH tyt
1	cloudera	cloudera	173712	2015-11-29	16.11	Shakespear/THE HISTORY OF TROTILIS AND CRESSIDA tyt
1	cloudera	cloudera	168961	2015-11-29	16.12	Shakespear/THE LIFE OF KING HENRY THE FIFTH tyt
1	cloudera	cloudera	123/0/	2015-11-29	16.12	Shakespear/THE LIFE OF TIMON OF ATHENS tyt
1	cloudera	cloudera	122454	2015-11-29	16.12	Shakespear/THE MERCHANT OF VENTCE tyt
1	cloudera	cloudera	1/2202	2015-11-29	16.12	Shakespear/THE MERRY WIVES OF WINDSOR tyt
1	cloudera	cloudera	142200	2015-11-29	16.12	Shakespear/THE SECOND DART OF KING HENRY THE SIXTH tyt
1	cloudera	cloudera	103303	2015-11-29	16.00	Shakespear/THE SOUNDERS tyt
1	cloudera	cloudera	127022	2015-11-29	16.12	Shakespear/THE TAMING OF THE SHREW tyt
1	cloudera	cloudera	110710	2015-11-29	16.12	Shakespear/THE TEMPEST tyt
1	cloudera	cloudera	161622	2015-11-29	16.12	Shakespear/THE THIPD DART OF KING HENRY THE SIVIL tyt
1	cloudera	cloudera	162011	2015-11-29	16.00	Shakespear/THE TRAGEDY OF ANTONY AND CLEODATRA tyt
1	cloudera	cloudera	100911	2015-11-29	16.09	Shakespear/THE TRAGEDY OF ANTONI AND CLEOFATRA. LAC
1	cloudera	cloudera	101004	2015-11-29	16.10	Shakespear/THE TRAGEDY OF HAMLET DRINGE OF DENMARK tyt
1	cloudera	cloudera	120/00	2015-11-29	16.10	Shakespear/THE TRAGEDY OF HAMLET, FRINCE OF DEMMARK.CAL
1	cloudera	cloudera	172756	2015-11-29	16.12	Shakespear/THE TRAGEDY OF SUCCESS CRESAR. LAC
1	cloudera	cloudera	116773	2015-11-29	16.12	Shakespear/THE TRAGEDY OF MACRETH tyt
1	cloudera	cloudera	176013	2015-11-29	16.12	Shakespear/THE TRAGEDY OF OTHELLO MOOR OF VENICE tyt
1	cloudera	cloudera	156112	2015-11-29	16.12	Shakespear/THE TRAGEDY OF BOMED AND JULTET tyt
1	cloudera	cloudera	124226	2015-11-29	16.12	Shakespear/THE TRAGEDY OF TITUS AND SULLET. LAL
1	cloudera	cloudera	111572	2015-11-29	16.12	Shakespear/THE TWO GENTLEMEN OF VERONA tyt
1	cloudera	cloudera	150147	2015-11-29	16.12	Shakespear/THE WINTER'S TALE tyt
1	cloudere	cloudera	107100	2015-11-29	16.12	Shakespear/TWELETH NIGHT, OR WHAT VOILWILL tot
1	cloudera	cloudera	5450100	2013-11-29	10:12	Shakespear/te shakespeare tyte
لا اعتبا	(ctort 103		2420133	2003-02-10	11:12	snakespear/to.snakespeare.txt~
UTC	Start LU:	¢Ιφ				

With .txt & t8.shakespear.txt~:

"Top10"	[55224,	"the"]
"Top10"	[53413,	"and"]
"Top10"	[41362,	"i"]
"Top10"	[38348,	"to"]
"Top10"	[36296,	"of"]
"Top10"	[29206,	"a"]
"Top10"	[27264,	"you"]
"Top10"	[24960,	"my"]
"Top10"	[22230,	"that"]
" Top10 "	[21923,	"in"]

-r local

-r hadoop

"Top10"	[54659,	"the"]
"Top10"	[52844,	"and"]
"Top10"	[40820,	"i"]
"Top10"	[38006,	"to"]
"Top10"	[35912,	"of"]
"Top10"	[28849,	"a"]
"Top10"	[26861,	"you"]
"Top10"	[24737,	"my"]
"Top10"	[21935,	"that"]
"Top10"	[21658,	"in"]

EXPERIMENT!

\$ hdfs dfs -rm <u>hdfs:///user/cloudera/Shakespear/.txt</u> \$ rm Shakespear/.txt

Fewer words

"Top10"	[54659,	"the"]
"Top10"	[52844,	"and"]
"Top10"	[40820,	"i"]
"Top10"	[38006,	"to"]
"Top10"	[35912,	"of"]
"Top10"	[28849,	"a"]
"Top10"	[26861,	"you"]
"Top10"	[24737,	"my"]
"Top10"	[21935,	"that"]
"Top10"	[21658,	"in"]

-r local

Conclusion: -r hadoop ignores the file ".txt"

MASSIVE DATA FUNDAMENTALS

No change

"Top10"	[54659,	"the"]
"Top10"	[52844,	"and"]
"Top10"	[40820,	"i"]
"Top10"	[38006,	"to"]
"Top10"	[35912,	"of"]
"Top10"	[28849,	"a"]
"Top10"	[26861,	"you"]
"Top10"	[24737,	"my"]
"Top10"	[21935,	"that"]
"Top10"	[21658,	"in"]

-r hadoop

\$ hdfs dfs -rm hdfs:///user/cloudera/Shakespear/t8.shakespeare.txt~ \$ rm Shakespear/t8.shakespeare.txt~

Fewer words

"Top10"	[27016,	"the"]
"Top10"	[26116,	"and"]
"Top10"	[20139,	"i"]
"Top10"	[18808,	"to"]
"Top10"	[17739,	"of"]
"Top10"	[14236,	"a"]
"Top10"	[13212,	"you"]
"Top10"	[12257,	"my"]
"Top10"	[10814,	"that"]
"Top10"	[10691,	"in"]

Local

Conclusion: *.txt~ and *.txt files are processed on both

MASSIVE DATA FUNDAMENTALS

"Top10"	[27016,	"the"]
"Top10"	[26116,	"and"]
"Top10"	[20139,	"i"]
"Top10"	[18808,	"to"]
"Top10"	[17739,	"of"]
"Top10"	[14236,	"a"]
"Top10"	[13212,	"you"]
"Top10"	[12257,	"my"]
"Top10"	[10814,	"that"]
"Top10"	[10691,	"in"]

Hadoop

Student Presentations

Student presentations

Purpose of a five minute presentation:

- Convey one idea about a topic.
- Invite people to learn more.
- Make connections for future work.

Slides:

This week, we will enforce the 5 minute rule

MASSIVE DATA FUNDAMENTALS

Yu Hu	Paper
Lu Wang	Paper
Qinkai Ge	Program

MASSIVE DATA FUNDAMENTALS

MapReduce: Simplified Data Processing on Large Clusters

GraphChi: Large-Scale Graph Computation on Just a PC

Mahout Samsara

MapReduce Design Patterns

Simple MapReduce tricks with mrjob

Basic pattern — Map/Reduce is really Map/Shuffle/Reduce"

Basic word count idea. Input:

This is a test Just another test

GEORGETOWN UNIVERSITY

Example: sum of squares

class SumOfSquares(MRJob): def mapper(self, _, line): value = int(value) yield label,value**2

> def reducer(self, label, values): yield label, sum(values)

```
(label,value) = line.strip().split(",")
```


Pattern #1: Filtering — Remove values in the Map or Reduce phase

Example: filter even sums of squares — filtering in the Mapper

class SumOfSquares(MRJob): def mapper(self, _, line): value = int(value) if value % 2 == 1:

> def reducer(self, label, values): yield label, sum(values)

```
(label,value) = line.strip().split(",")
   yield label,value**2
```


Filtering — Remove values in the Map or Reduce phase

Example: filter even sums of squares — filtering in the Reducer

def isodd(x): return x%2==1

Filtering in the Mapper is more efficient:

- · Less I/O
- Less CPU
- "Shed work early."

```
class SumOfSquares(MRJob):
    def mapper(self, _, line):
        (label,value) = line.strip().split(",")
       value = int(value)
        yield label,value**2
```

def reducer(self, label, values): yield label, sum(filter(isodd,values))


```
#!/usr/bin/env python
```

numbers = [1, 2, 3, 4, 5, 6, 7, 8]

print even numbers

```
# Procedural:
                                      # Functional:
even numbers = []
                                      def isEven(x):
for i in numbers:
                                          return x%2==0
    if i%2==0:
                                      even numbers = filter(isEven,numbers)
        even_numbers.append(i)
                                      print("Even: %s" % even_numbers)
print("Even: %s" % even_numbers)
```

```
With Lambda:
en_numbers = filter(lambda x:x%2==0,numbers)
rint("Even: %s" % even_numbers)
```


Pattern #2: Do multiple operations in parallel Traditional Unix word count — print the number of words

This is a test Basic word count idea. Input: Just another test

Goal: print # lines, words, chars

Pattern #2: Do multiple operations in parallel Traditional Unix word count — print the number of words

Basic word count idea.Input:This is a testJust another test

MASSIVE DATA FUNDAMENTALS

22

Pattern #3: Top-10 To compute the Top-10 requires reviewing all the data!

Basic idea: State between keys must be maintained in the *reducer* Example: Find most common word:

MASSIVE DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY

Map/Shuffle/Reduce may use multiple reducers if there are multiple keys. Default Partitioner Guarantee: all of the keys go to the same reducer.

MASSIVE DATA FUNDAMENTALS

Solution: Perform the sum & selection separately. Use a new key to route all (k,v) pairs to the same reducer.

MapReduce Job #1

MASSIVE DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY

If there is only one key, there can be only one reducer.

MASSIVE DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY

Here is a *correct* mapReduce WordCount topN implementation

. . . **TOPN=10** class WordCountTopN(MRJob): def mapper(self, _, line): for word in line.strip().lower().split(): yield filter(str.isalpha,word),1

def reducer(self, word, counts): yield word, sum(counts)

def topN_mapper(self,word,count): yield "Top"+str(TOPN), (count,word)

def topN_reducer(self,_,countsAndWords): for countAndWord in heapq.nlargest(TOPN, countsAndWords): yield _,countAndWord

def steps(self): return MRStep(mapper=self.mapper,

MRStep(mapper=self.topN_mapper,

MASSIVE DATA FUNDAMENTALS

#2

```
reducer=self.reducer),
```

```
reducer=self.topN_reducer) ]
```

You can also use mapper_init() and mapper final() and perform your own topN algorithm.

Features:

- Multiple mappers on different nodes
- heapq.nlargest() for efficient topN
- Nicely labels output with operation.

Key point: To calculate a Max/Min/TopN, the node must see ALL THE DATA

GEORGETOWN UNIVERSITY

TopN output

MASSIVE DATA FUNDAMENTALS

```
"Top10" [20, "the"]
"Top10" [15, "to"]
"Top10" [15, "of"]
"Top10" [12, "and"]
"Top10" [7, "that"]
"Top10" [5, "sleep"]
"Top10" [5, "a"]
"Top10" [4, "we"]
"Top10" [4, "be"]
"Top10" [3, "with"]
```


 Tab
 Character

 (HadoopStreaming Delimiter) **Better than comma!**

28

You can do a distributed MIN/MAX/TopN, if values from nodes aren't combined

MASSIVE DATA FUNDAMENTALS

10000

This works for finding the topN records.

Doesn't work for wordCount:

Word Count combines records!

GEORGETOWN UNIVERSITY

Counters: You can increment them anywhere; they are reported when the job ends.

Typical uses:

- Count improperly formatted input lines
- Count missing values
- Global statistics

Code:

self.increment_counter(GROUP , COUNTER_NAME, Amount)

—е.д.

self.increment_counter("warn", "missing gross pay", 1)

MASSIVE DATA FUNDAMENTALS

We might have data from two tables (data frames) to combine

Mapped Data

MASSIVE DATA FUNDAMENTALS

Mapped Data

Shuffle

MASSIVE DATA FUNDAMENTALS

Shuffled

Shuffled

Reduce

MASSIVE DATA FUNDAMENTALS

Reduced


```
Join map code in mrjob

100, 17, Yellow

101, 35, Red

102, 53, Purple

103, 29, Green

...

993243, 549003, Clear

17, Chlorine

29, Copper

35, Bromine

53, Iodine

...

549003, Adamantine
```

```
def mapper(self, _, line):
    fields = line.split(", ")
    if len(fields)==3:
        self.increment_counter("Info","Obs Count",1)
        yield fields[1], ("Obs", fields)
    elif len(fields)==2:
        self.increment_counter("Info","Name Count",1)
        yield fields[0], ("Name",fields)
    else:
        self.increment_counter("Warn","Invalid Data",1)
```


Counters for "situational awareness"


```
17, (Obs, (100, 17, Yellow))
Join reduce code in mrjob
                                  35, (Obs, (101, 35, Red))
                                  53, (Obs, (102, 53, Purple))
                                  29, (Obs, (103, 29, Green))
                                   • • •
                                  17, (Name, (17, Chlorine))
                                  29, (Name, (29, Copper))
SORT_VALUES=True
                                  35, (Name, (35, Bromine))
                                  53, (Name, (53, Iodine))
def reducer(self, key, values):
                                   • • •
    name = None
                                  549003, (Name, (549003, Adamantine))
    for v in values:
        if len(v)!=2:
            self.increment_counter("Warn","Invalid Join",1)
            continue
        if v[0]=='Name':
            name = v[1]
            continue
        if v[0]=='0bs':
            obs = v[1]
            if name:
                                           Runtime Error
                assert key==name[0]
                                             Checking
                assert key==obs[1]
                yield obs[0],(obs[1],name[1],obs[2])
            else:
                self.increment_counter("Warn","Obs without Name")
                yield obs[0],(obs[1],"n/a",obs[2])
```


What you need to

SQL — Structured Query Language

SQL is a language for communicating with data bases.

Server:

- A remote databsae
- A local databse on the same computer
- An embedded database (sqlite3)

Client:

- Your program!
- Excel / Access

Typical SQL servers:

- Sqlite3
- MySQL
- PostgreSQL

- Oracle SQL Server
- IBM Informix
- Microsoft SQL Server

MASSIVE DATA FUNDAMENTALS

SQL — Advantages and Disadvantages

Advantages:

- Standard implemented by many different vendors & systems
- Declarative describe what you want, DB figures out how to do it
- Optimizer DB figures fastest way to do it.

Disadvantages:

- Another language to learn.
- Overhead of converting data to text
- Data model does not fit well with graph data (e.g. trees, social networks, etc.)
- SQLs are all a little different.

Server — Where the data are kept.

Client – Issues commands / gets data

Data are arranged *tables*. Tables have *rows* and *columns*:

ID	EID	Color
100	17	Yellow
101	35	Red
102	53	Purple
103	29	Green

Observations

A database is a collection of tables

A database server can have multiple databases.

EID	Name	
17	Chlorine	
29	Copper	
35	Bromine	
53	lodine	

Names

SQL Statements you need to know: SELECT expression[,expression ...] FROM table [WHERE expression];

sqlite> .mode column sqlite> .header on sqlite> select * from observations; eid color id Yellow 100 17 101 35 Red 102 53 Purple 103 29 Green sqlite> select id,eid from observations; id eid _ _ _ _ _ _ _ _ _ _ _ _ 100 17 35 101 102 53 29 103 sqlite> select * from observations where id>101; eid id color 102 53 Purple 103 29 Green sqlite>

ID	EID	Color
100	17	Yellov
101	35	Red
102	53	Purple
103	29	Greer

Observations

EID	Name
17	Chlorine
29	Copper
35	Bromine
53	lodine

Names

SQL Statements you need to know: SELECT ... [ORDER BY expression] [LIMIT [start,] len];

sqlite> select * from observations order by eid; id eid color Yellow 100 17 103 29 Green 35 101 Red 102 53 Purple sqlite> select * from observations order by color; id eid color 103 Green 29 53 102 Purple 35 101 Red 100 17 Yellow sqlite> sqlite> select * from observations limit 1; id eid color 100 Yellow 17 sqlite> select * from observations limit 2,1; id eid color 102 53 Purple sqlite> select * from observations limit 2,1;

ID	EID	Color
100	17	Yellov
101	35	Red
102	53	Purple
103	29	Greer

Observations

EID	Name
17	Chlorine
29	Copper
35	Bromine
53	lodine

Names

SQL Statements you need to know: SELECT ... JOIN ...;

Inner Join:

sqlite>	SELECT OBS.i AS OBS join	d, OBS.eid, N.m names as N ON (<pre>name, OBS.color FROM OBS.eid = N.eid;</pre>	obs
id	eid	name	color	
100	17	Chlorine	Yellow	
101	35	Bromine	Red	
102	53	Iodine	Purple	
103 sqlite>	29	Copper	Green	

Natural Join:

sqlite>	select *	from observations	natural join names	;;
id	eid	color	name	
100	17	Yellow	Chlorine	
101	35	Red	Bromine	
102	53	Purple	Iodine	
103	29	Green	Copper	

ID	EID	Color
100	17	Yellov
101	35	Red
102	53	Purple
103	29	Greer

Observations

EID	Name
17	Chlorine
29	Copper
35	Bromine
53	Iodine

Names

servations \setminus

 $GEORGETOWN UNIVERSITY \quad 42$

SQL Tutorial Sites

http://www.w3schools.com SQL eval in another window

	na 201 x	tudent Signup	- Goo X	SELECT be	eice - SOLO X	Introduction to SOL	x B SOLCourse - Lesson	
		vaeice	-000 1	SECECT Da		I maroooction to age	X / D odrodelse - resson 3	~ ~ .
sqizoo.net	/WIKI/SELECT_D	asics *	Desisten	-		0	C	22
::: Apps 🍐 📥 ANLY 502	Google Google	Forms 🧝] pricing		ANLY 📋 GMS	Chris Whong	G goo.gl GU AWS	
				0	ur new work-base	ed Masters in	SQL Engine: MySQL	Log in
SULSO).	Informa & Dioite	tics	A DECISION OF	S S	trategic ICT L	eadership means	s you can Edinburgh Napier	
	Innovat	tion	ine 1	ų	ograde your skills	s while you work.	uw/bany **	
		1Vi						
SELECT basics								
quiz 🕳	SELEC	JT bas	ics					
SELECT from world				_				
quiz 🚥	Language:	English •	Deutsch・中	文				
SELECT from nobel	name	continent	araa	nonulation	ada	1		
SELECT in SELECT	name	continent	area	population	gap	-		
quiz 🕳	Afghanistan	Asia	652230	25500100	20343000000			
SUM and COUNT	Albania	Europe	28748	2831741	12960000000			
quiz 🚥	Algeria	Africa	2381741	37100000	188681000000]		
	Andorra	Europe	468	78115	3712000000	1		
More JOIN	Angola	Africa	1246700	20609294	100990000000	1		
quiz 💳	Angola	Amoa	1240700	20003234	10033000000	-		
Using NULL]		
quiz 💳		Contents [hi	de]					
Self JOIN -	1 Introducing	g the world ta	ble of cour	ntries				
quiz —	2 Per Capita	GDP						
Reference	3 Scandinav	ia						
Euroctions	4 Just the rig	ght size						
SELECT WHERE								
SELECT GROUP BY	Introduc	ing the	world	table of	countries			
SELECT JOIN	This tutorial in	ntroduces S	QL. We wi	II be using th	e SELECT comm	nand on the table v	world:	
SELECT SELECT	Summany							
INSERT VALUES	Summary							
Assignment1 Zhengoin zi	• •							+ Show Al
- Hanginiteri (Le nengriffitate								- 01017

http://sqlzoo.net SQL eval in same window

PS02 — Due February 5th, 2016

Part 1 — Short answer about clock time to process input files.

Part 2 — Practice Map/Reduce jobs.

- Code is provided to parse Apache log files.
- Compressed Apache log files are provided.
- Your job:
 - -Try the code that reports MIN & MAX date for each log file.
 - *—Print # of URLs served each day.*
 - -Filter "Special:" out of report.
 - -Report # of times each Wiki Page is accessed.
 - —Display top-10 with a two-step MRJOB.

Part 3 — Joins

- -Join Wiki logfiles with Geolocation Data
- -Report # of hits per country.
- -Report Top-10 countries (requires a three-step MRJOB)

• Key fact you need to know: large text files can be split between different nodes. Gzip-compressed files can't be split.

py.test — add tests to your code!

Install with: sudo yum install pytest Code to include:

```
# Import pytest if we have it available
try:
    import pytest
except ImportError as e:
    pass
```

Example of test:

```
# Tests
# test with pytest
demo_line1 = '172.16.0.3 - [25/Sep/2002:14:04:19 +0200] "GET /hello.html HTTP/1.1" 401 - "" "Moz
iilla/5.0 (X11; U; Linux i686; en-US; rv:1.1) Gecko/20020827"'
def test_weblog():
    obj = Weblog(demo_line1)
    assert obj.ipaddr=="172.16.0.3"
    assert obj.timestamp==parser.parse("25-Sep-2002 14:14:19 +0200")
    assert obj.request=="GET /hello.html HTTP/1.1"
    assert obj.result==401
    assert obj.agent=="Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.1) Gecko/20020827"
```

MASSIVE DATA FUNDAMENTALS


```
<u>File Edit View Search Terminal Help</u>
[cloudera@quickstart PS02]$ py.test weblog.py
platform linux2 -- Python 2.6.6 -- pytest-2.3.5
collected 1 items
weblog.py F
   def test_weblog():
       obj = Weblog(demo_line1)
       assert obj.ip=="172.16.0.3"
       AttributeError: 'Weblog' object has no attribute 'ip'
weblog.py:42: AttributeError
[cloudera@quickstart PS02]$ py.test weblog.py
platform linux2 -- Python 2.6.6 -- pytest-2.3.5
collected 1 items
weblog.py F
   def test_weblog():
       obj = Weblog(demo_line1)
       assert obj.ipaddr=="172.16.0.3"
        assert obj.timestamp==parser.parse("25-Sep-2002 14:14:19 +0200")
        + where '25/Sep/2002:14:04:19 +0200' = <weblog.Weblog object at 0x1570c88>.timestamp
Sep-2002 14:14:19 +0200')
             where <function parse at 0x15f9f50> = parser.parse
weblog.py:43: AssertionError
[cloudera@quickstart PS02]$
```

MASSIVE DATA FUNDAMENTALS

test weblog _____ test session starts ______ test weblog assert '25/Sep/2002:14:04:19 +0200' == datetime.datetime(2002, 9, 25, 14, 14, 19, tzinfo=tzoffset(None, 7200)) + and datetime.datetime(2002, 9, 25, 14, 14, 19, tzinfo=tzoffset(None, 7200)) = <function parse at 0x15f9f50>('25-

Use assert statements.

Use counters to track how many records are processed & ignored.

You descriptive variable names.

Write comments that explain what the code is supposed to do.

DRAM Errors in the Wild: A Large-Scale Field Study

Bianca Schroeder Dept. of Computer Science University of Toronto Toronto, Canada bianca@cs.toronto.edu Eduardo Pinheiro Google Inc. Mountain View, CA Wolf-Dietrich Weber Google Inc. Mountain View, CA

Figure 1: Collection, storage, and analysis architecture.

MASSIVE DATA FUNDAMENTALS

Table 1:	Memory	errors	\mathbf{per}	year:
----------	--------	--------	----------------	-------

Platf	Tech	Per machine				
1 1001.		CE	CE	CE	CE	UI
		Incid.	Rate	Rate	Median	Incid
		(%)	Mean	C.V.	Affct.	(%
A	DDR1	45.4	19,509	3.5	611	0.1
В	DDR1	46.2	$23,\!243$	3.4	366	-
С	DDR1	22.3	$27,\!500$	17.7	100	2.1
D	DDR2	12.3	20,501	19.0	63	1.2
E	FBD	_	—			0.2'
\mathbf{F}	DDR2	26.9	$48,\!621$	16.1	25	4.1
Overall		32.2	$22,\!696$	14.0	277	1.2

Platf	Tech	Per DIMM				
		CE	CE	CE	CE	UE
		Incid.	Rate	Rate	Median	Incid
		(%)	Mean	C.V.	Affct.	(%)
A	DDR1	21.2	4530	6.7	167	0.05
В	DDR1	19.6	4086	7.4	76	_
С	DDR1	3.7	3351	46.5	59	0.28
D	DDR2	2.8	3918	42.4	45	0.25
E	FBD	_		_		0.08
F	DDR2	2.9	3408	51.9	15	0.39
Overall	—	8.2	3751	36.3	64	0.22

Figure 2: The distribution of correctable errors over DIMMs: The graph plots the fraction Y of all errors in a platform that is made up by the fraction X of DIMMs with the largest number of errors.

Table	2:	Errors	\mathbf{per}	\mathbf{DIMM}	$\mathbf{b}\mathbf{y}$	DIN
type/ma	anufact	urer				

			Incid.	Incid.	Mean	C.V.	CEs/
Ρf	Mfg	GB	CE	UE	CE	CE	GB
			(%)	(%)	rate		
A	1	1	20.6	0.03	4242	6.9	4242
	1	2	19.7	0.07	4487	5.9	2244
	2	1	6.6		1496	11.9	1469
	3	1	27.1	0.04	5821	6.2	5821
	4	1	5.3	0.03	1128	13.8	1128
	1	1	20.3	_	3980	7.5	3980
B		2	18.4	_	5098	6.8	2549
В	2	1	7.9	—	1841	11.0	1841
		2	18.1	—	2835	8.9	1418
С	1	1	3.6	0.21	2516	69.7	2516
	4	1	2.6	0.43	2461	57.2	2461
	5	2	4.7	0.22	10226	12.0	5113
	6	2	2.7	0.24	3666	39.4	1833
D	0	4	5.7	0.24	12999	23.0	3250
Ε	1	2	—	0		—	
		4	_	0.13	_		_
	2	2	—	0.05	—	—	_
		4		0.27	—		
	10	2	—	0.06	—	—	
	0	4	_	0.14	_		
	1	2	2.8	0.20	2213	53.0	1107
Г		4	4.0	1.09	4714	42.8	1179

Figure 4: Correlations between correctable and uncorrectable errors in the same DIMM: The left graph shows the UE probability in a month depending on whether there were CEs in the same month or in the previous month. The numbers on top of the bars give the increase in UE probability compared to a month without CEs (three left-most bars) and the case where there were no CEs in the previous month (three right-most bars). The middle graph shows how often a UE was preceded by a CE in the same/previous month. The right graph shows the factor increase in the probability of observing an UE as a function of the number of CEs in the same month.

old platforms (due to a rapidly decreasing population).

Figure 10: The effect of age: The normalized monthly rate of experiencing a CE as a function of age by platform (left) and for four common DIMM configurations (right). We consider only DIMMs manufactured after July 2005, to exclude very

Figure 11: The effect of age: The two graphs on the left show the mean cumulative function for CEs for all DIMMs in production in January 2007 until November 2008, and for Platform C, respectively. The two graphs on the right show for the same two populations the mean cumulative function for UEs.

MASSIVE DATA FUNDAMENTALS

