
L01: What’s Massive Data?

ANLY 502: Massive Data Fundamentals

Simson Garfinkel & Ghaleb Abdulla

January 13, 2016

Please fill out survey at http://bit.ly/ANLY502-2016

1

1Name of Section

08

visual identity guidelines

08

http://bit.ly/ANLY502-2016

Welcome!
2

Q: What is “massive data?”

(think about it!)

Welcome to ANLY 502: Massive Data Fundamentals

 3

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

(Please fill out survey at http://bit.ly/ANLY502-2016)

http://bit.ly/ANLY502-2016

Overview

• ““Today's data scientists are commonly faced with huge data sets (Big Data) that may arrive at fantastic rates and in a broad

variety of formats. This core course addresses the resulting challenges to data professionals. The course will introduce
students to the advantages and limitations of distributed computing and to methods of assessing its impact. Techniques for
parallel processing (MapReduce) and their implementation (Hadoop) will be covered, as well as techniques for accessing
unstructured data and for handling streaming data. These techniques will be applied to real world examples, using clusters
of computational cores and cloud computing. Prerequisite: Good command of R or Python, some knowledge of data
structures. Three credits”

Spring 2016 • Mon 6:30 — 9:00 (except tonight, which is Wed.)

This is a new class!

• This is our first time teaching at Georgetown

• This class is designed to be forward-looking and research-focused

Before we get started, please fill out the class survey:

• bit.ly/ANLY502-2016

ANLY 502 — Massive Data Fundamentals (Also COSC-588)

 4

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://bit.ly/ANLY502-2016

Introducing your teachers.

 5

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Simson L. Garfinkel, Ph.D.
National Institute of Standards and Technology*
https://simson.net/
simsong@acm.org

Interests: Security, Privacy, Digital Forensics
L01–L08

Ghaleb M. Abdulla, Ph.D.
Lawrence Livermore National Laboratory
http://people.llnl.gov/abdulla1
abdulla1@llnl.gov

Interests: networking, WWW caching, information organization
L09–L12

*Institutional affiliation is provided for identification purposes only.

mailto:simsong@acm.org?subject=
mailto:abdulla1@llnl.gov

Introduction to ANLY 502

• Course introduction, policies and outline

• What you need to succeed in ANLY 502

• Information about labs and Amazon

Massive Data and the end of “Moore’s law”

• Where will tomorrow’s computing speed increases come from?

Introducing Hadoop and MapReduce

Setting up your laptop:

Outline for today’s class

 6

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

So what is “massive data?”

Welcome to ANLY 502: Massive Data Fundamentals

 7

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Let’s ask Google:

So what is massive data?

 8

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Google’s view of massive data:

 9

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

305M results!
That’s massive! (is it data?)

Bing’s view of massive data

 10

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Bing: What’s different?

 11

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

13M results!
1/20th of the data…
Still massive?

To make these results:

• Scan and index billions of web pages.

• Find all of the pages about “massive data”. (What does the word “about” mean?)

• Eliminate “spam” pages.

• Group similar pages.

• Perform search of index with billions of entries in less than a second.

These search results depend upon massive data.

 12

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

305M results 13M results

Q: Which results “better?”

Old approach to traffic: Traffic cameras and induction loops

Other examples of “massive data” — Real Time Traffic

 13

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://en.wikipedia.org/wiki/Induction_loop

New Approach: Cell Phones as Sensors

Other examples of “massive data” — Real Time Traffic

 14

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

GPS
Internet
Google Maps Street Level Detail

Massive data creates the potential for massive privacy problems

 15

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.express.co.uk/news/uk/431426/Super-camera-to-catch-50-times-more-drivers

https://en.wikipedia.org/wiki/Traffic_enforcement_camera
http://www.cleveland.com/roadrant/index.ssf/2010/11/voters_oust_traffic_cameras_in.html

“Voters oust traffic cameras...”
Cleveland Plain Dealer
Sept. 7, 2010

Big idea: Predict the Flu using Google search queries

—Detecting influenza epidemics using search engine query data, Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, ,

Lynnette Brammer, Mark S. Smolinski, Larry Brilliant, Nature Vol 457, 19 February 2009
—5 Google Authors, 1 CDC Author

• Hypothesis: People search for their symptoms when they are sick

• Claim: Model correlated with CDC-reported influenza-like illness (ILI).

—Prediction was 1-2 weeks earlier than CDC surveillance system

Google Flu Trends —

 16

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Detecting influenza epidemics using search engine query data 3

automatically, appeared to be consistently related to influenza-
like illnesses. Other search queries in the top 100, not included
in our model, included topics like “high school basketball”
which tend to coincide with influenza season in the United
States (Table 1).

Using this ILI-related query fraction as the explanatory
variable, we fit a final linear model to weekly ILI percentages
between 2003 and 2007 for all nine regions together, thus
learning a single, region-independent coefficient. The
model was able to obtain a good fit with CDC-reported ILI
percentages, with a mean correlation of 0.90 (min=0.80,
max=0.96, n=9 regions) (Figure 2).

The final model was validated on 42 points per region of
previously untested data from 2007-2008, which were
excluded from all prior steps. Estimates generated for these
42 points obtained a mean correlation of 0.97 (min=0.92,
max=0.99, n=9 regions) with the CDC-observed ILI
percentages.

Throughout the 2007-2008 influenza season, we used
preliminary versions of our model to generate ILI estimates,
and shared our results each week with the Epidemiology and
Prevention Branch of Influenza Division at CDC to evaluate
timeliness and accuracy. Figure 3 illustrates data available
at different points throughout the season. Across the nine
regions, we were able to consistently estimate the current
ILI percentage 1-2 weeks ahead of the publication of reports
by the CDC’s U.S. Influenza Sentinel Provider Surveillance
Network.

Because localized influenza surveillance is particularly useful
for public health planning, we sought to further validate our
model against weekly ILI percentages for individual states.
CDC does not make state-level data publicly available, but we
validated our model against state-reported ILI percentages
provided by the state of Utah, and obtained a correlation of
0.90 across 42 validation points (Supplementary Figure 3).

Google web search queries can be used to accurately estimate
influenza-like illness percentages in each of the nine public
health regions of the United States. Because search queries
can be processed quickly, the resulting ILI estimates were
consistently 1-2 weeks ahead of CDC ILI surveillance reports.
The early detection provided by this approach may become an
important line of defense against future influenza epidemics
in the United States, and perhaps eventually in international
settings.

Up-to-date influenza estimates may enable public health
officials and health professionals to better respond to
seasonal epidemics. If a region experiences an early, sharp
increase in ILI physician visits, it may be possible to focus
additional resources on that region to identify the etiology of
the outbreak, providing extra vaccine capacity or raising local
media awareness as necessary.

This system is not designed to be a replacement for traditional
surveillance networks or supplant the need for laboratory-
based diagnoses and surveillance. Notable increases in
ILI-related search activity may indicate a need for public
health inquiry to identify the pathogen or pathogens involved.
Demographic data, often provided by traditional surveillance,
cannot be obtained using search queries.

In the event that a pandemic-causing strain of influenza
emerges, accurate and early detection of ILI percentages may
enable public health officials to mount a more effective early
response. Though we cannot be certain how search engine
users will behave in such a scenario, affected individuals may
submit the same ILI-related search queries used in our model.
Alternatively, panic and concern among healthy individuals
may cause a surge in the ILI-related query fraction and
exaggerated estimates of the ongoing ILI percentage.

The search queries in our model are not, of course, exclusively
submitted by users who are experiencing influenza-like
symptoms, and the correlations we observe are only
meaningful across large populations. Despite strong historical
correlations, our system remains susceptible to false alerts
caused by a sudden increase in ILI-related queries. An unusual
event, such as a drug recall for a popular cold or flu remedy,
could cause such a false alert.

Table 1: Topics found in search queries which were found to be most correlated
with CDC ILI data. The top 45 queries were used in our final model; the next
55 queries are presented for comparison purposes. The number of queries in
each topic is indicated, as well as query volume-weighted counts, reflecting
the relative frequency of queries in each topic.

Top 45 Queries Next 55 Queries
Search Query Topic N Weighted N Weighted
Influenza Complication 11 18.15 5 3.40
Cold/Flu Remedy 8 5.05 6 5.03
General Influenza Symptoms 5 2.60 1 0.07
Term for Influenza 4 3.74 6 0.30
Specific Influenza Symptom 4 2.54 6 3.74
Symptoms of an Influenza Complication 4 2.21 2 0.92
Antibiotic Medication 3 6.23 3 3.17
General Influenza Remedies 2 0.18 1 0.32
Symptoms of a Related Disease 2 1.66 2 0.77
Antiviral Medication 1 0.39 1 0.74
Related Disease 1 6.66 3 3.77
Unrelated to Influenza 0 0.00 19 28.37

45 49.40 55 50.60

Figure 2: A comparison of model estimates for the Mid-Atlantic Region (black)
against CDC-reported ILI percentages (red), including points over which the
model was fit and validated. A correlation of 0.85 was obtained over 128
points from this region to which the model was fit, while a correlation of 0.96
was obtained over 42 validation points. 95% prediction intervals are indicated.

2004 2005 2006 2007 2008
0

2

4

6

8

10

12

IL
I p

er
ce

nt
ag

e

Detecting influenza epidemics using search engine query data 4

Harnessing the collective intelligence of millions of users,
Google web search logs can provide one of the most timely,
broad reaching influenza monitoring systems available today.
While traditional systems require 1-2 weeks to gather and
process surveillance data, our estimates are current each
day. As with other syndromic surveillance systems, the data
are most useful as a means to spur further investigation and
collection of direct measures of disease activity.

This system will be used to track the spread of influenza-
like illness throughout the 2008-2009 influenza season
in the United States. Results are freely available online at
http://www.google.org/flutrends.

Methods

Privacy. At Google, we recognize that privacy is important.
None of the queries in our project’s database can be
associated with a particular individual. Our project’s database
retains no information about the identity, IP address, or
specific physical location of any user. Furthermore, any
original web search logs older than 9 months are being
anonymized in accordance with Google’s Privacy Policy
(http://www.google.com/privacypolicy.html).

Search query database. For the purposes of our database, a
search query is a complete, exact sequence of terms issued by
a Google search user; we don’t combine linguistic variations,
synonyms, cross-language translations, misspellings, or
subsequences, though we hope to explore these options
in future work. For example, we tallied the search query

“indications of flu” separately from the search queries “flu
indications” and “indications of the flu”.

Our database of queries contains 50 million of the most
common search queries on all possible topics, without pre-
filtering. Billions of queries occurred infrequently and were
excluded. Using the internet protocol (IP) address associated
with each search query, the general physical location from
which the query originated can often be identified, including
the nearest major city if within the United States.

Model data. In the query selection process, we fit per-query
models using all weeks between September 28, 2003 and
March 11, 2007 (inclusive) for which CDC reported a non-zero
ILI percentage, yielding 128 training points for each region
(each week is one data point). 42 additional weeks of data
(March 18, 2007 through May 11, 2008) were reserved for final
validation. Search query data before 2003 was not available
for this project.

Automated query selection process. Using linear regression
with 4-fold cross validation, we fit models to four 96-point
subsets of the 128 points in each region. Each per-query
model was validated by measuring the correlation between
the model’s estimates for the 32 held-out points and CDC’s
reported regional ILI percentage at those points. Temporal

lags were considered, but ultimately not used in our modeling
process.

Each candidate search query was evaluated nine times, once
per region, using the search data originating from a particular
region to explain the ILI percentage in that region. With four
cross-validation folds per region, we obtained 36 different
correlations between the candidate model’s estimates and
the observed ILI percentages. To combine these into a single
measure of the candidate query’s performance, we applied
the Fisher Z-transformation13 to each correlation, and took the
mean of the 36 Z-transformed correlations.

Computation and pre-filtering. In total, we fit 450 million
different models to test each of the candidate queries. We
used a distributed computing framework14 to efficiently
divide the work among hundreds of machines. The amount
of computation required could have been reduced by making
assumptions about which queries might be correlated with
ILI. For example, we could have attempted to eliminate
non-influenza-related queries before fitting any models.
However, we were concerned that aggressive filtering might
accidentally eliminate valuable data. Furthermore, if the
highest-scoring queries seemed entirely unrelated to influenza,
it would provide evidence that our query selection approach
was invalid.

Constructing the ILI-related query fraction. We concluded
the query selection process by choosing to keep the
search queries whose models obtained the highest mean

Figure 3: ILI percentages estimated by our model (black) and provided by
CDC (red) in the Mid-Atlantic region, showing data available at four points
in the 2007-2008 influenza season. During week 5, we detected a sharply
increasing ILI percentage in the Mid-Atlantic region; similarly, on March 3, our
model indicated that the peak ILI percentage had been reached during week
8, with sharp declines in weeks 9 and 10. Both results were later confirmed by
CDC ILI data.

Week 43 Week 47 Week 51 Week 3 Week 7 Week 11 Week 15 Week 19
0

2.5

5

Data available as of February 4, 2008

Week 43 Week 47 Week 51 Week 3 Week 7 Week 11 Week 15 Week 19
0

2.5

5

Data available as of March 3, 2008

Week 43 Week 47 Week 51 Week 3 Week 7 Week 11 Week 15 Week 19
0

2.5

5

Data available as of March 31, 2008

Week 43 Week 47 Week 51 Week 3 Week 7 Week 11 Week 15 Week 19
0

2.5

5

Data available as of May 12, 2008

IL
I p

er
ce

nt
ag

e

Better data, sooner.

• Detect influenza outbreaks early — early intervention

• High resolution — community-specific data

• Cheaper than traditional surveillance.

• Distinguish flu from colds

How they did it:

• Input data:

—CDC influenza reports (# of cases in each region)
—50 M google search queries over the same time period

You can do it too!

• https://www.google.com/trends/correlate

Google Flu Trends — Why this is important

 17

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://www.google.com/trends/correlate

https://www.google.com/trends/correlate

Suspect science:

• Attempted to fit 50 million search terms to 1152 data points. Google then threw out search terms, “such as those regarding high school basketball.”

• “The odds of finding search terms that match the propensity of the flu but are structurally unrelated, and so do not predict the future, were quite high.”

• “GFT completely missed the nonseasonal 2009 influenza A-H1N1 pandemic... The initial version of GFT was part flu detector, part winter detector.”

• Revised GFT consistently overestimated flu prevalence

• Google did not document the 45 search terms used, so people couldn’t replicate.

• Google changed search engine — engine started “returning potential diagnoses for searches.”

Google Flu Trends — “Big Data Hubris” (Lazar et al.) 
David Lazar, Ryan Kennedy, Gary King, Alessandro Vespignani, Science, Vol. 343, 14 March 2014

 18

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

www.sciencemag.org SCIENCE VOL 343 14 MARCH 2014 1203

POLICYFORUM

 In February 2013, Google Flu
Trends (GFT) made headlines
but not for a reason that Google

executives or the creators of the fl u
tracking system would have hoped.
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from
laboratories across the United States
(1, 2). This happened despite the fact
that GFT was built to predict CDC
reports. Given that GFT is often held
up as an exemplary use of big data
(3, 4), what lessons can we draw
from this error?

The problems we identify are
not limited to GFT. Research on
whether search or social media can
predict x has become common-
place (5– 7) and is often put in sharp contrast
with traditional methods and hypotheses.
Although these studies have shown the
value of these data, we are far from a place
where they can supplant more traditional
methods or theories (8). We explore two
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the
big data age.

Big Data Hubris
“Big data hubris” is the often implicit
assumption that big data are a substitute
for, rather than a supplement to, traditional
data collection and analysis. Elsewhere, we
have asserted that there are enormous scien-
tifi c possibilities in big data (9– 11). How-
ever, quantity of data does not mean that
one can ignore foundational issues of mea-

surement and construct validity and reli-
ability and dependencies among data (12).
The core challenge is that most big data that
have received popular attention are not the
output of instruments designed to produce
valid and reliable data amenable for scien-
tifi c analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and
small data. Essentially, the methodology
was to fi nd the best matches among 50 mil-
lion search terms to fit 1152 data points
(13). The odds of fi nding search terms that
match the propensity of the fl u but are struc-
turally unrelated, and so do not predict the
future, were quite high. GFT developers,
in fact, report weeding out seasonal search
terms unrelated to the fl u but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball (13). This should
have been a warning that the big data were
overfi tting the small number of cases—a
standard concern in data analysis. This ad
hoc method of throwing out peculiar search
terms failed when GFT completely missed
the nonseasonal 2009 infl uenza A–H1N1
pandemic (2, 14). In short, the initial ver-
sion of GFT was part flu detector, part
winter detector. GFT engineers updated

the algorithm in 2009, and this
model has run ever since, with a
few changes announced in October
2013 (10, 15).

Although not widely reported
until 2013, the new GFT has been
persistently overestimating flu
prevalence for a much longer time.
GFT also missed by a very large
margin in the 2011–2012 fl u sea-
son and has missed high for 100 out
of 108 weeks starting with August
2011 (see the graph). These errors
are not randomly distributed. For
example, last week’s errors predict
this week’s errors (temporal auto-
correlation), and the direction and
magnitude of error varies with the
time of year (seasonality). These
patterns mean that GFT overlooks
considerable information that
could be extracted by traditional
statistical methods.

Even after GFT was updated in 2009,
the comparative value of the algorithm as a
stand-alone fl u monitor is questionable. A
study in 2010 demonstrated that GFT accu-
racy was not much better than a fairly sim-
ple projection forward using already avail-
able (typically on a 2-week lag) CDC data
(4). The comparison has become even worse
since that time, with lagged models signifi -
cantly outperforming GFT (see the graph).
Even 3-week-old CDC data do a better job
of projecting current flu prevalence than
GFT [see supplementary materials (SM)].

Considering the large number of
approaches that provide inference on infl u-
enza activity (16– 19), does this mean that
the current version of GFT is not useful?
No, greater value can be obtained by com-
bining GFT with other near–real-time
health data (2, 20). For example, by com-
bining GFT and lagged CDC data, as well
as dynamically recalibrating GFT, we can
substantially improve on the performance
of GFT or the CDC alone (see the chart).
This is no substitute for ongoing evaluation
and improvement, but, by incorporating this
information, GFT could have largely healed
itself and would have likely remained out of
the headlines.

The Parable of Google Flu:
Traps in Big Data Analysis

BIG DATA

David Lazer, 1, 2 * Ryan Kennedy, 1, 3, 4 Gary King, 3 Alessandro Vespignani 3,5,6

Large errors in fl u prediction were largely
avoidable, which offers lessons for the use
of big data.

C
RE

D
IT

: A
D

A
PT

ED
 F

RO
M

 A
X

EL
 K

O
RE

S/
D

ES
IG

N
 &

 A
RT

 D
IR

EC
TI

O
N

/I
ST

O
C

K
PH

O
TO

.C
O

M

1Lazer Laboratory, Northeastern University, Boston, MA
02115, USA. 2Harvard Kennedy School, Harvard University,
Cambridge, MA 02138, USA. 3Institute for Quantitative Social
Science, Harvard University, Cambridge, MA 02138, USA.
4University of Houston, Houston, TX 77204, USA. 5Laboratory
for the Modeling of Biological and Sociotechnical Systems,
Northeastern University, Boston, MA 02115, USA. 6Institute
for Scientifi c Interchange Foundation, Turin, Italy.

FINAL FINALFINAL FINAL

*Corresponding author. E-mail: d.lazer@neu.edu.

www.sciencemag.org SCIENCE VOL 343 14 MARCH 2014 1203

POLICYFORUM

 In February 2013, Google Flu
Trends (GFT) made headlines
but not for a reason that Google

executives or the creators of the fl u
tracking system would have hoped.
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from
laboratories across the United States
(1, 2). This happened despite the fact
that GFT was built to predict CDC
reports. Given that GFT is often held
up as an exemplary use of big data
(3, 4), what lessons can we draw
from this error?

The problems we identify are
not limited to GFT. Research on
whether search or social media can
predict x has become common-
place (5– 7) and is often put in sharp contrast
with traditional methods and hypotheses.
Although these studies have shown the
value of these data, we are far from a place
where they can supplant more traditional
methods or theories (8). We explore two
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the
big data age.

Big Data Hubris
“Big data hubris” is the often implicit
assumption that big data are a substitute
for, rather than a supplement to, traditional
data collection and analysis. Elsewhere, we
have asserted that there are enormous scien-
tifi c possibilities in big data (9– 11). How-
ever, quantity of data does not mean that
one can ignore foundational issues of mea-

surement and construct validity and reli-
ability and dependencies among data (12).
The core challenge is that most big data that
have received popular attention are not the
output of instruments designed to produce
valid and reliable data amenable for scien-
tifi c analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and
small data. Essentially, the methodology
was to fi nd the best matches among 50 mil-
lion search terms to fit 1152 data points
(13). The odds of fi nding search terms that
match the propensity of the fl u but are struc-
turally unrelated, and so do not predict the
future, were quite high. GFT developers,
in fact, report weeding out seasonal search
terms unrelated to the fl u but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball (13). This should
have been a warning that the big data were
overfi tting the small number of cases—a
standard concern in data analysis. This ad
hoc method of throwing out peculiar search
terms failed when GFT completely missed
the nonseasonal 2009 infl uenza A–H1N1
pandemic (2, 14). In short, the initial ver-
sion of GFT was part flu detector, part
winter detector. GFT engineers updated

the algorithm in 2009, and this
model has run ever since, with a
few changes announced in October
2013 (10, 15).

Although not widely reported
until 2013, the new GFT has been
persistently overestimating flu
prevalence for a much longer time.
GFT also missed by a very large
margin in the 2011–2012 fl u sea-
son and has missed high for 100 out
of 108 weeks starting with August
2011 (see the graph). These errors
are not randomly distributed. For
example, last week’s errors predict
this week’s errors (temporal auto-
correlation), and the direction and
magnitude of error varies with the
time of year (seasonality). These
patterns mean that GFT overlooks
considerable information that
could be extracted by traditional
statistical methods.

Even after GFT was updated in 2009,
the comparative value of the algorithm as a
stand-alone fl u monitor is questionable. A
study in 2010 demonstrated that GFT accu-
racy was not much better than a fairly sim-
ple projection forward using already avail-
able (typically on a 2-week lag) CDC data
(4). The comparison has become even worse
since that time, with lagged models signifi -
cantly outperforming GFT (see the graph).
Even 3-week-old CDC data do a better job
of projecting current flu prevalence than
GFT [see supplementary materials (SM)].

Considering the large number of
approaches that provide inference on infl u-
enza activity (16– 19), does this mean that
the current version of GFT is not useful?
No, greater value can be obtained by com-
bining GFT with other near–real-time
health data (2, 20). For example, by com-
bining GFT and lagged CDC data, as well
as dynamically recalibrating GFT, we can
substantially improve on the performance
of GFT or the CDC alone (see the chart).
This is no substitute for ongoing evaluation
and improvement, but, by incorporating this
information, GFT could have largely healed
itself and would have likely remained out of
the headlines.

The Parable of Google Flu:
Traps in Big Data Analysis

BIG DATA

David Lazer, 1, 2 * Ryan Kennedy, 1, 3, 4 Gary King, 3 Alessandro Vespignani 3,5,6

Large errors in fl u prediction were largely
avoidable, which offers lessons for the use
of big data.

C
RE

D
IT

: A
D

A
PT

ED
 F

RO
M

 A
X

EL
 K

O
RE

S/
D

ES
IG

N
 &

 A
RT

 D
IR

EC
TI

O
N

/I
ST

O
C

K
PH

O
TO

.C
O

M

1Lazer Laboratory, Northeastern University, Boston, MA
02115, USA. 2Harvard Kennedy School, Harvard University,
Cambridge, MA 02138, USA. 3Institute for Quantitative Social
Science, Harvard University, Cambridge, MA 02138, USA.
4University of Houston, Houston, TX 77204, USA. 5Laboratory
for the Modeling of Biological and Sociotechnical Systems,
Northeastern University, Boston, MA 02115, USA. 6Institute
for Scientifi c Interchange Foundation, Turin, Italy.

FINAL FINALFINAL FINAL

*Corresponding author. E-mail: d.lazer@neu.edu.

14 MARCH 2014 VOL 343 SCIENCE www.sciencemag.org 1204

POLICYFORUM

Algorithm Dynamics
All empirical research stands on a founda-
tion of measurement. Is the instrumentation
actually capturing the theoretical construct of
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum,
it is quite likely that GFT was an unstable
refl ection of the prevalence of the fl u because
of algorithm dynamics affecting Google’s
search algorithm. Algorithm dynamics are
the changes made by engineers to improve
the commercial service and by consum-
ers in using that service. Several changes in
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most
common explanation for GFT’s error is a
media-stoked panic last fl u season (1, 15).
Although this may have been a factor, it can-
not explain why GFT has been missing high
by wide margins for more than 2 years. The
2009 version of GFT has weathered other
media panics related to the fl u, including the
2005–2006 influenza A/H5N1 (“bird flu”)
outbreak and the 2009 A/H1N1 (“swine fl u”)
pandemic. A more likely culprit is changes
made by Google’s search algorithm itself.

The Google search algorithm is not a
static entity—the company is constantly
testing and improving search. For example,
the offi cial Google search blog reported 86
changes in June and July 2012 alone (SM).
Search patterns are the result of thousands of
decisions made by the company’s program-
mers in various subunits and by millions of
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never
documented the 45 search terms used, and
the examples that have been released appear
misleading (14) (SM). Google does provide
a service, Google Correlate, which allows
the user to identify search data that correlate
with a given time series; however, it is lim-
ited to national level data, whereas GFT was
developed using correlations at the regional
level (13). The service also fails to return any
of the sample search terms reported in GFT-
related publications (13, 14).

Nonetheless, using Google Correlate to
compare correlated search terms for the GFT
time series to those returned by the CDC’s
data revealed some interesting differences. In
particular, searches for treatments for the fl u
and searches for information on differentiat-
ing the cold from the fl u track closely with
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data
(and thus user utilization) has been modi-

fi ed by the service provider in accordance
with their business model. Google reported
in June 2011 that it had modifi ed its search
results to provide suggested additional search
terms and reported again in February 2012
that it was now returning potential diagnoses
for searches including physical symptoms
like “fever” and “cough” (21, 22). The for-
mer recommends searching for treatments
of the fl u in response to general fl u inqui-
ries, and the latter may explain the increase
in some searches to distinguish the fl u from
the common cold. We document several other
changes that may have affected GFT (SM).

In improving its service to customers,
Google is also changing the data-generating
process. Modifications to the search algo-
rithm are presumably implemented so as to
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more
advertising revenue. Recommended searches,
usually based on what others have searched,
will increase the relative magnitude of certain
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely
affect GFT’s estimates. Oddly, GFT bakes in
an assumption that relative search volume for
certain terms is statically related to external

events, but search behavior is not just exog-
enously determined, it is also endogenously
cultivated by the service provider.

Blue team issues are not limited to
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and
whether studies conducted even a year ago
on data collected from these platforms can
be replicated in later or earlier periods is an
open question.

Although it does not appear to be an issue
in GFT, scholars should also be aware of the
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur
when research subjects (in this case Web
searchers) attempt to manipulate the data-
generating process to meet their own goals,
such as economic or political gain. Twitter
polling is a clear example of these tactics.
Campaigns and companies, aware that news
media are monitoring Twitter, have used
numerous tactics to make sure their candidate
or product is trending (23, 24).

Similar use has been made of Twitter
and Facebook to spread rumors about stock
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of
information, the more tempting it will be to
manipulate those signals.

0

2

4

6

8

10

07/01/09 07/01/10 07/01/11

Data

07/01/12 07/01/13

Google Flu

Lagged CDC

Google Flu + CDC CDC

–50

0

50

100

150

07/01/09 07/01/10 07/01/11 07/01/12 07/01/13

Google Flu Lagged CDC

Google Flu + CDC

Google estimates more

than double CDC estimates

Google starts estimating

high 100 out of 108 weeks

%
 I

L
I

E
r
r
o
r

(
%

b
a
s
e
l
i
n
e
)

GFT overestimation. GFT overestimated the prevalence of fl u in the 2012–2013 season and overshot the
actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly
high fl u prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates
52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates,
lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC
estmate)�(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone.
Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232
for combined GFT and CDC. All of these differences are statistically signifi cant at P < 0.05. See SM.

Better understanding:

• Unlock truths of the past and present

• Predict the future.

Improve society and the planet:

• Public health

• Environmental monitoring & mitigation

• “Data for good” — e.g. Facebook demographics

• Cybersecurity

We have a data-oriented economy

• We are surrounded by data collectors.

• It’s much easier to collect data than to analyze it.

• We should be able to do something with all this data.

Why study massive data?

 19

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

… ?

Another reason to study massive data!

 20

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

10/31/15, 10:20 PMData Scientist job - Jobspring Partners - Alexandria, VA | Indeed.com

Page 1 of 2http://www.indeed.com/viewjob?jk=b02260d45c6f35c6&q=Scientist+$1…source=jobseeker_emails&utm_medium=email&utm_campaign=job_alerts

what: where:

Scientist $150,000-$300,000 22201 Find Jobs Advanced Job Search

job title, keywords or company city, state, or zip

Data Scientist
Jobspring Partners - Alexandria, VA
$140,000 - $180,000 a year

A leading cyber security company located in Alexandria, Virginia has an immediate need for a Data
Scientist on their team growing team of engineers. The data scientist will develop algorithms and
analytic solutions to prepare for research and development testing. A background in security is
preferred, but not necessary to fulfill the responsibilities of this role. Candidates should ideally have
side projects or patents to back up their strong experience. Must be comfortable in a team based
environment and live close to their Alexandria, Virginia office.

Required Skills

PhD or Master’s Degree in Computer Science or equivalent
At least 6 years of professional experience
Background in statistics, data mining, or algorithm development
AI experience or Machine Learning
Hadoop, Pig, Hive
Knowledge of MATLAB, Java, Python, or C++
NLP expereince
Candidate must be a US citizen

Benefits Salary: $140,000-180,000
401(k) with company match, stock options, full health benefits, life insurance, tuition
reimbursements, wireless discounts, pet insurance, flex hours, telecommuting opportunities, federal
holidays, and paid PTO

Keyword Tags MATLAB, Java, C++, Python, HP Vertica, AI, CI, Data, Mining, Science, Scientist,
algorithm, analytics, research, development, statistics, SQL, DC
5 days ago

View or apply to jobView or apply to job

»View recommended jobs for you - 30 new

Send this job to yourself or a friend:

To email address

 Send a copy to my email address
Comment (optional)

 Send

Share this job

0LikeLike

TweetTweet

Data Scientist jobs in Alexandria, VA

Jobs at Jobspring Partners in Alexandria, VA

Data Scientist salaries in Alexandria, VA

Follow
Get job updates from
Jobspring Partners

About this company

Jobspring Partners
10 reviews

Jobs - Salaries - Trends - Forums - Browse Jobs - Tools - API - About - Help Center

Save this jobSave this job

10/31/15, 10:20 PMData Scientist job - Jobspring Partners - Alexandria, VA | Indeed.com

Page 1 of 2http://www.indeed.com/viewjob?jk=b02260d45c6f35c6&q=Scientist+$1…source=jobseeker_emails&utm_medium=email&utm_campaign=job_alerts

what: where:

Scientist $150,000-$300,000 22201 Find Jobs Advanced Job Search

job title, keywords or company city, state, or zip

Data Scientist
Jobspring Partners - Alexandria, VA
$140,000 - $180,000 a year

A leading cyber security company located in Alexandria, Virginia has an immediate need for a Data
Scientist on their team growing team of engineers. The data scientist will develop algorithms and
analytic solutions to prepare for research and development testing. A background in security is
preferred, but not necessary to fulfill the responsibilities of this role. Candidates should ideally have
side projects or patents to back up their strong experience. Must be comfortable in a team based
environment and live close to their Alexandria, Virginia office.

Required Skills

PhD or Master’s Degree in Computer Science or equivalent
At least 6 years of professional experience
Background in statistics, data mining, or algorithm development
AI experience or Machine Learning
Hadoop, Pig, Hive
Knowledge of MATLAB, Java, Python, or C++
NLP expereince
Candidate must be a US citizen

Benefits Salary: $140,000-180,000
401(k) with company match, stock options, full health benefits, life insurance, tuition
reimbursements, wireless discounts, pet insurance, flex hours, telecommuting opportunities, federal
holidays, and paid PTO

Keyword Tags MATLAB, Java, C++, Python, HP Vertica, AI, CI, Data, Mining, Science, Scientist,
algorithm, analytics, research, development, statistics, SQL, DC
5 days ago

View or apply to jobView or apply to job

»View recommended jobs for you - 30 new

Send this job to yourself or a friend:

To email address

 Send a copy to my email address
Comment (optional)

 Send

Share this job

0LikeLike

TweetTweet

Data Scientist jobs in Alexandria, VA

Jobs at Jobspring Partners in Alexandria, VA

Data Scientist salaries in Alexandria, VA

Follow
Get job updates from
Jobspring Partners

About this company

Jobspring Partners
10 reviews

Jobs - Salaries - Trends - Forums - Browse Jobs - Tools - API - About - Help Center

Save this jobSave this job

Our promise to you:---------------------

You will even learn the difference
between Pig and Hive!

At the end of this class, you will be able to:

• Identify technical and social trends in the creation, collection, analysis and storage of massive data.

• Design, cost, and assemble cloud-based computational infrastructure required to perform massive data analysis.

• Perform large-scale data analysis with Python on high-performance workstations using multithreading/multiprocessing and
clusters using Hadoop, Map Reduce, Apache Spark, and other advanced technologies.

• Locate, download, “wrangle,” and query structured and unstructured data from Internet sources.

• Research and present information about a new “Big Data” tool on the Internet.

• Understand and discuss academic papers about big data technology and related social issues.

Let us know if you want more learning outcomes!

“Learning Outcomes”

 21

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Both of us have been working with Big Data for years.

• This is the first time that we’ve taught this course.

• This is the fist time we’ve worked together!

This course also introduces us to teaching about “massive data!”

 22

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Simson L. Garfinkel, Ph.D.
Started working with “Big Data” in 1985

(Made the second CDROM in the US: 600MB of Data. Massive!

Created digital forensics data sets 500GB — 200TB in size

Developed software for forensics processing on 64-core 
workstations and 2000-core clusters.

Ghaleb M. Abdulla, Ph.D.
Helped develop an early prototype for the ACM digital library (1994).

Developed a parallel ad hoc query engine to mine scientific simulation data on the MCR
cluster at LLNL (ranked number 7 on the top 500 list at that time).

Analyzed 7 TB of the CAIDA network traffic data using Map Reduce and PIG to answer
the question: Are the 54 traceroute servers setup by CAIDA sufficient to achieve
convergence of network coverage?

ANLY 502, by the numbers

 23

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

First year ANLY 502 taught: 2016

Class sessions: 13

Class length: 2 hours, 40 minutes

Weeks missed because of holidays: 3

Enrolled students: 19 (as of Jan 3, 2015)

Homework assignments: 5

Presentations: 3*

Projects: 1

Online participation: Weekly

Class Statistics Class Deliverables *includes final project

From the catalog:

• Prerequisites: “Good command of R or Python, some knowledge of data structures.”

Additional:

• Ability to read and write Python* code.

• Familiarity with Unix command line and a text editor (e.g. EMACS, vi, nano, etc.)

• A laptop/desktop with at least 8GiB of RAM and +50GB of free drive storage space

—I have 16GiB of RAM and a 512GB SSD
• Commitment to homework and working beyond the assignments
• Access to massive data infrastructure	 (we’ve got this covered!)

Class technologies:

• VMWare and Cloudera QuickStart VM for local processing. (You may use VirtualBox if your desire.)

• Amazon Web Services (AWS) for hands-on “big data” work.

What you need to take this course

 24

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

*Most big-data work is done with Python 2.7 due to legacy issues

You should understand basic functions:

def	fact(x):	
				return	x	*	(x-1)	if	x>2	else	1	

dir() and string operations:

>>>	dir("")	
>>>	['__add__',	'__class__',	'__contains__',	'__delattr__',	'__dir__',	'__doc__',	'__eq__',	'__format__',	'__ge__',	
'__getattribute__',	'__getitem__',	'__getnewargs__',	'__gt__',	'__hash__',	'__init__',	'__iter__',	'__le__',	'__len__',	'__lt__',	
'__mod__',	'__mul__',	'__ne__',	'__new__',	'__reduce__',	'__reduce_ex__',	'__repr__',	'__rmod__',	'__rmul__',	'__setattr__',	
'__sizeof__',	'__str__',	'__subclasshook__',	'capitalize',	'casefold',	'center',	'count',	'encode',	'endswith',	'expandtabs',	
'find',	'format',	'format_map',	'index',	'isalnum',	'isalpha',	'isdecimal',	'isdigit',	'isidentifier',	'islower',	'isnumeric',	
'isprintable',	'isspace',	'istitle',	'isupper',	'join',	'ljust',	'lower',	'lstrip',	'maketrans',	'partition',	'replace',	'rfind',	
'rindex',	'rjust',	'rpartition',	'rsplit',	'rstrip',	'split',	'splitlines',	'startswith',	'strip',	'swapcase',	'title',	
'translate',	'upper',	'zfill']	

Control flow:

if,	else,	elif,	range,	xrange(),	class,	yield,	try,	except	

Need help?

—http://learnpython.org/
—Blackboard Forums

“Is my Python good enough to take this course?”

 25

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://learnpython.org/

5 Problem Sets:

• PS01 — Cloudera VM on your Laptop	 	 	 released L01 (jan 13); due jan 22

• PS02 — Amazon AWS — Calculation on a large dataset	 released L02 (jan 25); due feb 5

• PS03 — Apache Spark	 	 	 	 released L04 (feb 8); due feb 19

• PS04 — Big Databases	 	 	 	 released L05 (feb 22); due mar 4

• PS05 — LLNL	 	 	 	 	 released L09 (apr 4); due apr 22

3 Presentations

• 1. A massive data tool or website

• 2. A massive data paper

• 3. Your final project

1 Midterm — In class, March 21

1 Final Project

• An original project involving massive data analysis. A paper describing what you did.

• A presentation about your project.

Class Deliverables — What you need to do!

 26

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

+ class participation (in class & online)

Presentation #1: An open source “big data” tool.

• 5 minutes, 3-10 slides

• What problem are the authors trying to solve?

• What does the program do?

• User report (if you can get it to work)

Presentation #2: A “big data” research paper.

• 5 minutes

• What the authors did, and why it’s important.

Presentation # 3: Your final project

• 15 min presentation, 10-20 slides

• What you wanted to do, what you actually did, what you found out, and the next steps

• Groups of 2-4; level of work commensurate with group size.

Presentations — Each student is responsible for three.

 27

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Peer assessment:
Each student will be able to submit
anonymous comments and questions
regarding the presentations.

Tue. Mar 22 — Initial proposal

• Each student must write two 1-paragraph proposals.

• These will be posted for the class and used for discussion & group formation

March 23 — March 28 — Easter Break

Fri. April 1st — Final project group proposals due

• Each group must submit a 1-2 page proposal clearly documenting what will

be done, by whom, with a timeline.

Sun. April 3rd — Proposal response: “accepted” or “revise”

Mon., May 2 — Final projects presented in class

Thu., May 5 — Final projects paper due

Final project sequence and timeline

 28

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Your final project must include:

• Literature review

• Clear contribution — data analysis, tool development, etc.

• Validation — how do you prove that you did what you said you did?

• Conclusion

—Start thinking about your final projects now!

Your final project deliverables include:

• Proposals 1 & 2

• A paper with an abstract, background, literature search, main body, and conclusion

• A slide presentation

• Optional video demo:

—Demos should be 60-120 seconds of video
—Demos should be uploaded to Black Board or YouTube. Fri., March 25 — Final project individual proposals due

More about your final projects.

 29

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Readings are associated with every class

• So we can discuss them in class.

Readings should be completed before class starts!

You are responsible for the content of the required readings.

• You will not be tested on readings that are not discussed in class.

• You may be tested on important aspects of the readings that are not explicitly discussed.

Each lesson may have one or more “optional” readings.

—These readings are for your personal edification.
—Please let the class know if you find them interesting.
—They are pre-approved for presentations!

Required Readings & Optional Readings

 30

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Class Weights

 31

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Student Deliverable Assigned Due Weight

Problem Set #1: Hadoop Hello! Jan 13 Jan 22 9
Problem Set #2: AWS Cluster Jan 25 Feb 5 9
Problem Set #3: Apache Spark Feb 8 Feb 19 9
Problem Set #4: Scoop, Hive, and re-identification Feb. 22 Mar. 4 9
Problem Set #5: LLNL Apr. 4 Apr. 12 9
Midterm Mar. 21 15
Proposed dates for two presentations Jan. 15 1
Presentation #1 — An open source big data software tool 4
Presentation #2 — A big data paper 4
Final Project Proposals (2) Mar. 22 1
Final Project Group Proposal April 1 1
Final Project Presentation May 2 5
Final Project Paper May 5 14
Classroom Participation 10
Total: 100

Class meets 6:30 — 9:00

• Typically class will involve:

—Introduction to the day
—Recap of reading
—Student presentation (!)
—Break
—Lab work / problem sets / projects

Please bring your laptops to class!

Class Style

 32

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Class Materials

Class materials are on Blackboard

• Slides (PDF)

• Break fast the slides

• Lab work / problem sets / projects

• www.library.georgetown.edu

Class calendar:

• Blackboard

• You can sync to Google Calendar / Phone / etc.

O’Reilly books are available on Safari

 33

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

L01: Introduction, Scaling on a Single Computer, & Cloudera VM

L02: Scaling on Multiple Computers, Grids, Hadoop Architecture,

L03: Storage at Scale, Hadoop Distributed File System (HDFS)

L04: Spark

L05: Massive Databases (special guest: Donald Miner)

L06: Data Wrangling and De-Identification (special guest: Jim Koenig)

L07: Text Processing at Scale (special guest: Peter Wayner)

L08: Midterm (90 min) & Image Processing

L09: LANL #1 — Big Data in High Performance Computing

L10: LANL #2 — Power and Performance for High Performance Computing (HPC)

L11: LANL #3 — Scientific and Simulation Data

L12: LANL #4 — Scientific Data Analysis Approaches, Architectures, and Workflow Systems

L13: Final Projects Presented

Class Calendar — how does this all fit together?

 34

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

SUBJECT TO CHANGE!

Fewer slides,
more class
participation!

Check BlackBoard Frequently! (or sign up for e-mail alerts)

Class participation is expected.

Do the mandatory reading!

Problem sets are due at the start of class.

• Late homework will only be accepted in exceptional circumstances.

• Collaboration is allowed, but must be documented.

• You are expected to submit your own work.

Follow the Georgetown Student Pledge

• Please confirm that you will follow using BlackBoard.

Class Policies

 35

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

I view education as a collaborative process.

My role — create an environment in which you can excel.

—Written materials, assignments, online resources.

Your role — be an engaged learner!

—Do the readings & assignments
—Come to class
—Seek out additional information and bring it to class.

Preferred contacts:

• Email doesn’t scale for class management—One person has a hard time keeping up with 20!

• Please post your questions on the materials in the online discussion forum

—I will see them and try to answer them within 36 hours
—Other students can answer as well! (please!)

• Please use email for administrative issues—grades, late assignments, etc.

—I will try to answer email within 36 hours.

Class management and philosophy

 36

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://bit.ly/ANLY502-2016-Responses

Google Survey Results

 37

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://bit.ly/ANLY502-2016-Responses

Massive Data Technology 
(for ANLY 502)

38

Program Layer — code that you write to manipulate the data

• Mostly Python, some Scala.

• Optionally Java

Software Infrastructure Layer — where your code runs

• This course is based on Hadoop, MapReduce, and Spark

• A little with massive databases: HBase / Pig / Impala / Spark

Virtualization Layer — the runtime environment

• Most “massive data” technology runs on Linux

• Some products have been ported to Windows

• A few products were developed on Windows, or have front-ends that run on Windows

• Virtual Machines (VMs) can run on your laptop or on the server.

Hardware Layer — The physical hardware on which the VMs run

Massive Data Technology: 
Specific technology that we use in this course.

 39

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

What host operating system do you use?

• Windows

• MacOS

• Linux

Have you used virtualization? If so, which kind? Check all

• VMWare Workstation

• VMWare Fusion

• VMWare VCenter

• VirtualBox

• Xen

• KVM

What have you used virtualization for?

• _______________________________

Quick Survey: How many people have used VMs?

 40

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Exercises/Labs will be on your laptop and Amazon Web Services.

 41

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

*http://theatln.tc/1GVLpOM

11/29/2015 https://upload.wikimedia.org/wikipedia/commons/1/1d/AmazonWebservices_Logo.svg

https://upload.wikimedia.org/wikipedia/commons/1/1d/AmazonWebservices_Logo.svg 1/1

http://theatln.tc/1GVLpOM

VirtualBox — Virtualization platform made by Oracle (free)

VMWare — Virtualization platform made by VMWare ($$)

• Simulates PC hardware.

• You specify:

—RAM, Video RAM, # processors, network interfaces, disk

For “small data” and initial testing, you will use your own computer.

 42

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“Host OS” is what you
are running on: PC, Mac,

or Linux.

“Guest OS” is
running inside

VMWare Virtualization Ovewview

• https://www.vmware.com/pdf/virtualization.pdf

Basic Idea: A computer within a computer

 43

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://www.vmware.com/pdf/virtualization.pdf

Two virtualization architectures: “Hosted” and “Bare-Metal”

 44

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

July 5, 1994 — Amazon.com was founded by Jeff Bezos

• (Originally named “Cadabra”)

• Renamed “Amazon” in 1995 with goal of being the “biggest” store in the world.

• First book ordered in 1995, Fluid Concepts and Creative Analogies.*

By 1998, showing a single web page on Amazon.com required computation from more than 100
computers.

• Amazon made organizing thousands of computers an institutional priority.

In 2006, Amazon started making its systems available as a commodity

• Simple Queue Service (SQS) — Reliable messages up to 256KB in size.

• Elastic Compute Cloud (EC2) — virtual machines

• Simple Storage Service (S3) — unlimited storage

Big data problems you can work on the Amazon Web Services.

 45

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

*http://theatln.tc/1GVLpOM

http://theatln.tc/1GVLpOM

Today Amazon Web Services (AWS) has dozens of offerings

 46

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Special Publication 800-145: The NIST Definition of Cloud Computing

Essential Characteristics:

• On-demand self-service

• Broad network access

• Resource pooling

• Rapid elasticity

• Measures service

Service Models:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

In 2011, the National Institute of Standards and Technology defined a standard terminology
for cloud computing.

 47

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Deployment Models:

• Private cloud

• Community cloud

• Public cloud

• Hybrid cloud

Amazon offers most
of these models!

✔
✔

✔
✔

✔

✔
✔
✔

✔

✔

Pictures of our physical data center are not very useful…

 48

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://bit.ly/amazon-data-center1

Location matters:

• Speed of light: 300,000 Km/sec = 300Mm/s

• Distance to Seattle: ≈5,000 Km = 5Mm

• Minimum time to Seattle: 5 Mm ÷ 300 Mm/s = 1.6 msec

• Distance to Reston: ≈ 10Km

• Minimum time to Reston: 10 Km ÷ 300,000 Km/sec = 33µsec

More important:  
Where the data centers are and the links between them.

 49

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.turnkeylinux.org/blog/aws-datacenters

For more details, see James Hamilton’s presentation  
from Amazon’s 2011 Technology Open House.

 50

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

ht
tp

://
bi

t.l
y/

1G
VK

I8
6

Perspective on Scaling

Every day, Amazon Web Services adds enough
new capacity to support all of Amazon.com’s
global infrastructure through the company’s

first 5 years, when it was a $2.76B annual
revenue enterprise

2011/5/5 http://perspectives.mvdirona.com 4

Top Tier — scalable VMs, Services, etc.:

• Google Cloud Platform — https://cloud.google.com

• Microsoft Azure — https://azure.microsoft.com/en-us/

• Rackspace — http://www.rackspace.com

Bargain basement:

• Dreamhost — http://www.dreamhost.com/

• WebFaction — https://www.webfaction.com

Services may charge for:

• Computation — Virtual Machines

• Storage

• Bandwidth

• Special APIs and Services

• Setup

There are many alternatives to Amazon

 51

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

We are using Amazon because:

• Currently best developed of the services

• Excellent documentation

• Many online tutorials

Amazon has “first mover advantage” and has

not slipped behind — at least, not yet!

https://azure.microsoft.com/en-us/
http://www.rackspace.com
http://www.dreamhost.com/

You can do a lot with $100:

Each student will have $100 of “free” Amazon time.

 52

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Price for a General Purpose t2.medium (2 CPU, 4
GB, Variable ECU, EBS) [1] $.052/hour ($8.74/week)

Price for m3.2xlarge Elastic Map Reduce (4 CPU, 26
ECU, 30GB, 2x80 SSD) [2]

$0.532/hour (EC2) +  
$0.140/hour (EMR) =  

$0.672/hour ($112.90/week)

EBS General Purpose Storage (SSD) [3]
$0.10/GB-month

($2.25 to store 100GB for a week)

EBS Magnetic volumes
$0.05/GB-month +

$0.05 per 1 million I/O requests

EBS “snapshots” $0.95/GB-month

Price to access public EBS datasets from EC2 FREE

[1] https://aws.amazon.com/ec2/pricing/
[2] https://aws.amazon.com/elasticmapreduce/pricing/
[3] https://aws.amazon.com/ebs/pricing/

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/elasticmapreduce/pricing/

Welcome to ANLY 502

This course teaches you to think about and work with massive data.

We will use the Cloudera VM and Amazon AWS

You are responsible for:

• Coming to class

• Doing the reading

• Working the problem sets

• An in-class presentation about a software package or research paper

• Researching your own project and writing a paper.

Questions?

Introduction in Summary

 53

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Making computers run fast:  
Moore’s Law and Parallelization

54

A
A A A

A A A

A A A

A A A

A A A

A

A

A

A

A

A

A

A

A

A

IEC — International Electrotechnical Commission

JEDEC — Joint Electron Device Engineering Council — Just for DRAM

Before we get started, a word about units

 55

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Decimal Binary
Value Metric (SI) Value IEC JEDEC

1000 kB kilobyte 1024 KiB kibibyte KB kilobyte

10002 MB megabyte 10242 MiB mebibyte MB megabyte

10003 GB gigabyte 10243 GiB gibibyte GB gigabyte

10004 TB terabyte 10244 TiB tebibyte –

10005 PB petabyte 10245 PiB pebibyte –

10006 EB exabyte 10246 EiB exbibyte –

10007 ZB zettabyte 10247 ZiB zebibyte –

10008 YB yottabyte 10248 YiB yobibyte –

https://en.wikipedia.org/wiki/Kibibyte

1965: Gordon Moore suggested:

• Integrated circuits will be cost-effective.

• Increased integration resulted in  

increased reliability.

• From 1965 to 1970, the cost of 

of manufacturing should drop by 90%, 
and integration increase 100 fold:

You’ve heard of “Moore’s Law”

 56

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Electronics, Volume 38, Number 8, April 19, 1965

The future of integrated electronics is the future of electron-
ics itself. The advantages of integration will bring about a
proliferation of electronics, pushing this science into many
new areas.

Integrated circuits will lead to such wonders as home
computersóor at least terminals connected to a central com-
puteróautomatic controls for automobiles, and personal
portable communications equipment. The electronic wrist-
watch needs only a display to be feasible today.

But the biggest potential lies in the production of large
systems. In telephone communications, integrated circuits
in digital filters will separate channels on multiplex equip-
ment. Integrated circuits will also switch telephone circuits
and perform data processing.

Computers will be more powerful, and will be organized
in completely different ways. For example, memories built
of integrated electronics may be distributed throughout the

machine instead of being concentrated in a central unit. In
addition, the improved reliability made possible by integrated
circuits will allow the construction of larger processing units.
Machines similar to those in existence today will be built at
lower costs and with faster turn-around.

Present and future
By integrated electronics, I mean all the various tech-

nologies which are referred to as microelectronics today as
well as any additional ones that result in electronics func-
tions supplied to the user as irreducible units. These tech-
nologies were first investigated in the late 1950ís. The ob-
ject was to miniaturize electronics equipment to include in-
creasingly complex electronic functions in limited space with
minimum weight. Several approaches evolved, including
microassembly techniques for individual components, thin-
film structures and semiconductor integrated circuits.

Each approach evolved rapidly and converged so that
each borrowed techniques from another. Many researchers
believe the way of the future to be a combination of the vari-
ous approaches.

The advocates of semiconductor integrated circuitry are
already using the improved characteristics of thin-film resis-
tors by applying such films directly to an active semiconduc-
tor substrate. Those advocating a technology based upon
films are developing sophisticated techniques for the attach-
ment of active semiconductor devices to the passive film ar-
rays.

Both approaches have worked well and are being used
in equipment today.

Cramming more components
onto integrated circuits

With unit cost falling as the number of components per

circuit rises, by 1975 economics may dictate squeezing as

many as 65,000 components on a single silicon chip

By Gordon E. Moore
Director, Research and Development Laboratories, Fairchild Semiconductor
division of Fairchild Camera and Instrument Corp.

The author

Dr. Gordon E. Moore is one of
the new breed of electronic
engineers, schooled in the
physical sciences rather than in
electronics. He earned a B.S.
degree in chemistry from the
University of California and a
Ph.D. degree in physical
chemistry from the California
Institute of Technology. He was
one of the founders of Fairchild
Semiconductor and has been
director of the research and
development laboratories since
1959.

The experts look ahead

Electronics, Volume 38, Number 8, April 19, 1965

The establishment
Integrated electronics is established today. Its techniques

are almost mandatory for new military systems, since the re-
liability, size and weight required by some of them is achiev-
able only with integration. Such programs as Apollo, for
manned moon flight, have demonstrated the reliability of in-
tegrated electronics by showing that complete circuit func-
tions are as free from failure as the best individual transis-
tors.

Most companies in the commercial computer field have
machines in design or in early production employing inte-
grated electronics. These machines cost less and perform
better than those which use ìconventionalî electronics.

Instruments of various sorts, especially the rapidly in-
creasing numbers employing digital techniques, are starting
to use integration because it cuts costs of both manufacture
and design.

The use of linear integrated circuitry is still restricted
primarily to the military. Such integrated functions are ex-
pensive and not available in the variety required to satisfy a
major fraction of linear electronics. But the first applica-
tions are beginning to appear in commercial electronics, par-
ticularly in equipment which needs low-frequency amplifi-
ers of small size.

Reliability counts
In almost every case, integrated electronics has demon-

strated high reliability. Even at the present level of produc-
tionólow compared to that of discrete componentsóit of-
fers reduced systems cost, and in many systems improved
performance has been realized.

Integrated electronics will make electronic techniques
more generally available throughout all of society, perform-
ing many functions that presently are done inadequately by
other techniques or not done at all. The principal advantages
will be lower costs and greatly simplified designópayoffs
from a ready supply of low-cost functional packages.

For most applications, semiconductor integrated circuits
will predominate. Semiconductor devices are the only rea-
sonable candidates presently in existence for the active ele-
ments of integrated circuits. Passive semiconductor elements
look attractive too, because of their potential for low cost
and high reliability, but they can be used only if precision is
not a prime requisite.

Silicon is likely to remain the basic material, although
others will be of use in specific applications. For example,
gallium arsenide will be important in integrated microwave
functions. But silicon will predominate at lower frequencies
because of the technology which has already evolved around
it and its oxide, and because it is an abundant and relatively
inexpensive starting material.

Costs and curves
Reduced cost is one of the big attractions of integrated

electronics, and the cost advantage continues to increase as
the technology evolves toward the production of larger and
larger circuit functions on a single semiconductor substrate.
For simple circuits, the cost per component is nearly inversely
proportional to the number of components, the result of the

equivalent piece of semiconductor in the equivalent package
containing more components. But as components are added,
decreased yields more than compensate for the increased
complexity, tending to raise the cost per component. Thus
there is a minimum cost at any given time in the evolution of
the technology. At present, it is reached when 50 compo-
nents are used per circuit. But the minimum is rising rapidly
while the entire cost curve is falling (see graph below). If we
look ahead five years, a plot of costs suggests that the mini-
mum cost per component might be expected in circuits with
about 1,000 components per circuit (providing such circuit
functions can be produced in moderate quantities.) In 1970,
the manufacturing cost per component can be expected to be
only a tenth of the present cost.

The complexity for minimum component costs has in-
creased at a rate of roughly a factor of two per year (see
graph on next page). Certainly over the short term this rate
can be expected to continue, if not to increase. Over the
longer term, the rate of increase is a bit more uncertain, al-
though there is no reason to believe it will not remain nearly
constant for at least 10 years. That means by 1975, the num-
ber of components per integrated circuit for minimum cost
will be 65,000.

I believe that such a large circuit can be built on a single
wafer.

Two-mil squares
With the dimensional tolerances already being employed

in integrated circuits, isolated high-performance transistors
can be built on centers two thousandths of an inch apart. Such

Sweet Spot

Expensive
because of
high integration

Expensive
because of
low component count

“The electronic wrist-watch needs only a display to be feasible today.”
—Gordon Moore, 1965

 57

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Electronics, Volume 38, Number 8, April 19, 1965

a two-mil square can also contain several kilohms of resis-
tance or a few diodes. This allows at least 500 components
per linear inch or a quarter million per square inch. Thus,
65,000 components need occupy only about one-fourth a
square inch.

On the silicon wafer currently used, usually an inch or
more in diameter, there is ample room for such a structure if
the components can be closely packed with no space wasted
for interconnection patterns. This is realistic, since efforts to
achieve a level of complexity above the presently available
integrated circuits are already underway using multilayer
metalization patterns separated by dielectric films. Such a
density of components can be achieved by present optical
techniques and does not require the more exotic techniques,
such as electron beam operations, which are being studied to
make even smaller structures.

Increasing the yield
There is no fundamental obstacle to achieving device

yields of 100%. At present, packaging costs so far exceed
the cost of the semiconductor structure itself that there is no
incentive to improve yields, but they can be raised as high as

is economically justified. No barrier exists comparable to
the thermodynamic equilibrium considerations that often limit
yields in chemical reactions; it is not even necessary to do
any fundamental research or to replace present processes.
Only the engineering effort is needed.

In the early days of integrated circuitry, when yields were
extremely low, there was such incentive. Today ordinary in-
tegrated circuits are made with yields comparable with those
obtained for individual semiconductor devices. The same
pattern will make larger arrays economical, if other consid-
erations make such arrays desirable.

Heat problem
Will it be possible to remove the heat generated by tens

of thousands of components in a single silicon chip?
If we could shrink the volume of a standard high-speed

digital computer to that required for the components them-
selves, we would expect it to glow brightly with present power
dissipation. But it wonít happen with integrated circuits.
Since integrated electronic structures are two-dimensional,
they have a surface available for cooling close to each center
of heat generation. In addition, power is needed primarily to
drive the various lines and capacitances associated with the
system. As long as a function is confined to a small area on
a wafer, the amount of capacitance which must be driven is
distinctly limited. In fact, shrinking dimensions on an inte-
grated structure makes it possible to operate the structure at
higher speed for the same power per unit area.

Day of reckoning
Clearly, we will be able to build such component-

crammed equipment. Next, we ask under what circumstances
we should do it. The total cost of making a particular system
function must be minimized. To do so, we could amortize
the engineering over several identical items, or evolve flex-
ible techniques for the engineering of large functions so that
no disproportionate expense need be borne by a particular
array. Perhaps newly devised design automation procedures
could translate from logic diagram to technological realiza-
tion without any special engineering.

It may prove to be more economical to build large

Pulsar watch advertisement, 1972

Art for Gordon Moore’s 1965 article

iPod vending machine, Macy’s
https://www.flickr.com/photos/toasty/289027219

He was heckled:

• “What are you going to do with all of them? 

it’s not as if you would put one in every doorknob.”

In 1975, Danny Hillis was at a conference in New York City Hilton
“In the future computers will be everywhere. There will be more computers than people.”*

 58

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In 1995 Hillis went back Hilton.

• There was a computer in every doorknob

Co-founder of  
Thinking Machines
1983

Connection Machine 1
65,536 1-bit processors

*http://simson.net/clips/1995/95.SJMN.Digital_Decade_MIT_Media_Lab.pdf

http://simson.net/clips/1995/95.SJMN.Digital_Decade_MIT_Media_Lab.pdf

11/2/2015 https://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg

https://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg 1/1

curve shows transistor
count doubling every
two years

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004

8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium

AMD K5

Pentium II
Pentium III

AMD K6

AMD K6III
AMD K7

Pentium 4

Barton
Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10

Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)

SixCore Opteron 2400

8Core Xeon NehalemEX
QuadCore Itanium Tukwila
Quadcore z196
8core POWER7

10Core Xeon WestmereEX

16Core SPARC T3

SixCore Core i7

SixCore Xeon 7400

DualCore Itanium 2

AMD K10

Microprocessor Transistor Counts 19712011 & Moore's Law

Tr
an
si
st
or
 c
ou
nt

… but performance has not.

Transistor counts have followed Moore’s prediction….

 59

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

If you wanted your program to run faster… just wait a few months.

• *Note: Pentium chips run different clock speed and bus speed.

Between 1971 and 2005,  
microprocessors doubled in speed ≈every 18 months

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Production Intel Max Speed Photo
1971-1981 4004 740 Khz
1972-1983 8008 800 Khz

1974- 8080 2Mhz
1979-1990s 8088 10Mhz
1982-1990s 80286 25Mhz
1986-2007 80386 40Mhz
1989-2007 80486 150Mhz

1993- Pentium P5 300Mhz*

Faster clock speed

• More instructions per second

Large caches

• Faster to load and save data to memory

“Execution Optimization” 
(Instruction level parallelization)

• Pipelining: Overlapping instructions

• Super scalar: Multiple instructions at a time

—A⬅B ; C⬅D

Many factors made chips faster.

 61

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://en.wikipedia.org/wiki/Central_processing_unit

Intel Core i7-970

Intel’s celebration of the Intel Core 2 Duo processor

 62

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals
5

Transistors1

1,000,000,000

2,000,000,000

100,000,000

10,000,000

201020052000199519901985198019751970

Year of Introduction

1 Vertical scale of illustration not proportional to actual transistor count.

D
ua

l-C
or

e
It

an
iu

m
® 2

 p
ro

ce
ss

or

It
an

iu
m

® 2
 p

ro
ce

ss
or

In
te

l®
Xe

on
® p

ro
ce

ss
or

It
an

iu
m

® p
ro

ce
ss

or
Pe

nt
iu

m
® 4

 p
ro

ce
ss

or

Pe
nt

iu
m

® I
II

pr
oc

es
so

r

Ce
le

ro
n®

 p
ro

ce
ss

or

Pe
nt

iu
m

®
pr

oc
es

so
r

Pe
nt

iu
m

® P
ro

 p
ro

ce
ss

or

Pe
nt

iu
m

® p
ro

ce
ss

or

i4
86

™
pr

oc
es

so
r

i3
86

™
pr

oc
es

so
r

i2
86

 p
ro

ce
ss

or

80
88

 p
ro

ce
ss

or

80
86

 p
ro

ce
ss

or

80
80

 p
ro

ce
ss

or

80
08

 p
ro

ce
ss

or

40
04

 p
ro

ce
ss

or

Moore’s Law
In 1965, Gordon Moore predicted that the number of transistors on a piece of silicon would double every year—an insight

later dubbed “Moore’s Law.” Intended as a rule of thumb, it has become the guiding principle for the industry to deliver

ever more powerful semiconductor chips at proportionate decreases in cost. In 1975, Moore updated his prediction that

the number of transistors that the industry would be able to place on a computer chip would double every couple of

years. The original Moore’s Law graph is shown here.

Moore’s Law has been amazingly accurate over
time. In 1971, the Intel 4004 processor held
2,300 transistors. In 2008, the Intel® Core™2
Duo processor holds 410 million transistors.
A dramatic reduction in cost has also occurred.
In 1965, a single transistor cost more than
one dollar. By 1975, the cost was reduced to
one cent, and today Intel can manufacture
transistors that sell for less than 1/10,000 of a
cent each. Intel’s 45nm High-k silicon technology
ensures that Intel will continue to deliver
Moore’s Law into the next decade.

ht
tp

://
w

w
w

.in
te

l.c
om

/A
ss

et
s/

PD
F/

G
en

er
al

/3
08

30
10

03
.p

df

“Your free lunch will soon be over. What can you do about it? What are you doing about it?

By 2005, the tricks for making 
computers run faster had stopped 
working.

• Too much complexity

• Too much heat

That’s why today, 10 years later, 
“fast” microprocessors 
are still running at 1-3Ghz…

—they just have more cores.

“The Free Lunch Is Over”
Herb Sutter, Dr. Dobb’s Journal, 30(3), March 2005

 63

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.gotw.ca/publications/concurrency-ddj.htm

Instead of running a single computer faster, we use the extra transistors to run multiple computers (“cores”) on the same
physical device.

Multithreading: multiple execution threads in a single program.

• Requires compiler and language support.

—POSIX threads
—Java “Thread” class and “Runnable” interface.

Hyperthreading: Intel approach to run 2 threads on a single core:

• One ALU (Arithmetic Logic Unit) (expensive part)

• Two sets of registers (A, B, C, D, SP, PC, etc.)

• One Cache

Multicore: two (or more) CPUs on a single chip

• Each core has: ALU, registers, L1 Cache.

• Shared: L2 cache & bus interface

Multiprocessor: two (or more) chips on a motherboard

• AMD Opteron 6000 Series supports 64 core servers (4 x 16)

• MSRP: <$10,000 with 1TB of DDR3 RAM

Multicore, Multithreading, Hyperthreading:
Instead of faster computers, have more computers!

 64

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

i860 from 1989! 3 CPUs
https://en.wikipedia.org/wiki/Intel_i860

Generic dual-core processor
https://en.wikipedia.org/wiki/Multi-core_processor

https://en.wikipedia.org/wiki/Intel_i860
https://en.wikipedia.org/wiki/Multi-core_processor

A house with 1000 planks of wood that need to be cut into quarters:→

The basic idea of parallelism: divide and conquer

 65

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

1 planks 4 segments in 60 seconds

table saw:
1 cut every 20 seconds

1000 planks 4 segments
4000 segments in 60,000 seconds

3000 cuts x (20 sec/cut) = 60,000 seconds

Use an industrial saw mill … 1 cut every 4 seconds (5x faster)

You could get a faster saw… but saws only go so fast.

 66

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

1000 planks 4000 segments in 12,000 seconds

3000 cuts x (4 sec/cut) = 12,000 seconds

Instead, you could use 100 table saws in parallel

 67

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

…

Planks 1-100 Segments 1-400

Planks 101-200 Segments 401-800

Planks 901-1000 Segments 3601-4000

Total throughput: 100 cuts/20 seconds = 5 cuts/sec = 0.2 sec/cut
3000 cuts x (0.2 sec/cut) = 600 seconds

An “embarassingly parallel” problem

Intel Pentium 3: 1 core

Intel Core Duo: 2 cores

Intel i7-970

6 cores!

Modern computers work the same way.

 68

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

More cores
let the computer
do more work
at the same time.

The cores share
RAM and I/O.

Process abstraction:

Operating systems have two models for using multiple cores:
multithreading & multiprocessing

 69

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Thread of execution: ~~~~~ TID 1

Memory Map: 2GB RAM

System Resources: Open files & libraries

Process 123

Multithreading:
Thread of execution: ~~~~~ TID 2
Thread of execution: ~~~~~ TID 3
Thread of execution: ~~~~~ TID 4

Memory Map: 2GB RAM

System Resources: Open files & libraries

Process 124

Multiprocessing
Thread of execution: ~~~~~ TID 10

Memory Map: 2GB RAM

System Resources: Open files & libraries

Process 200
Thread of execution: ~~~~~ TID 11

Memory Map: 2GB RAM

System Resources: Open files & libraries

Process 201

Thread of execution: ~~~~~ TID 12

Memory Map: 2GB RAM

System Resources: Open files & libraries

Process 202

Different things in each thread: Microsoft Word

• Microsoft word on my Mac runs 28 different threads.

—Keyboard & mouse events
—Spell checking
—Document formatting
—Grammar Checking

Pros:

• Threads can do a lot of different things.

• Takes advantage of multi-core processors

Cons:

• Hard to write & debug.

• Each task is limited in how fast it can go.

Programmers have two basic approaches to utilizing multiple cores:
1. Do different things in each thread.

 70

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

This works much better for “massive data*” problems.

* “Embarrassingly Parallelizable problems.”

1. Do different things in each thread.
2. Run the same code on each thread, combine the results

 71

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

https://en.wikipedia.org/wiki/Weather_Research_and_Forecasting_Model

Start
Data

Model

Compute 1

Compute 2

Compute n

End
Data

Model
…

Most languages provide mechanisms for processing a block of data with a “worker pool” and
combining the results:

Examples:

• Intel’s Thread Building Blocks

• Fortran, C and C++: MPI & OpenMPI

• Python Multiprocessing module

Parallelizing code is relatively easy to do on a single computer.

 72

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Planks 1-100 Segments 1-400
Workers

Threading runs multiple Python functions in the same process:

Advantages:

• Each thread can run on its own core!

• Each thread has access to all of the memory & state as the main thread.

• Low cost to start up.

• Easier communication between threads

—Lock-free access to read-only data structures.

Disadvantages:

• Python’s “Giant Lock” limits concurrency.

• Locking may be required when updating complex data structures

Multithreading in Python:  
import threading

 73

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Process A

Main thread: __main__
Thread a: foo(“a”)
Thread b: foo(“b”)
Thread c: bar(1,2,3)

Called functions
can be the same
or different

import threading,time

class CountingThread(threading.Thread):
 def __init__(self,name,high):
 super(CountingThread,self).__init__()
 self.name = name
 self.high = high
 self.count = 0

 def run(self):
 for i in range(0,self.high):
 print("{}: {}".format(self.name,i))
 time.sleep(.5)
 self.count += 1

if __name__=="__main__":
 foo = CountingThread("foo",5)
 foo.start()
 bar = CountingThread("bar",5)
 bar.start()
 foo.join() # Waits for completion
 bar.join()
 print("foo.count:{} bar.count:{}" 
 .format(foo.count,bar.count))

Python multi-threading cont.

 74

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Output Run 2:

$	python	demo_threading.py	
foo:	0	
	bar:	0	
bar:	1foo:	1	

bar:	2	
	foo:	2	
foo:	3	
	bar:	3	
bar:	4	
foo:	4	
foo.count:5		bar.count:5

Output Run 1:	

$	python	demo_threading.py	
foo:	0bar:	0	

foo:	1	
bar:	1	
foo:	2	
	bar:	2	
foo:	3	
bar:	3	
foo:	4	
bar:	4	
foo:	5	
foo.count:5		bar.count:5	

Multiprocessing runs multiple Python functions in different processes:

Advantages:

• Separate Python interpreter for each thread.

• Better concurrency — no giant lock.

Disadvantages:

• Limited communication between each process.

Multithreading in Python:  
import multiprocessing

 75

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Process A

Main thread: __main__

Process B

Main thread: foo(“a”)

import multiprocessing,os

def worker(val):
 return "worker {} PID {}".format(val,os.getpid())

if __name__=="__main__":
 pool = multiprocessing.Pool(processes=4)
 result = pool.map(worker,range(0,16))
 print(result)

Output*

$	python	demo_multiprocessing.py		
['worker	0	PID	69172',	'worker	1	PID	69174',	'worker	2	PID	69173',	'worker	3	PID	69175’,	
	'worker	4	PID	69174',	'worker	5	PID	69172',	'worker	6	PID	69173',	'worker	7	PID	69175’,	
	'worker	8	PID	69174',	'worker	9	PID	69172',	'worker	10	PID	69173','worker	11	PID	69175’,	
	'worker	12	PID	69174','worker	13	PID	69172','worker	14	PID	69173','worker	15	PID	69175']

Python’s Multiprocessing module

 76

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

*slightly reformatted

C with OpenMP:

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc,char **argv)
{
#pragma omp parallel
 {
 // Code inside this region runs in parallel.
 printf("Greetings from thread %d process %d\n",
 omp_get_thread_num(),getpid());
 }
 exit(0);
}

OpenMP has a similar mechanism

 77

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Run:

$	g++-mp-4.9	-o	demo_openmp	-fopenmp	demo_openmp.cpp	
$./demo_openmp	
Greetings	from	thread	1	process	75836	
Greetings	from	thread	0	process	75836	
Greetings	from	thread	2	process	75836	
Greetings	from	thread	3	process	75836	

Microsoft’s Revolution Analytics examined speedup of R:

Notes:

• R2.9.2 ➜ Revolution R speedup: moving from R’s built-in BLAS (Basic Linear Algebra Subprogarms) to Intel’s Math Kernel

Libraries. (6 to 11 fold speedup)

• Revolution R (1core) ➜ Revolution R (4 cores) speedup is ≈ 4x.

• http://blog.revolutionanalytics.com/2010/06/performance-benefits-of-multithreaded-r.html

• https://software.intel.com/en-us/intel-mkl/

Multithreading pays off — but so do better implementations.

 78

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Calculation Size Command R 2.9.2 Revolution R
(1 core)

Revolution R
(4 cores)

Matrix Multiply
A'*A 10000x5000 B <-

crossprod(A) 243 sec 22 sec 5.9 sec

Cholesky
Factorization 5000x5000 C <- chol(B) 23 sec 3.8 sec 1.1 sec

Singular Value
Decomposition 5000x5000 S <- svd

(A,nu=0,nv=0) 62 sec 13 sec 4.9 sec

Principal
Components
Analysis

10000x5000 P <- prcomp(A) 237 sec 41 sec 15.6 sec

Key challenges:

• Solve a single problem on multiple systems?

• Keeping data consistent.

• Responding to hardware failures.

Modern data centers have many computers, each with many processors

 79

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hardware failures are a BIG deal!

Say a typical computer fails in 5 years.

What happens if you have 1000
computers in a data center?

This is the basic idea of modern “big data” analysis.

The big data “Map Reduce” paradigm extends parallelization do multiple machines and
more complex problems.

 80

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Start
Data

Model

Compute 1

Compute 2

Compute n

…

K1, Result 1

K2, Result 2

…

K3, Result 3

A “Map” phase that produces 
intermediate results

End
Data

Model
Reduce

A “Reduce” phase that
combines the intermediate
results into a final value

If a computer fails,

the job is re-run on

another computer

The data returns in the “reduce” step.

Apache Hadoop makes it each to  
write, run, and manage these jobs.

In big data systems, data are stored on each node.
The “map” jobs are sent to the nodes.

 81

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Data Data Data

1. Program moves
to servers

2. Same “map” program runs
on all of the servers

3. Results return to
master server

Replication is provided by:

• HDFS

• Amazon S3

• Other redundant file systems

Data are stored on multiple computers, so if one system fails, there is a copy

 82

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

1 2 1 23 3

1 3

X

If it takes 100 computers 10 hours to process 1TB of data…

• Process 1TB of data in 1 hour with 1000 computers

• Process 100TB of data in 10 hours with 10,000 computers

—This is typical of “embarrassingly parallel” problems.

The catch:

• Some jobs can’t be parallelized.

• If it takes 10 people a year to build a house,  

you can’t build the same house in  
3.7 days with 1000 people.

If you need more data, just add data nodes.

The catch:

• Overhead is 2x, 3x or more.

• RAID systems have overhead of 16% - 20%

The promise of Hadoop is linear scaling:
You process more data by adding more computers.

 83

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://commons.wikimedia.org/wiki/File:Wood-framed_house.jpg

Introducing Hadoop
and MapReduce

84

Companies kept facing the same problems.

Price vs. Reliability:

• Cheap machines failed.

• Reliable machines were expensive.

Hardware vs. Software Diversity:

• “Data centers” were designed with computers having 

similar hardware, but different software configurations.

—Hard to keep the system going.
—Hard to install, configure, administer and manager.

Back in the early 2000s, companies were building bigger and bigger data centers.  
They needed some way to scale computation.

 85

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

First Google Computer
Lego enclosure

First Google Production Server

WWW 
Server

Biz 
Logic

DB
Server

Provides isolation between the front end and the database.

The database is a bottleneck.

This is one approach to scaling…  
A fast database server and lots of clients

 86

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

HP Web Hosting  
Server Appliance SA1100 (3)
2 x 100 Mbps ethernet
10 GB hard drive
533 MHz processor
128MB RAM

https://en.wikipedia.org/wiki/Data_center

SuperMicro server
6 high-speed SCSI drives
8 core processor?

Every computer has same hardware configuration.

Distributed storage.

Distributed computation.

An easier approach: identical servers.

 87

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://commons.wikimedia.org/wiki/File:Wikimedia_Servers-0001_43.jpg https://en.wikipedia.org/wiki/Dell_PowerEdge

Storage

RAM CPU

Google File System Paper

• How Google stored its information — at scale

• The Google File System  

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung 
19th ACM Symposium on Operating Systems Principles, 
Lake George, NY, October, 2003. 
http://research.google.com/archive/gfs.html

Google MapReduce

• How Google processed its information — at scale

• MapReduce: Simplified Data Processing on Large Clusters 

Jeffrey Dean and Sanjay Ghemawat 
OSDI'04: Sixth Symposium on Operating System Design and Implementation, 
San Francisco, CA, December, 2004. 
http://research.google.com/archive/mapreduce.html

These papers showed how Google had overcome the scaling problem.

In 2003 & 2004 Google Research published two seminal papers.

 88

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Design assumptions:

• System built from many inexpensive components that often fail. These store DATA.

• A high-performance, high-reliability, system. The MASTER stores METADATA.

• Workload consists of two kinds of reads:

—large, streaming reads. (typically 1MB of more)
—small random reads. (typically batched by performance-critical applications)

• Workload consists of two kinds of writes:

—large, streaming writes. (sequential, >>1MB)
—small writes at arbitrary locations (infrequent; need not be efficient)

• Well-defined semantic for multiple clients writing to the same file

• High sustained bandwidth is more important than low latency.

—Designed for bulk, batch processing. (building the index, not searching the index.)

Google File System (GFS) Requirements

 89

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Files are divided into fixed-size (64MB) chunks.

• Each chunk has a unique 64-bit chunk handle.

• Each chunk replicated on multiple GFS chunkservers.

Single master:

• Maps filenames to chunks	 	 	 • Checkpoints to hot backups

• Global directory of where each chunk is stored	• Shadows for read-only access

• Metadata stored in RAM	 	 	 	 • Replicates data on node fail

Clients:

• Send filename 

to master.

• Get chunk handles 

from master.

• Get chunks from  

chunkservers.

GFS Implementation

 90

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

Previous work on “grid” computing was based on the idea of splitting up jobs, performing work in
parallel, and combining the work:

MapReduce is an approach and infrastructure for doing this at scale.

Provides:

• Automatic parallelization and distribution

• Fault-tolerance

• I/O scheduling

• Integrated status and monitoring

Google’s MapReduce:  
A programming paradigm based on functional programming.

 91

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Big data

data 1

data 2

data 3

data 4

result 1

result 2

result 3

result 4

Map data 
to result

ReduceSplit Combined
Results

• Speculative execution for slow jobs.

Programmer:

• Everything is a Map or Reduce, but we don’t think of problems that way

• No control over the order in which map() or reduce() runs.

• Mapper & Reducer must be stateless — can’t depend on other map() or reduce() operations.

• No random access to the data

Performance:

• Data is not indexed

• Finding MIN() or MAX() requires scanning all the data.

• No memory-to-memory transfers

—Everything must be written back to the disk
• Entire map() must finish before reduce() starts

Operational:

• High overhead

• Batch processing

• Does not produce immediate answers

MapReduce Limitations

 92

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://www.quora.com/What-are-some-limitations-of-MapReduce
http://stackoverflow.com/questions/18585839/what-are-the-disadvantages-of-mapreduce

• Hard to implement algorithms that
can’t be easily partitioned

• Memory limitations on HDFS “Name node”

https://www.quora.com/What-are-some-limitations-of-MapReduce
http://stackoverflow.com/questions/18585839/what-are-the-disadvantages-of-mapreduce

Diagram from Yahoo! developer tutorial

 93

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://developer.yahoo.com/hadoop/tutorial/module1.html

Input & Output is a set of key/value pairs.

Programmer specifies a mapper:

• map (in_key, in_value) → list(out_key, intermediate_value)

• reduce (out_key, list(intermediate_values)) → list(out_value)

Compare with Python:

>>>	def	square(x):	return	x*x	
...					
>>>	a	=	range(0,10)	
>>>	a	
[1,	2,	3,	4,	5,	6,	7,	8,	9]	

>>>	map(square,	a)	
[1,	4,	9,	16,	25,	36,	49,	64,	81]	

>>>	def	add(x,y):	return	x+y	
...		
>>>	reduce(add,	a)	
45	

Google’s map & reduce operate on (name, value) pairs.

The MapReduce programming model is based on functional programming.

 94

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://docs.python.org/2/tutorial/datastructures.html

The programmer writes a map() function:

map(input)	->	key:value	

The framework calls map() for every piece of input

	 	 map(input1)	->	key1:v1																						
	 	 map(input2)	->	key2:v2	
	 	 map(input3)	->	key3:v3	

Map/Reduce

 95

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

The programmer writes a map() function:

map(input)	->	key:value	

The framework sends the map() function to every computer with data:

	 	 map(input1)	->	key1:v1																						
	 	 map(input2)	->	key2:v2	
	 	 map(input3)	->	key3:v3	

	 	 map(input11)	->	key1:v11																			
	 	 map(input12)	->	key2:v12	
	 	 map(input13)	->	key3:v13	

	 	 map(input21)	->	key1:v21																			
	 	 map(input22)	->	key1:v22	
	 	 map(input23)	->	key1:v23	

Map/Reduce

 96

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“embarrassingly
parallel”

The programmer writes a map() function:

map(input)	->	key:value	

The framework sorts the output by key:

	 	 map(input1)	->	key1:v1																					key1:	v1,	v11,	v21		
	 	 map(input2)	->	key2:v2	
	 	 map(input3)	->	key3:v3	

	 	 map(input11)	->	key1:v11																		key2:	v2,	v12,	v22	
	 	 map(input12)	->	key2:v12	
	 	 map(input13)	->	key3:v13	

	 	 map(input21)	->	key1:v21																		key3:	v3,	v13,	v23	
	 	 map(input22)	->	key1:v22	
	 	 map(input23)	->	key1:v23	

Map/Reduce

 97

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“embarrassingly
parallel”

group by key
(expensive)

The programmer writes a reduce() function:

reduce(key,values)	->	key:value	

The framework sorts the output by key:

	 	 map(input1)	->	key1:v1																					key1:	v1,	v11,	v21								final1	
	 	 map(input2)	->	key2:v2	
	 	 map(input3)	->	key3:v3	

	 	 map(input11)	->	key1:v11																		key2:	v2,	v12,	v22									final2	
	 	 map(input12)	->	key2:v12	
	 	 map(input13)	->	key3:v13	

	 	 map(input21)	->	key1:v21																		key3:	v3,	v13,	v23									final3	
	 	 map(input22)	->	key1:v22	
	 	 map(input23)	->	key1:v23	

Map/Reduce

 98

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“embarrassingly
parallel”

group by key
(expensive)

reduce

The mapper:

map(String	input_key,	String	input_value):	
				//	input_key:	document	name	
				//	input_value:	document	contents	
				for	each	word	w	in	input_value:	
						EmitIntermediate(w,	"1");	

The reducer:

		reduce(String	output_key,	Iterator	intermediate_values):	
				//	output_key:	a	word	
				//	output_values:	a	list	of	counts	
				int	result	=	0;	
				for	each	v	in	intermediate_values:	
						result	+=	ParseInt(v);	
				Emit(AsString(result));	

The output:

“Word Count” is a common MapReduce demonstration program.
This Word Count generates a word histogram.

 99

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

The framework
guarantees that
“reduce” is called
with all pairs of the
same key.

“to be or not to be”
becomes:
to:1
be:1
or:1
not:1
to:1
be:1

to:2
be:2
or:1
not:1

How this gets put together:

 100

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

How this gets put together.
This time we’ll use multiple inputs.

 101

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

“to	be	or	not	to	be” “do	be	do	be	do”

to:1	be:1	or:1	not:1	to:1	be:1 do:1	be:1	do:1	be:1	do:1

be:1,1,1,1,1	do:1,1	 
not:1	or:1	to:1

be:5	do:2	not:1	or:1	to:1

Behind the scenes, MapReduce sorts and combines the data.

 102

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

Workers run both map & reduce tasks.

• Each task is scheduled when data are available.

• Failed tasks (or slow machines) are automatically rescheduled.

• If the same data causes two mappers to fail, the data is ignored.

“Often use 200,000 map/5000 reduce tasks with 2000 machines”

MapReduce pipelines execution and provides fault recovery

 103

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0009.html

The previous example used strings, but map & reduce can apply to any kind of data value.

Examples (from paper)

• Parallelized String search

—map emits a pair of string is present (line #, string)
—Reduce is the “identity” function — copies input to output. (line #, string)

• Count URL Access Frequency:

—map reads logfiles and outputs (URL, 1)
—reduce adds up all of the URLs (URL, total count)

• Reverse Web-Link Graph (what points to page P?)

—map outputs (target, source) for each link found on each web page.
—reduce concatenates the sources: (target, list(source))

e.g.	(target,	(source1,	source2,	source3))

MapReduce is a powerful programming paradigm.

 104

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Fault tolerant: all of the inputs are pre-determined from the data.

• If a worker fails, that job can be run on another machine.

• The master writes periodic checkpoints. If it dies, it is restarted.

• “However, given that there is only a single master, it’s failure is unlikely; therefore our current implementation about the

MapReduce computation if the master fails.”

Minimizes network bandwidth:

• Attempts schedule workers on the same network node as the data resides.

• Failing that, it tries to schedule the worker on the same network switch

Easier to program!

• Map & Reduce functions are simple and easy to understand.

• Complexity is taken care of by infrastructure.

• Most tasks go faster when you add more machines.

MapReduce benefits

 105

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Easy to modify existing tasks to run on MapReduce famework.

• MapReduce Programs in Google Source Tree:

MapReduce was hugely successful at Google.

 106

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Doug Cutting had been trying to build a search engine at the Internet archive.

• It could only run on certain kinds of machines.

• It required reliable computers.

• When it crashed, it needed to be manually restarted.

Cutting & Cafarella decided to build an open source version 
of the Google stack to handle the Internet Archive’s search.

• In Java, so it would be portable.

—and because it’s what they knew

In 2006, Cutting moved to Yahoo.

• It was difficult scaling to larger # of nodes.

• Hadoop wasn’t good enough to replace Yahoo’s search,  

but it could be used for data analytics.

In 2011, Yahoo had 42,000 nodes and 100s of PBs of storage.

Yahoo spun out Hartonworks as a Hadoop-focused software company.

• https://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/

Hadoop Origins — An open source version of Google’s stack

 107

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Doug Cutting

Mike Cafarella

• http://www.nytimes.com/2009/03/17/technology/business-computing/17cloud.html

Doug Cutting named Hadoop after his son’s toy elephant

 108

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.nytimes.com/2009/03/17/technology/business-computing/17cloud.html

A typical small Hadoop system might have:

• 1 master node

• 1-10 Data Nodes

• 0-10 Compute Nodes

Hadoop runs on individual computers in a data center.
These computers are called “nodes.”

 109

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Master Node.
- Batch jobs submitted.
- Tracks progress of jobs.

Compute Node.
- Runs Map/Reduce jobs

Data Node.
- Holds data
- (Can also run jobs)

Worker Nodes:

MapReduce — Performs computation

• Job Tracker — Master planner

• Task Tracker — Runs each task

HDFS — Stores the data

• Data Node — Stores the blocks for each file.

• Name Node — Keeps track of every file and where it is stored.

—Controls the Data Nodes.

• (We will discuss HDFS more in L03)

Hadoop has two main systems: MapReduce and HDFS

 110

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

MapReduce is run as a “batch” operation with a job configuration:

• Map function

• Reduce function

• Job parameters

The Hadoop job client submits the job (e.g. jar file) to the ResourceManager.

Hadoop Streaming lets jobs be run with any executable.

Hadoop Pipes is a SWIG C++ API for running from C++, python, etc.

Real-world Map Reduce.

 111

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

https://github.com/chenmiao/Big_Data_Analytics_Web_Text/wiki/Hadoop-with-Cloudera-VM-(the-Word-Count-Example)

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Real Hadoop clusters can be huge.

 112

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

• Name Node — Keeps track of every file and where it is stored.

Hadoop cluster at Yahoo!

Hadoop running on 8 cubieboards:

The power of Hadoop (and MapReduce) is that it:

• Provides a framework for having a distributing a workflow to multiple physical computers.

• Integrates management of computation and storage.

Hadoop doesn’t need huge clusters

 113

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://cubieboard.org/2013/08/01/hadoophigh-availability-distributed-object-oriented-platform-on-cubieboard/

But you would never
do this in practice.

Why not?

Getting to know the  
Cloudera QuickStart VM

114

(Who here has used virtualization before?)

Parts of a Virtual Machine:

• Virtual disk

• RAM

• Machine configuration

Some advantage of Virtualization:

• Checkpointing

• Templates / Copying

• Resource management

• Security

Virtualization: Running an OS inside an OS

 115

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Cloudera makes a “QuickStart VM” that has many “big data” programs pre-installed.

 116

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Traditional Hadoop:

• MapReduce job in Java

• MapReduce job with a shell command and Hadoop Streaming

• MapReduce job in Python with mrjob.

Spark:

• Spark with Python

• Spark with Scala

There are many ways to run Word Count on Cloudera

 117

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

The VM includes:

• CentOS 6.4 (similar to RedHat Enterprise & Fedora) (uses “yum” not “apt-get”)

• 64-bit OS (requires 64-bit host OS)

• Available for VMWare (Player & Fusion), KVM and VirtualBox.

• Requires: 4GiB of RAM on your computer to run.

username/password info:

• Main account: cloudera/cloudera

• Root: root/cloudera

• MySQL root: cloudera

• Hue and Cloudera Manager: cloudera/cloudera

More data:

• http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cloudera_quickstart_vm.html

• http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html

The VM is a Virtual Machine Image File

 118

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cloudera_quickstart_vm.html
http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html

OVF — Open Virtualization Format

VirtualBox Changes to Cloudera Quickstart VM:

(make similar changes for VMWare.)

Creating the VM with VirtualBox and the Cloudera Distribution

 119

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Setting Distribution Change to

Video RAM 1MB >64MB

RAM 4GB ≥8

CPUs 1 # in host

Paravirtualization Legacy Default

Shared Folders n/a Homedir

Motherboard PIIX3 ICH9

I/O APC ? enable

 120

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

VirtualBox Console for the VM

Manually download the new Firefox for Linux

—For some reason, the automatic upgrade doesn’t work.

$ cd Downloads/

$ tar xfv firefox-f1.0.2.tar.gz2

$ sudo mv /usr/local/firefox /usr/local/firefox.old.$$

$ sudo mv firefox /usr/local/firefox

Keeping your VM up to date: Firefox

 121

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Mapper:

public	class	WordCount	{	

		public	static	class	TokenizerMapper	
							extends	Mapper<Object,	Text,	Text,	IntWritable>{	

				private	final	static	IntWritable	one	=	new	IntWritable(1);	
				private	Text	word	=	new	Text();	

				public	void	map(Object	key,	Text	value,	Context	context	
)	throws	IOException,	InterruptedException	{	
						StringTokenizer	itr	=	new	StringTokenizer(value.toString());	
						while	(itr.hasMoreTokens())	{	
								word.set(itr.nextToken());	
								context.write(word,	one);	
						}	
				}	
		}	

It’s traditional to do “word count” as the map reduce equivalent of “Hello World.”

 122

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Reducer:

	public	static	class	IntSumReducer	
							extends	Reducer<Text,IntWritable,Text,IntWritable>	{	
				private	IntWritable	result	=	new	IntWritable();	

				public	void	reduce(Text	key,	Iterable<IntWritable>	values,	
																							Context	context	
)	throws	IOException,	InterruptedException	{	
						int	sum	=	0;	
						for	(IntWritable	val	:	values)	{	
								sum	+=	val.get();	
						}	
						result.set(sum);	
						context.write(key,	result);	
				}	
		}	

It’s traditional to do “word count” as the map reduce equivalent of “Hello World.”

 123

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Header:

import	java.io.IOException;	
import	java.util.StringTokenizer;	

import	org.apache.hadoop.conf.Configuration;	
import	org.apache.hadoop.fs.Path;	
import	org.apache.hadoop.io.IntWritable;	
import	org.apache.hadoop.io.Text;	
import	org.apache.hadoop.mapreduce.Job;	
import	org.apache.hadoop.mapreduce.Mapper;	
import	org.apache.hadoop.mapreduce.Reducer;	
import	org.apache.hadoop.mapreduce.lib.input.FileInputFormat;	
import	org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;	

Main:

		public	static	void	main(String[]	args)	throws	Exception	{	
				Configuration	conf	=	new	Configuration();	
				Job	job	=	Job.getInstance(conf,	"word	count");	
				job.setJarByClass(WordCount.class);	
				job.setMapperClass(TokenizerMapper.class);	
				job.setCombinerClass(IntSumReducer.class);	
				job.setReducerClass(IntSumReducer.class);	
				job.setOutputKeyClass(Text.class);	
				job.setOutputValueClass(IntWritable.class);	
				FileInputFormat.addInputPath(job,	new	Path(args[0]));	
				FileOutputFormat.setOutputPath(job,	new	Path(args[1]));	
				System.exit(job.waitForCompletion(true)	?	0	:	1);	
		}	
}

It’s traditional to do “word count” as the map reduce equivalent of “Hello World.”

 124

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

The whole program

 125

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Set up environment (not done for you by CVM):

$	export	JAVA_CLASSPATH='/usr/lib/hadoop/client-0.20/*:/usr/lib/hadoop/*'	

Compile WordCount.java and create a jar file:

$	javac	-d	wordcount_classes/	WordCount.java	
$	jar	-cvf	wordcount.jar	-C	wordcount_classes	

Put some data in HDFS:

$	echo	"to	be	or	not	to	be"	>	file0	
$	echo	"do	be	do	be	do"	>	file1	
$	hdfs	fs	-mkdir	/user/cloudera/wordcount	
$	hdfs	fs	-mkdir	/user/cloudera/wordcount/input	
$	hdfs	fs	-put	file0	/user/cloudera/wordcount/input/	
$	hadoop	fs	-put	file1	/user/cloudera/wordcount/input/	

Run it!

$	hadoop	jar	wordcount.jar	WordCount	/user/cloudera/wordcount/input/	\	
																																					/user/cloudera/wordcount/output/

To run this program…

 126

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

$	hadoop	jar	wordcount.jar	WordCount	/user/cloudera/wordcount/input/	/user/cloudera/wordcount/output/	
15/11/08	13:57:01	INFO	client.RMProxy:	Connecting	to	ResourceManager	at	/0.0.0.0:8032	
15/11/08	13:57:02	WARN	mapreduce.JobSubmitter:	Hadoop	command-line	option	parsing	not	performed.	Implement	the	Tool	interface	and	execute	your	application	
with	ToolRunner	to	remedy	this.	
15/11/08	13:57:02	INFO	input.FileInputFormat:	Total	input	paths	to	process	:	2	
15/11/08	13:57:03	INFO	mapreduce.JobSubmitter:	number	of	splits:2	
15/11/08	13:57:03	INFO	mapreduce.JobSubmitter:	Submitting	tokens	for	job:	job_1447013381089_0001	
15/11/08	13:57:03	INFO	impl.YarnClientImpl:	Submitted	application	application_1447013381089_0001	
15/11/08	13:57:03	INFO	mapreduce.Job:	The	url	to	track	the	job:	http://quickstart.cloudera:8088/proxy/application_1447013381089_0001/	
15/11/08	13:57:03	INFO	mapreduce.Job:	Running	job:	job_1447013381089_0001	
15/11/08	13:57:13	INFO	mapreduce.Job:	Job	job_1447013381089_0001	running	in	uber	mode	:	false	
15/11/08	13:57:13	INFO	mapreduce.Job:		map	0%	reduce	0%	
15/11/08	13:57:24	INFO	mapreduce.Job:		map	100%	reduce	0%	
15/11/08	13:57:30	INFO	mapreduce.Job:		map	100%	reduce	100%	
15/11/08	13:57:31	INFO	mapreduce.Job:	Job	job_1447013381089_0001	completed	successfully	
15/11/08	13:57:31	INFO	mapreduce.Job:	Counters:	49	
	 File	System	Counters	
	 	 FILE:	Number	of	bytes	read=61	
	 	 FILE:	Number	of	bytes	written=332053	
	 	 FILE:	Number	of	read	operations=0	
	 	 FILE:	Number	of	large	read	operations=0	
	 	 FILE:	Number	of	write	operations=0	
	 	 HDFS:	Number	of	bytes	read=298	
	 	 HDFS:	Number	of	bytes	written=26	
	 	 HDFS:	Number	of	read	operations=9	
	 	 HDFS:	Number	of	large	read	operations=0	
	 	 HDFS:	Number	of	write	operations=2	
	 Job	Counters		
	 	 Launched	map	tasks=2	
	 	 Launched	reduce	tasks=1	
	 	 Data-local	map	tasks=2	
	 	 Total	time	spent	by	all	maps	in	occupied	slots	(ms)=17757	
	 	 Total	time	spent	by	all	reduces	in	occupied	slots	(ms)=4511	
	 	 Total	time	spent	by	all	map	tasks	(ms)=17757	
	 	 Total	time	spent	by	all	reduce	tasks	(ms)=4511	
	 	 Total	vcore-seconds	taken	by	all	map	tasks=17757	
	 	 Total	vcore-seconds	taken	by	all	reduce	tasks=4511	
	 	 Total	megabyte-seconds	taken	by	all	map	tasks=18183168	
	 	 Total	megabyte-seconds	taken	by	all	reduce	tasks=4619264

Runtime output…

 127

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

What it looks like:

$	hdfs	dfs	-ls	/user/cloudera/wordcount/output/	
Found	2	items	
-rw-r--r--			1	cloudera	cloudera										0	2015-11-08	13:57	/user/cloudera/wordcount/output/_SUCCESS	
-rw-r--r--			1	cloudera	cloudera									26	2015-11-08	13:57	/user/cloudera/wordcount/output/part-r-00000	

—(remove “cloudera cloudera”)

$	hdfs	dfs	-ls	/user/cloudera/wordcount/output/	
Found	2	items	
-rw-r--r--			1										0	2015-11-08	13:57	/user/cloudera/wordcount/output/_SUCCESS	
-rw-r--r--			1									26	2015-11-08	13:57	/user/cloudera/wordcount/output/part-r-00000	

And the output:

$	hdfs	dfs	-tail	/user/cloudera/wordcount/output/part-r-00000	
be						4	
do						3	
not					1	
or	 					1	
to	 					2	

To see the output:

 128

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

/user/cloudera — home directory in HDFS

/home/cloudera — home directory in Linux host file system (ext4)

Possible points of confusion

 129

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

For better performance, you would specify a combiner and a partitioner

Combiner:

• Like a reducer, but just for the node.

• Not necessary — an optimization.

Partitioner:

• When working with more than one reducer.

• Decides which reducer gets which data.

Excellent online tutorials:

• http://www.tutorialspoint.com/map_reduce/map_reduce_partitioner.htm

• http://www.tutorialspoint.com/map_reduce/map_reduce_combiners.htm

Real-world Hadoop: combiner & partitioner

 130

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.tutorialspoint.com/map_reduce/map_reduce_partitioner.htm

Java (native) ✔

• Advantages:

—Fast — data stays within Java VM
—Few dependencies — Everything in a .jar file

• Disadvantages:

—Not everybody knows Java
—Text processing in Java is hard

Hadoop “Streaming” API

• Mapper & Reducer read from stdin to stdout. Fields separated by \t

• Advantage — Easy to integrate with existing code.

• Disadvantage — High overhead

mrjob

• Python implementation sits on top of Hadoop Streaming.

• Advantage — Powerful. Local testing.

• Disadvantage — High overhead

Approaches for running Hadoop MapReduce jobs

 131

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hadoop streaming — reads from stdin & writes to stdout.

• Allows using Hadoop MapReduce with any language.

• Performance penalty — all I/O has to go over pipes.

MRJOB is based on top of Hadoop Streaming.

Hadoop Streaming

 132

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

if you see this:

Caused	by:	java.lang.reflect.InvocationTargetException	
	 at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)	
	 at	sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)	
	 at	sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)	
	 at	java.lang.reflect.Method.invoke(Method.java:606)	
	 at	org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106)	
	 ...	17	more	
Caused	by:	java.lang.RuntimeException:	configuration	exception	
	 at	org.apache.hadoop.streaming.PipeMapRed.configure(PipeMapRed.java:221)	
	 at	org.apache.hadoop.streaming.PipeMapper.configure(PipeMapper.java:66)	
	 ...	22	more	
Caused	by:	java.io.IOException:	Cannot	run	program	"wordcount_mapper.py":	error=2,	No	such	file	or	directory	
	 at	java.lang.ProcessBuilder.start(ProcessBuilder.java:1047)	
	 at	org.apache.hadoop.streaming.PipeMapRed.configure(PipeMapRed.java:208)	
	 ...	23	more	
Caused	by:	java.io.IOException:	error=2,	No	such	file	or	directory	
	 at	java.lang.UNIXProcess.forkAndExec(Native	Method)	
	 at	java.lang.UNIXProcess.<init>(UNIXProcess.java:186)	
	 at	java.lang.ProcessImpl.start(ProcessImpl.java:130)	
	 at	java.lang.ProcessBuilder.start(ProcessBuilder.java:1028)	
	 ...	24	more	

Look for errors that you can understand

Debugging

 133

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

With mrjob:

• You write a class that implements mapper, reducer, etc.

• You run the program, which runs the MRJob routines…

—Sample program:
from	mrjob.job	import	MRJob	

class	MRWordFrequencyCount(MRJob):	

				def	mapper(self,	_,	line):	
								yield	"chars",	len(line)	
								yield	"words",	len(line.split())		
								yield	"lines",	1	
				def	reducer(self,	key,	values):	
								yield	key,	sum(values)	

if	__name__	==	'__main__':		
				MRWordFrequencyCount.run()

Hadoop “mrjob”

 134

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

$	python	word_count.py	--help	
Usage:	word_count.py	[options]	[input	files]	

Options:	
		--help-emr												show	EMR-related	options	
		--help-hadoop									show	Hadoop-related	options	
		--help																show	this	message	and	exit	
		--help-runner									show	runner-related	options	

		Running	specific	parts	of	the	job:	
				--combiner										run	a	combiner	
				--mapper												run	a	mapper	
				--reducer											run	a	reducer	
				--steps													print	the	mappers,	combiners,	and	reducers	that	this	
																								job	defines	
				--step-num=STEP_NUM	
																								which	step	to	execute	(default	is	0)	

		Protocols:	
				--strict-protocols		If	something	violates	an	input/output	protocol	then	
																								raise	an	exception	
				--no-strict-protocols	
																								If	something	violates	an	input/output	protocol	then	
																								increment	a	counter	and	continue	
$		

mrjob help

 135

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“YAML Ain’t Markup Language” — http://www.yaml.org/

• A “human friendly data serialization standard for all programming languages.”

• Structure conveyed through indentation — whitespace is significant (like python, unlike XML or JSON)

All files begin with “---“ and end with “...”

Lists:

fruits:	
				-	Apple	
				-	Orange	
				-	Strawberry	
				-	Mango	
...	

Dictionary:

martin:	
			name:	Marin	D’vloper	
			job:	Developer	
			skin:	Elite	
...	

mrjob config file: YAML or JSON
(YAML only if YAML libraries are installed)

 136

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Abbreviations:

fruits:	[‘Apple’,	‘Orange’,	‘Strawberry’,	‘Mango’]	
...	

Dictionary:

martin:	{name:	Marin	D’vloper,	job:	Developer,	skin:	Elite}	
...	

Boolean Values:

true_values:	[yes,	True,	TRUE]	
false_values:	[no,	false,	FALSE]	

http://www.yaml.org/

https://pythonhosted.org/mrjob/guides/configs-basics.html :

runners:	
		emr:	
				cmdenv:	
						TZ:	America/Los_Angeles	
...	

runners:	
		emr:	
				aws_access_key_id:	HADOOPHADOOPBOBADOOP	
				aws_region:	us-west-1	
				aws_secret_access_key:	MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP	
...	

Precedence:

• Command Line

• Config File

Examples of mrjob config files:

 137

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://pythonhosted.org/mrjob/guides/configs-basics.html

Runner:

• run jobs locally without Hadoop

—Within a single Python Process
—With sub-processes and PIPE I/O

• run jobs on local Hadoop Cluster — You need to install mrjob first and log into the master node.

• run jobs on ElasticMapReduce — mrjob starts up EMR and runs it.

General approach:

1.Run locally within a single python process and a reduced data set

2.Run locally with PIPE IO

3.Spin up a cluster, install mrjob, and try it out.

4.Have mrjob create and kill clusters for production.

Remember: anything stored in HDFS is lost when an EMR cluster shuts down!

—But things stored in S3 are preserved

Three ways to run mrjob:

 138

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

For next week 
January 25, 2016

139

http://bit.ly/louis_sergent_homework_1946

git

emacs

eclipse

CentOS vs. Ubuntu

• Centos: yum-cron; yum makecache

VMWare

Technologies you should know

 140

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

When you read articles on the Internet, be sure to check:

• When was the article written?

• What version of the software is being referenced?

• How do you know that it’s right?

Things to beware of:

• Hadoop 1 is similar to Hadoop 2, but different.

• Hadoop 1 had a JobTracker and TaskTracker; Hadoop 2 has YARN

• Hadoop 1 required more configuration (e.g. setting # of reducers)

• Hadoop 2 entered beta in 2013.

• Different distributions of Hadoop behave differently.

• Many things that people present as “facts” are actually opinions.

Things to watch out for when searching the Internet...

 141

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Required:

• Cloudera tutorials

—WordCount v1.0
• http://www.cloudera.com/content/www/en-us/documentation/other/tutorial/CDH5/Hadoop-Tutorial/ht_wordcount1.html

—WordCount v2.0
• http://www.cloudera.com/content/www/en-us/documentation/other/tutorial/CDH5/Hadoop-Tutorial/ht_wordcount2.html

—WordCount v3.0
• http://www.cloudera.com/content/www/en-us/documentation/other/tutorial/CDH5/Hadoop-Tutorial/ht_wordcount3.html

• mrjob documentation

• hadoop-stream documentation

—https://hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html

Optional:

• GFS paper

• MapReduce paper

• A Guide to Python Frameworks for Hadoop —

• http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/

Homework — Reading

 142

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.cloudera.com/content/www/en-us/documentation/other/tutorial/CDH5/Hadoop-Tutorial/ht_wordcount1.html
http://www.cloudera.com/content/www/en-us/documentation/other/tutorial/CDH5/Hadoop-Tutorial/ht_wordcount2.html

Cloudera: Introducing MapReduce and HDFS

• http://www.cloudera.com/content/www/en-us/resources/training/introduction-to-apache-mapreduce-and-hdfs.html

The Free Lunch Is Over

• http://www.gotw.ca/publications/concurrency-ddj.htm

Videos

 143

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.cloudera.com/content/www/en-us/resources/training/introduction-to-apache-mapreduce-and-hdfs.html
http://www.gotw.ca/publications/concurrency-ddj.htm

Problem #1: Pricing Cloud Computing

• Determine the price of storage and processing a massive data problem on Amazon AWS, Google Compute Engine, Microsoft

Azure, and (optionally) a budget provider.

—Simplifying assumptions for transfer in, storage, processing.

Problem #2: Install Cloudera

Problem #3: Cloudera Word Count example in Java

Problem #4: Cloudera Word Count example in Python (Streaming API)

—Note: with Hadoop streaming, the reducer gets all keys and must determine when the key changes.

Problem #5: mrjob word count example with local and hadoop

Problem #6: Find 20 most common words in Shakespeare with MRJob

Homework — Problem Set

 144

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Yahoo! Hadoop Tutorial

• https://developer.yahoo.com/hadoop/tutorial/

Apache Hadoop FAQ:

• https://wiki.apache.org/hadoop/FAQ

Hadoop-user mailing list archives:

• http://mail-archives.apache.org/mod_mbox/hadoop-user/

Frontiers in Massive Data Analysis (prepublication)

• http://www.nap.edu/catalog/18374/frontiers-in-massive-data-analysis (read online for free)

Revolution R Open

• http://www.revolutionanalytics.com/revolution-r-open

mrjob

• https://pythonhosted.org/mrjob/index.html

• http://stackoverflow.com/questions/tagged/mrjob

• https://github.com/Yelp/mrjob

Resources

 145

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://wiki.apache.org/hadoop/FAQ
http://mail-archives.apache.org/mod_mbox/hadoop-user/
http://www.nap.edu/catalog/18374/frontiers-in-massive-data-analysis
http://www.revolutionanalytics.com/revolution-r-open
https://pythonhosted.org/mrjob/index.html
http://stackoverflow.com/questions/tagged/mrjob
https://github.com/Yelp/mrjob

Excellent blog post comparing different python frameworks for MR:

• http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/

• Slides: http://www.slideshare.net/slideshow/embed_code/key/9jAfDIRMoJiKPP

• Uses Google Books Ngram data as a demo, not wordcount!

• See https://books.google.com/ngrams for more

More resources

 146

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://blog.cloudera.com/blog/2013/01/a-guide-to-python-frameworks-for-hadoop/
https://books.google.com/ngrams

Data Community DC
http://www.datacommunitydc.org/data-science-dc/

 147

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Simson L. Garfinkel

sg1224@georgetown.edu

Google Voice: 202-649-0029

Ghaleb Abdulla

abdulla1@llnl.gov

Lab: (925) 423-5947

Contact Information

 148

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Text or Call

Voice Only!

mailto:sg1224@georgetown.edu
mailto:abdulla1@llnl.gov

