
Hash-Based Carving:  
Searching media for files and file fragments 
with sector hashing
Simson L. Garfinkel
January 19, 2016

1

• Tech Journalist: 1985—2002
• Entrepreneur: 1988—2002

• MIT PhD 2002—2005
• Harvard 2005—2006

• Associate Professor,  
Naval Postgraduate School 2006—2015

• Computer Scientist,  
NIST 2015-

A bit about me

!2

Privacy
2000

Internet of
Things

2005

 Security &
 Usability

2014

My current research:  
Big Data, Privacy, and Usable Security
•Release data without compromising privacy.

•Auditable tests for network protocols.

!3

de-identification

differential privacy

Data overload: 
A fundamental cyber & forensic challenge.

• Boarder Crossings Disk:

• Search & Seizure: Cyber Security: RAM:

!4

Big idea (circa 2006):  
use random sampling to find “target” data.

!5

It takes 3.5 hours to read a 1TB hard drive.

• In 5 minutes you can read:
• 36 GB in one strip
• 100,000 randomly chosen 64KiB strips (assuming 3 msec/seek)

!6

Minutes 208 5 5

Data 1 TB 36 GB 6.5 GB

Seeks 1 1 100,000

% of data 100% 3.6% 0.65%

Problem: no easy way to find start & end of files

First approach:  
“Block Hashes” to recognize fragments of data
•1. We compute the cryptographic hash of randomly chosen blocks

!7

dc0c20abad42d487a74f308c69d18a5a

6e7f3577b100f9ec7fae18438fd5b047

•2. We search for those hashes in a database of “target block hashes”

Review: Every file has a unique cryptographic hash

!8

000107.jpg 000513.jpg 000908.jpg

41,572 bytes 169,718 bytes 12,412 bytes

c996fe19c45bc19961d2301f47cabaa6 759690467578b204d3c022330061a3eb 244f4318543356c08c59baaa58951758

Change 1 bit, the hash changes unpredictably.

!9

000107.jpg 000170.jpg* 000170.jpg**

41,572 bytes 41,572 bytes 41,572 bytes

c996fe19c45bc19961d2301f47cabaa6 2b00042f7481c7b056c4b410d28f33cf d16a4eb8e1cbb45eb4cb22d313b8813c

Cybersecurity — hashes used to recognize files.

•List of “good” files — Tripwire

•List of “bad” files — Malware detection

$ openssl md5 VhdTool.exe
MD5(VhdTool.exe)= 1b8be77e741cee1eb5fa3f9dac7c9ed1

!10

Every file can be also viewed as a sequence of blocks.

 11

41,572 bytes ÷ 512 bytes/block = 81 blocks + 100 bytes
= 82 blocks  
 (w/ padding padding)

Each file block has its own hash.

 12

dc0c20abad42d487a74f308c69d18a5a

9e7bc64399ad87ae9c2b545061959778

6e7f3577b100f9ec7fae18438fd5b047

1

2

3

•All modern file systems align files* on sector boundaries.

When a file is stored on a drive,  
file blocks are stored in disk sectors.

!13

1 2 3 4 5 6

•(*larger than 4KiB)

Key insight:  
File block hashes are the same as disk sector hashes.

!14

1 2 3 4 5 6

dc0c20abad42d487a74f308c69d18a5a

9e7bc64399ad87ae9c2b545061959778

6e7f3577b100f9ec7fae18438fd5b047

dc0c20abad42d487a74f308c69d18a5a

9e7bc64399ad87ae9c2b545061959778

6e7f3577b100f9ec7fae18438fd5b047

Block hashes could create huge capabilities.

•#1 — High-speed search of target media with random sampling
• It takes 3.5 hours to search a 1TB hard drive.
• With random sampling, we could find “target data” within minutes.

•#2 — Find invisible data
• Find fragments of files left in RAM or in storage.

•Both applications require:
• Corpus of target data (1TB–10PB)
• Deployable billion-row database that  

can do 100,000 lookups/sec
• Data “identifiability”

—block hashes must be distinct

!15

1 2 3 4 5 6

dc0c20abad42d487a74f308c69d18a5a

9e7bc64399ad87ae9c2b545061959778

6e7f3577b100f9ec7fae18438fd5b047

Searching with block hashes: 
the need for distinct data.

0000107.jpg:

2005: Block-hashes can find files on a drive!

•1. Hash every sector of the drive

!17

Using distinct sectors in media sampling and full media analysis to detect presence of documents from a corpus,
Kristina Foster, NPS Master’s Thesis, 2012

Block # Byte Range MD5*(block(N))

0 0- 511 dc0c20abad42d487a74f308c69d18a5a

1 512-1023 9e7bc64399ad87ae9c2b545061959778

2 1024-1535 6e7f3577b100f9ec7fae18438fd5b047

3 1536-2047 4594899684d0565789ae9f364885e303

4 ...

•2. Hash every sector
of the target files

•3. Look for matches

2013: HashDB

•NPS created “hashdb”
• Stores 1 billion 128-bit hashes in 50GB file.
• For each hash, stores:

—Collection, Source File, Offset in File
• 100,000 lookups/sec on SSD laptop
• Open Source C++ implementation

•NPS integrated hashdb with “bulk_extractor”
• High-performance digital forensics tool.
• Deployed and used world-wide.
• Open Source.

!18

Target Architecture

!19

found	hashes

Results	analyzed	with	a	
“matching”	program

target  
sector hashes 

 found on  
search drive

files	presumably	on	
search	media

Hashdb

database
of sector
hashes

•Step 1 — Database Building

•Step 3 — Identify target files

•Step 4 — Analysis & Reporting

•Target Files

BE
TOOL

•Step 2 — Scan search Media

Problem — files have internal structure.
They are not bags of “high entropy.”

!20

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

41,572 bytes

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

Some blocks are likely to be distinct for each file.

•Different files will have different Huffman encoded areas.

!21

31 32 33

4 5 6

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

Other blocks might occur in more than one file.

•EXIF and color table are generated by the camera.

!22

1 2 3

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

1 2 3

Common metadata,
formatting, etc. might
result in matches between
different files

This 41K JPEG has 82 x 512B blocks.

!23

Block # MD5(Block(N))

0 dc0c20abad42d487a7
4f308c69d18a5a

1 9e7bc64399ad87ae9c
2b545061959778

2 6e7f3577b100f9ec7f
ae18438fd5b047

3 4594899684d0565789
ae9f364885e303

... ...

0

1

2

3

4

5

6

7

8

9

10
...
82

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

We searched for these block hashes  
in a corpus of 4 million files.
•≃ 1 million in GOVDOCS1 collection
•= 109,282 JPEGs (including 000107.jpg)
•≃ 3 million samples of Windows malware

•Results:
• Most of the block hashes in 000107.jpg do not appear elsewhere in corpus.
• Some of the block hashes appeared in other JPEGs.
• None of the block hashes appeared in files that were not JPEGs

!24

0

1

2

3

4

5

6

7

8

9

10
...
82

The beginning of the file has many distinct 512B blocks
(distinct in our corpus of 100K JPEGs)

hash location count
dc0c20abad42d487a74f308c69d18a5a offset 0-511 1
9e7bc64399ad87ae9c2b545061959778 offset 512-1023 1
6e7f3577b100f9ec7fae18438fd5b047 offset 1024-1535 1
4594899684d0565789ae9f364885e303 offset 1536-2047 1
4d21b27ceec5618f94d7b62ad3861e9a offset 2048-2559 1
03b6a13453624f649bbf3e9cd83c48ae offset 2560-3071 1
c996fe19c45bc19961d2301f47cabaa6 offset 3072-3583 1
0691baa904933c9946bbda69c019be5f offset 3584-4095 1
1bd9960a3560b9420d6331c1f4d95fec offset 4096-4607 1
52ef8fe0a800c9410bb7a303abe35e64 offset 4608-5119 1
b8d5c7c29da4188a4dcaa09e057d25ca offset 5120-5631 1
3d7679a976b91c6eb8acd1bfa3414f96 offset 5632-6143 1
8649f180275e0b63253e7ee0e8fa4c1d offset 6144-6655 1
60ebc8acb8467045e9dcbe207f61a6c2 offset 6656-7167 1
440c1c1318186ac0e42b2977779514a1 offset 7168-7679 1
72686172f8c865231e2b30b2829e3dd9 offset 7680-8191 1
fdff55c618d434416717e5ed45cb407e offset 8192-8703 1
fcd89d71b5f728ba550a7bc017ea8ff1 offset 8704-9215 1
2d733e47c5500d91cc896f99504e0a38 offset 9216-9727 1
2152fdde0e0a62d2e10b4fecc369e4c6 offset 9728-10239 1
692527fa35782db85924863436d45d7f offset 10240-10751 1
76dbb9b469273d0e0e467a55728b7883 offset 10752-11263 1

•We thought that the header would be common, but we were wrong.!

!25

0

1

2

3

4

5

6

7

8

9

10

11

12

The blocks in the middle of 000107.JPG  
were seen in many JPEGS in the corpus.

hash location count
9df886fdfa6934cc7dcf10c04be3464a offset 14848-15359 1
95399e7ecc7ba1b38243069bdd5c263a offset 15360-15871 1
ef1ffcdc11162ecdfedd2dde644ec8f2 offset 15872-16383 1
7eb35c161e91b215e2a1d20c32f4477e offset 16384-16895 1
38f9b6f045db235a14b49c3fe7b1cec3 offset 16896-17407 1
edceba3444b5551179c791ee3ec627a5 offset 17408-17919 1
6bc8ed0ce3d49dc238774a2bdeb7eca7 offset 17920-18431 1
5070e4021866a547aa37e5609e401268 offset 18432-18943 14
13d33222848d5b25e26aefb87dbdf294 offset 18944-19455 9198
0dfcde85c648d20aed68068cc7b57c25 offset 19456-19967 9076
756f0bbe70642700aafb2557bf2c5649 offset 19968-20479 9118
c2c29016d3005f7a1df247168d34e673 offset 20480-20991 9237
42ff3d72b2b25f880be21fac46608cc9 offset 20992-21503 9708
b943cd0ea25e354d4ac22b886045650d offset 21504-22015 9615
a003ec2c4145b0bc871118842b74f385 offset 22016-22527 9564
1168c351f57aad14de135736c06665ea offset 22528-23039 7
51a50e6148d13111669218dc40940ce5 offset 23040-23551 83
365b122f53075cb76b39ca1366418ff9 offset 23552-24063 83
9ad9660e7c812e2568aaf063a1be7d05 offset 24064-24575 84
67bd01c2878172e2853f0aef341563dc offset 24576-25087 84
fc3e47d734d658559d1624c8b1cbf2c1 offset 25088-25599 84
cb9aef5b7f32e2a983e67af38ce8ff87 offset 25600-26111 1

!26

29

30

31

32

36

37

50

38

39

40

44

45

46

Block 37 was found in 9198 other files.
The sector is filled with blank lines 100 characters long...

13d33222848d5b25e26aefb87dbdf294 offset 18944-19455 9198

$ dd if=000107.jpg skip=18944 count=512 bs=1|xxd
0000000: 2020 2020 2020 2020 2020 2020 2020 2020
0000010: 2020 2020 2020 2020 2020 2020 0a20 2020 .
0000020: 2020 2020 2020 2020 2020 2020 2020 2020
0000030: 2020 2020 2020 2020 2020 2020 2020 2020
0000040: 2020 2020 2020 2020 2020 2020 2020 2020
0000050: 2020 2020 2020 2020 2020 2020 2020 2020
0000060: 2020 2020 2020 2020 2020 2020 2020 2020
0000070: 2020 2020 2020 2020 2020 2020 2020 2020
0000080: 200a 2020 2020 2020 2020 2020 2020 2020 .
0000090: 2020 2020 2020 2020 2020 2020 2020 2020
00000a0: 2020 2020 2020 2020 2020 2020 2020 2020
00000b0: 2020 2020 2020 2020 2020 2020 2020 2020
00000c0: 2020 2020 2020 2020 2020 2020 2020 2020
00000d0: 2020 2020 2020 2020 2020 2020 2020 2020
00000e0: 2020 2020 2020 0a20 2020 2020 2020 2020 .
00000f0: 2020 2020 2020 2020 2020 2020 2020 2020

•This pattern comes from the “whitespace padding” of the XMP section.
• The whitespace can start on any byte offset, making collisions likely but not common

!27

37

Block 45 was found in 83 other files.
It appears to contain EXIF metadata
51a50e6148d13111669218dc40940ce5 offset 23040-23551 83

$ dd if=000107.jpg skip=23040 count=512 bs=1|xxd
0000000: 3936 362d 322e 3100 0000 0000 0000 0000 966-2.1.........
0000010: 0000 0000 0000 0000 0000 0000 0000 0000
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
0000030: 0000 0000 0000 0000 0058 595a 2000 0000 XYZ ...
0000040: 0000 00f3 5100 0100 0000 0116 cc58 595a Q........XYZ
0000050: 2000 0000 0000 0000 0000 0000 0000 0000
0000060: 0058 595a 2000 0000 0000 006f a200 0038 .XYZo...8
0000070: f500 0003 9058 595a 2000 0000 0000 0062 XYZb
0000080: 9900 00b7 8500 0018 da58 595a 2000 0000 XYZ ...
0000090: 0000 0024 a000 000f 8400 00b6 cf64 6573 ...$.........des
00000a0: 6300 0000 0000 0000 1649 4543 2068 7474 c........IEC htt
00000b0: 703a 2f2f 7777 772e 6965 632e 6368 0000 p://www.iec.ch..
00000c0: 0000 0000 0000 0000 0016 4945 4320 6874 IEC ht
00000d0: 7470 3a2f 2f77 7777 2e69 6563 2e63 6800 tp://www.iec.ch.
00000e0: 0000 0000 0000 0000 0000 0000 0000 0000
00000f0: 0000 0000 0000 0000 0000 0000 0000 0000
0000100: 0000 0000 0000 0000 0000 0000 0064 6573 des
0000110: 6300 0000 0000 0000 2e49 4543 2036 3139 c........IEC 619
0000120: 3636 2d32 2e31 2044 6566 6175 6c74 2052 66-2.1 Default R

!28

45

Block 48 was found in 84 other files.
It appears to contain part of a JPEG color table...
67bd01c2878172e2853f0aef341563dc offset 24576-25087 84

$ dd if=000107.jpg skip=24576 count=512 bs=1 |xxd
0000000: 7a27 ab27 dc28 0d28 3f28 7128 a228 d429 z'.'.(.(?(q(.(.)
0000010: 0629 3829 6b29 9d29 d02a 022a 352a 682a .)8)k).).*.*5*h*
0000020: 9b2a cf2b 022b 362b 692b 9d2b d12c 052c .*.+.+6+i+.+.,.,
0000030: 392c 6e2c a22c d72d 0c2d 412d 762d ab2d 9,n,.,.-.-A-v-.-
0000040: e12e 162e 4c2e 822e b72e ee2f 242f 5a2f L....../$/Z/
0000050: 912f c72f fe30 3530 6c30 a430 db31 1231 ././.050l0.0.1.1
0000060: 4a31 8231 ba31 f232 2a32 6332 9b32 d433 J1.1.1.2*2c2.2.3
0000070: 0d33 4633 7f33 b833 f134 2b34 6534 9e34 .3F3.3.3.4+4e4.4
0000080: d835 1335 4d35 8735 c235 fd36 3736 7236 .5.5M5.5.5.676r6
0000090: ae36 e937 2437 6037 9c37 d738 1438 5038 .6.7$7`7.7.8.8P8
00000a0: 8c38 c839 0539 4239 7f39 bc39 f93a 363a .8.9.9B9.9.9.:6:
00000b0: 743a b23a ef3b 2d3b 6b3b aa3b e83c 273c t:.:.;-;k;.;.<'<
00000c0: 653c a43c e33d 223d 613d a13d e03e 203e e<.<.="=a=.=.> >
00000d0: 603e a03e e03f 213f 613f a23f e240 2340 `>.>.?!?a?.?.@#@
00000e0: 6440 a640 e741 2941 6a41 ac41 ee42 3042 d@.@.A)AjA.A.B0B
00000f0: 7242 b542 f743 3a43 7d43 c044 0344 4744 rB.B.C:C}C.D.DGD
0000100: 8a44 ce45 1245 5545 9a45 de46 2246 6746 .D.E.EUE.E.F"FgF
0000110: ab46 f047 3547 7b47 c048 0548 4b48 9148 .F.G5G{G.H.HKH.H
0000120: d749 1d49 6349 a949 f04a 374a 7d4a c44b .I.IcI.I.J7J}J.K
0000130: 0c4b 534b 9a4b e24c 2a4c 724c ba4d 024d .KSK.K.L*LrL.M.M

!29

48

To make sector hashing useful,  
we can only use the hashes that are “distinct.”

!30

dc0c20abad42d487a74f308c69d18a5a 6e7f3577b100f9ec7fae18438fd5b047

Probative hash: seen only in 1 file Non-probative: seen in many files
Question: how many files do we need to consider?

Experimental Setup

We performed a realistic test

•Target files:
• “Monterey Kitty”

—82 JPEGs, 2 QT movies, 4
MPEG4 files (201MB in total)

• GOVDOCS1
—≈1M files downloaded from

US Government web sites

!32

•Search Media:
• M57-Patents — Scenario of a small

business developed by NPS in 2009.
• jo-2009-11-20-oldComputer — disk

image of person who had “kitty”
materials.
—13 GB disk image

Experiment

1.Create hashdb database with Monterey Kitty & GOVDOCS1  
 
 
 
 

2.Use database to scan a “scenario” drive: 
 
 
 
 

3.Hypothesis:
• If we found “distinct” blocks from a file, that file was on the test drive.
• We know the ground truth!

!33

1M files from  
USG file servers+

Step 1 — Database Building

•Create hashdb database using bulk_extractor
• Monterey Kitty database: 50,206 hashes from 88 different files

!34

HashdbBE

times in DB # of hashes
Singleton 50,206

2 x 0
3 x 0

…

•Target Files

F

Step 1 — Database Building

•Create hashdb database using bulk_extractor
• Monterey Kitty database: 50,206 hashes from 88 different files
• GOVDOCS corpus: 119,687,300 hashes from 909,815 files

!35

HashdbBE

times in DB # of hashes
Singleton 117,213,026

2 x 514,238
3 x 60,317

…
11,434 1 (“null”)

F

F

F

•Target Files

F

F F

F F F

Step 2 — Media Scanning:

•Input files: 16GB disk image
• 394 pages (6.3GB) x 32,768 overlapping 4KiB blocks per page.

•Scan time: 116 seconds (64-core reference system)
• 111 K lookups/sec

•Output — 33,847 matches found:

Feature-Recorder: identified_blocks
Filename: nps-2009-m57-patents-redacted/jo-2009-11-16.E01

86435328 736d99610d0097be78651ecdae4714bb {"count":39,"flags":"H"}

1231920640 90ccbdf24a74c8c05b94032b4ce1825d {“count":1,"flags":"H"}

1231924736 9403e1cac89e860b93570ac452d232a5 {“count":1}

!36

Step 3 — Analysis 
What we found.
•M57-Patents drives:

• Found nearly all Kitty files
—Found multiple copies
—In some cases, found all of a file except the first sector (that’s good!)

!37

F F F F F F F F F F F F

F F F F F F F F F F F F

Can only be TiggerTheCat.m4v

TiggerTheCat.m4v

We also found distinct blocks from GOVDOCS files on
the M57 drive
•M57-Patents drives:

• Found nearly all Kitty files
—Found multiple copies
—In some cases, found all of a file except the first sector (that’s good!)

•Distinct GOVDOCS files:
—Found several complete files! These files really were present! (fonts)
—Found several runs of distinct blocks from files that were never present!

—Found many runs of common blocks.

—Frequently, we find common runs scattered:

!38

F F F F F F

G G G G G G

X X X X

F F F F F F F F F F F F

F F F F F F F F F F F F

These are non-probative blocks

•These blocks match files that we know are not present.

•We thought they were distinct... 
 ...because we had not looked at enough files!

!39

X X X X

These are non-probative blocks

•These blocks match files that we know are not present.

•We thought they were distinct... 
 ...because we had not looked at enough files!

•These blocks were similar to the common blocks we had seen in 0000107.jpg:
• Incrementing binary numbers
• Whitespace
• Strange binary structures

!40

X X X X

We developed four tests for non-probative blocks.

•1. The Ramp Test
• Detect and mark blocks with incrementing 4-byte binary numbers:

• These typically come from Microsoft Office Sector Allocation Tables.
—They have a strong chance of appearing distinct…
—but they are algorithmically generated

!41

8102 0000 8202 0000 8302 0000 8402 0000
8502 0000 8602 0000 8702 0000 8802 0000
8902 0000 8a02 0000 8b02 0000 8c02 0000
8d02 0000 8e02 0000 8f02 0000 9002 0000

Figure 1: 64 bytes from the file 007533.xls shows the “ramp” structure of the
Microsoft Office Sector Allocation Table.

hashes”) with the hashes of every 4KiB block from a file block
hash database and identify files based on hashes that the two
sets have in common.

Hash matches result from a variety of scenarios, including:
• A copy of an intact target file is present on the searched

media. Because hash-based carving is file system agnos-
tic, it makes no difference if the file is allocated, deleted,
or in free space.

• A copy of the target file might have been placed on the
searched media at some time in the past and is later deleted
and partially overwritten. In this case, there may be small
fragments of a target file on searched media that are pro-
bative.

• A file that has many sectors in common with the target
file may be on the searched media. In this case, the hash-
based carving will identify the blocks shared between the
two similar files.

• A target file may be embedded in a larger carrying file,
provided that the file is embedded on an even sector bound-
ary. (Microsoft’s “.doc” format embeds objects such as
JPEG files on 512-byte boundaries, but the “.docx” for-
mat does not.)

Ideally, the hash-based carving algorithm should address all
of these cases simultaneously.

2.3. A hash-based carving process
We approach hash-based carving as a four-step process:

1. DATABASE BUILDING: Create a database of file block
hashes from the target files.

2. MEDIA SCANNING: Scan the searched media by hash-
ing 4KiB of sectors and searching for those hashes in the
database. This produces a set of hash values that can be
matched to target files.

3. CANDIDATE SELECTION: Some sector hashes map to
a single file, while others map to many possible files in
the database. This step determines the set of target files
that are likely to be present on the searched media based
on the hashes observed.

4. TARGET ASSEMBLY: For each identified candidate, at-
tempt to identify runs of matching blocks on the searched
media and map these back to the corresponding target
files.

2.4. Common Blocks
A significant complication arises from the fact that the same

4KiB block may be present in many different target files. Foster
(2012) called such blocks “common blocks.” The most com-
mon block is the block of all NULLs, which is used to initialize

blank media and is also found in many document and database
files. The NULL block thus poses a special challenge for hash-
based carving and must be specially handled, since building a
list of every NULL sector on a drive would result in significant
inefficiencies and possibly memory exhaustion.

A second common block pattern identified by Foster is a
block of monotonically increasing 32-bit numbers. For exam-
ple, Fig 1 shows an excerpt from a Microsoft Excel file that is
part of the file’s Sector Allocation Table (SAT) data structure,
defined by the Microsoft Office Compound File Binary Format.
Any Microsoft Office file that contains an embedded 1MB ob-
ject (for example, a JPEG), will have 8KiB of data devoted to
such a pattern, with the initial value depending on the location
of the embedded file. The result is a low probability of a match
between the SAT structures of any two specific Microsoft Of-
fice files, but a high chance that there will be a few matches
between two large collections of Office files.

The existence of such common blocks complicates hash-
based carving in two ways. First, because these blocks match
multiple files, they cannot be used for Candidate Selection: find-
ing a block that appears in a hundred files should not be taken as
evidence that any of those hundred files are present. A second
problem is that the larger we make the database, the more com-
mon blocks we discover. We need an approach for recognizing
common blocks before we even encounter a collision because it
is simply not possible to collect and enumerate all such blocks
in advance.

2.5. Sector Size And Alignment Issues
One of the clear advantages of using 4KiB blocks over 512B

blocks is that hashes of 4KiB blocks represent eight times as
much data. This is especially important for hash-based carving,
as it is critical to hold the entire database in RAM to support the
high-speed access required.

The problem of using a 4KiB block size is file system align-
ment. The hashed sectors must be aligned with the file system
allocation blocks, so the sector hashes will align with the file
block hashes. This alignment is achieved by aligning the sector
hashes with the start of the file system.

In some cases it is not possible to determine the start of the
file system. This happens if the partition table is corrupted, or if
there is a previous file system that was created with a different
starting point.

If the partition offset is not known, or if examiner wishes to
account for the possibility that there may have been a previous
partitioning scheme, our solution is to hash overlapping blocks
with a 4KiB sliding window over the entire drive, moving the
window one sector (512B) at a time (Fig 2). This results in eight
distinct sets of 4KiB sector hashes, one where every group of
8 hashed sectors has a starting sector number of (mod 8)=0,
one where every group has a start of (mod 8)=1, and so on.
Because all of the 4KiB blocks from the same file system will
necessarily have the same sector alignment, each alignment set
can be processed independently.

Generating and searching overlapping hashes may seem to
create needless work, since the result of calculating overlapping

3

We developed four tests for non-probative blocks.

•1. The Ramp Test
•2. The White Space Test

• Any sector that is 3/4 white space is non-probative.
• Screens out whitespace in JPEGs and other files

0000000: 2020 2020 2020 2020 2020 2020 2020 2020
0000010: 2020 2020 2020 2020 2020 2020 0a20 2020 .
0000020: 2020 2020 2020 2020 2020 2020 2020 2020
0000030: 2020 2020 2020 2020 2020 2020 2020 2020
0000040: 2020 2020 2020 2020 2020 2020 2020 2020
0000050: 2020 2020 2020 2020 2020 2020 2020 2020
0000060: 2020 2020 2020 2020 2020 2020 2020 2020
0000070: 2020 2020 2020 2020 2020 2020 2020 2020
0000080: 200a 2020 2020 2020 2020 2020 2020 2020 .
0000090: 2020 2020 2020 2020 2020 2020 2020 2020

!42

We developed four tests for non-probative blocks.

•1. The Ramp Test
•2. The White Space Test
•3. The 4-byte Histogram Test

• Suppresses sector if any 4-byte n-gram is present more than 256 times
• Usually catches white space test as well (but not always)

!43

0000 6400 0000 01ff ffff 9c00 0000 0100
0000 6400 0000 01ff ffff 9c00 0000 0200
0000 0000 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff

Figure 4: An example of the low-entropy pattern found in both the QuickTime
file KittyMontage.mov and in the PowerPoint file 182853.ppt

them. The next sections describe the rules and discusses our un-
successful attempt to use of Shannon entropy on 16-bit values
as an alternative.

4.2. The Ramp Test
By far the most common non-probative blocks identified by

this test are those that appear to contain Microsoft Office Sec-
tor Allocation Tables (SAT). These data structures are defined
by their length (typically 4KiB-12KiB) and their starting value,
which corresponds to the ordinal number of the 512-byte block
where the content stream appears in the disk file. There are thus
tens of thousands of different 4KiB “ramp” blocks that can be
observed for a given Microsoft Office file, with the result that
the chance of a collision between any two Office files is small,
but the chance of collision within a corpus of a few thousand
Office files is quite high.

We developed a simple test that returns True if half of the
bytes in a buffer match the ramp pattern, which was sufficient
to weed out many cases in which the 4KiB block contained the
SAT and other binary structures, or where the SAT referenced a
few objects.

4.2.1. The White Space Test
Another kind of block that we have encountered are blocks

consisting of blank lines of 100 spaces, each terminated by a
newline character. Such blocks are commonly seen in JPEG
files that were produced with Adobe PhotoShop, and are the re-
sult of whitespace padding located within the Extensible Meta-
data Platform XMP section (Adobe, 2012, p.10). Because the
sections can appear on any 1-byte boundary, there are 101 dif-
ferent such common blocks filled with whitespace as a result
of alignment issues. The end of the whitespace section typi-
cally has patterned data as well, resulting in tens of thousands
of possible blocks that are mostly spaces but contain additional
common material. Our whitespace test classifies blocks as non-
probative if three-quarters or more of the block contains whites-
pace.

4.3. The 4-byte Histogram Test
Another common structure that we discovered with manual

analysis are blocks of patterned 4-byte values, either repeat-
ing or alternating 4-byte values. Analysis revealed these data
structures in both Apple QuickTime and Microsoft Office file
formats.

4KiB Blocks Blocks Fraction
File in File Detected Detected
466982.csv 848 848 1
809089.eps 6 6 1
574989.csv 6 6 1
466749.csv 3 3 1
...
153348.png 11 2 0.18
569152.pdf 395 11 0.028
284845.ps 113 3 0.027
393395.eps 60 1 0.017
30 more files...

Table 1: Some matched files from GOVDOCS on the oldComputer disk, sorted
by fraction detected. The first four files in bold could be completely recovered
from oldComputer drive. Only a few blocks from the other files are recovered.
These are non-probative blocks which occur by chance in both GOVDOCS and
on the searched drive.

We devised a rule for eliminating sectors which contain a
few repeating 4-grams. The rule treats the 4KiB buffer as a
sequence of 1024 4-byte integers and computes a histogram of
those numbers. It suppresses the sector if any single 4-gram is
present more than 256 times (more than a quarter of the block).
This rule is unlikely to trigger on either text or image data, since
neither typically have long runs of the same 4-byte values.

4.4. The Entropy Test
Foster (2012) observed that common blocks tended to con-

tain low entropy data. This observation holds for the many of
the non-probative blocks we examined while creating our ramp,
whitespace and histogram tests. We hoped that we could re-
place our ad-hoc non-probative tests with a single test for low
entropy data.

Our entropy test treated each 4KiB buffer as a collection
of 16-bit unsigned integers and calculated the Shannon entropy
for each. This method yields an entropy score of 6.0 for buffers
flagged by the “ramp” test, and a score between 0 and 1 for
blocks matching the whitespace test. The vast majority of blocks
flagged by the histogram test scored less than 5, though these
blocks had the widest range overall, with some blocks scoring
as low as 0 and as high as 8.373.

We experimented with a range of threshold values and found
that flagging blocks with an entropy value of less than 7.0 pro-
duced results that closely corresponded to the union of the sets
identified by the whitespace, ramp and histogram tests.

4.5. Determining the effectiveness of the rules
We applied the rules described in this section to 677 distinct

blocks in the GOVDOCS dataset that matched the oldComputer
drive that were not in the four identified files. The ramp rule
matched 200 blocks and the histogram rule matched 400. An
entropy threshold of 7 also identified a set of 600 blocks as
non-probative. This set was identical to that given by the com-
bination of histogram and ramp rules, except that it omitted one
block flagged by the histogram rule, and included one addi-
tional block that was not flagged by any other rule.

6

We developed four tests for non-probative blocks.

•1. The Ramp Test
•2. The White Space Test
•3. The 4-byte Histogram Test
•4. The Entropy Test

• Mark as non-probative any block with entropy lower than a threshold
• Possibly use instead of “ad hoc” tests

!44

• Didn’t work as well

Evaluating the rules

•Effectiveness at removing “distinct” non-probative blocks:
• Drive matches against database: 33,847 

“Impossible” matches (source file not present): 677  
of blocks removed by ad hoc rules: 600  
Effectiveness: 89%

•Unfortunate removal of “non-probative” blocks in target data
• # of distinct non-probative blocks n our target files: 126

•Note: this work done with 4KiB blocks.
• Typical file has 15-500 blocks

!45

Use Cases

File systems align large files on sector boundaries.
We hash file blocks and identify sectors that match.

!47

Full Media Analysis

2 TB Drive
4 Billion

512 B Sectors File 3 File 3

A J K D L

File 1

512 B Sector

A B C D E

File 2

F G H A I

Incomplete Files

Intact Files

Block

A

B

C

D

E

F

G

H

File Block Occurs In

File 1, File 2, File 3

File 1

File 1

File 1, File 3, File 99

File 1

File 2

File 2

File 2

1 Billion
Rows

File Block Hash Database

1 TB Drive
2 Billion

512 B Sectors

Media Sampling

B

A

Figure 1.1: Because files are stored on sector boundaries, we can search disk sectors for file blocks, or fixed-sized
chunks of data equal in size to the disk sectors. We create a file block hash database that contains block hashes for
every file that we have ever seen during an investigation. A database with 1 billion 512 B block hashes can reference
476 GB of content. Sector hashing depends on the existence of distinct file blocks, or blocks that only occur as a
copy in the original file. With full media analysis, all 4 billion sectors from the 2 TB drive are compared to the file
block hash database. With media sampling, only 1 million of the 2 billion sectors from the 1 TB drive are compared to
identify a 4 MB file that has all distinct blocks with 98.17% accuracy. If block B is seen on a disk sector, then there
is a good chance that File 1 also exists on the disk. Block B only occurs in one file in our large corpus of known files
and is effectively distinct. If Block A is seen on a disk sector, then we are not sure if any of the files exist. Block A is
non-distinct. Sector hashing can quickly identify fully intact and incomplete files that contain distinct blocks.

This example demonstrates the use of sector hashing to identify the presence of three files (1,
2 & 3) on the subject media. The block hash database contains all of the blocks from a corpus
of every file that has ever been seen during an investigation. The database is a key-value store
where the key is a hash of a file block and the value is a list of every file in which the block
occurs.

Figure 1.1 is a graphical representation of a 2 TB disk that has four billion 512-byte sectors. It
contains three previously seen files; File 1, File 2 and File 3. File 1 and File 2 are both 60 KB
JPEG images that have 120 512-byte blocks, matching the sector size. The files are intact,
which means that every file block is currently stored in a disk sector. As shown in Figure 1.1,

2

Two uses cases — One key problem.

Case #1 — Random sampling
• Read & hash randomly chosen sectors.
• Lookup hash values in a database of block hashes.
• Distinct hash implies presence of files.

Case #2 — Full media sampling
• Read & hash every disk sector
• Lookup hash values in a database of block hashes.
• Distinct hash imply presence of files

Key problem: is the hash really “distinct?”
• Or is our corpus too small?
• Only way to tell — rules for identifying non-probative data.

48

Full Media Analysis

2 TB Drive
4 Billion

512 B Sectors File 3 File 3

A J K D L

File 1

512 B Sector

A B C D E

File 2

F G H A I

Incomplete Files

Intact Files

Block

A

B

C

D

E

F

G

H

File Block Occurs In

File 1, File 2, File 3

File 1

File 1

File 1, File 3, File 99

File 1

File 2

File 2

File 2

1 Billion
Rows

File Block Hash Database

1 TB Drive
2 Billion

512 B Sectors

Media Sampling

B

A

Figure 1.1: Because files are stored on sector boundaries, we can search disk sectors for file blocks, or fixed-sized
chunks of data equal in size to the disk sectors. We create a file block hash database that contains block hashes for
every file that we have ever seen during an investigation. A database with 1 billion 512 B block hashes can reference
476 GB of content. Sector hashing depends on the existence of distinct file blocks, or blocks that only occur as a
copy in the original file. With full media analysis, all 4 billion sectors from the 2 TB drive are compared to the file
block hash database. With media sampling, only 1 million of the 2 billion sectors from the 1 TB drive are compared to
identify a 4 MB file that has all distinct blocks with 98.17% accuracy. If block B is seen on a disk sector, then there
is a good chance that File 1 also exists on the disk. Block B only occurs in one file in our large corpus of known files
and is effectively distinct. If Block A is seen on a disk sector, then we are not sure if any of the files exist. Block A is
non-distinct. Sector hashing can quickly identify fully intact and incomplete files that contain distinct blocks.

This example demonstrates the use of sector hashing to identify the presence of three files (1,
2 & 3) on the subject media. The block hash database contains all of the blocks from a corpus
of every file that has ever been seen during an investigation. The database is a key-value store
where the key is a hash of a file block and the value is a list of every file in which the block
occurs.

Figure 1.1 is a graphical representation of a 2 TB disk that has four billion 512-byte sectors. It
contains three previously seen files; File 1, File 2 and File 3. File 1 and File 2 are both 60 KB
JPEG images that have 120 512-byte blocks, matching the sector size. The files are intact,
which means that every file block is currently stored in a disk sector. As shown in Figure 1.1,

2

Testing at scale shows this technique works.

Use Case #1: Rapidly search for known contraband:
• 1TB subject hard drive.
• 10 min x 60 min/sec x 1000 msec/sec / 3 msec/sample = 200,000 samples
• Searching for a sector from a corpus of 512GB
• 100% recognition of a single sector; 0% false positive rate

Use Case #2: Find a single sector of known contraband:
• Time to read data & search database: 208 minutes

Technique is file type and file system agnostic
—JPEG; Video; MSWord; Encrypted PDFs...
—provided data is not modified when copied or otherwise re-coded

49

Amount of Contraband p (prob of missing contraband)

5 MB 0.3654

10 MB 0.1335

15 MB 0.0488

20 MB 0.0178

25 MB 0.0065

In summary:  
Sector hashing works to identify unique content
•We can spot a file from a single sector.

• Search a 1TB drive for 100MB of data in 5min
• Discover traces of a file after it’s mostly overwritten.
• Works for disks & RAM

•But...
• Requires “distinct” sector hashes — hashes linked with a single file.
• Some sectors look distinct but aren’t.

—You can never see enough content to make a “distinct” determination.

•We developed three rules for discarding “non-probative
blocks.”

• The rules work 89% of the time.
• These rules are heuristics for identifying binary data structures.

!50

