
Main Page - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (1 of 8) [8/26/08 5:09:49 PM]

Main Page

This is the main page for CS3773, Spring 2008, taught by Simson Garfinkel at

the Naval Postgraduate School.

We are currently on Week 11: The Big Finish

From here you can explore the following links:

Log in / create account

Welcome to CS3773: Java as a Second Language.

● Syllabus

● Week-by-week Outline

● Assignments

● Things to do (if you want to hack the wiki)

Contents

● 1 News

�❍ 1.1 March 11

�❍ 1.2 March 10

�❍ 1.3 March 9

�❍ 1.4 March 7

�❍ 1.5 March 3

�❍ 1.6 March 1st

�❍ 1.7 February 29

�❍ 1.8 February 25

�❍ 1.9 February 22

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Main_Page
https://domex.nps.edu/cs3773/wiki/index.php?title=Main_Page&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Main_Page&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Main_Page

Main Page - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (2 of 8) [8/26/08 5:09:49 PM]

News

March 11

March 10

March 9

● Final projects are now in the Final Projects Catagory

● Interesting in figuring out wall intersections in Flatland?

● Please feel free to enter which Section of the Bloch Book you wish to

discuss.

● Answers to Quiz 9 have been uploaded.

● 2 Main Page

● 3 Contributed Resources

�❍ 1.10 February 21

�❍ 1.11 February 12

�❍ 1.12 February 10

�❍ 1.13 February 6

�❍ 1.14 February 4

�❍ 1.15 January 31

�❍ 1.16 January 26

�❍ 1.17 January 23

�❍ 1.18 January 18

�❍ 1.19 Old News

https://domex.nps.edu/cs3773/wiki/index.php/Category:Final_Projects
https://domex.nps.edu/cs3773/wiki/index.php/Wall_intersections_in_Flatland
https://domex.nps.edu/cs3773/wiki/index.php/Section_of_the_Bloch_Book
https://domex.nps.edu/cs3773/wiki/images/f/f7/Quiz9-answers.pdf

Main Page - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (3 of 8) [8/26/08 5:09:49 PM]

March 7

March 3

March 1st

Quiz 8 grades have been posted. Class mean was 88; stddev was 25.81

February 29

Please enter your requests for topics over the next two weeks in the Coming

Attractions section.

February 25

February 22

● Quiz 9 stats: Minimum score: 40 ; Average: 58 ; Max Score: 80

● You should get assignment 8 in before the end of the quarter; shoot for

Monday March 10th.

● Details regarding the Final Project have been posted

● Week7 can now be submitted; it will display as an applet on the validate

page. (Code is experimental)

● Link to the short "Warriors of the Web".

● An Office Hours Sign-Up page has been created.

● Prof. Herzog provided these slides from his lecture on Friday.‎

● Slides from Spring 99 have been uploaded to this server

https://domex.nps.edu/cs3773/wiki/index.php/Coming_Attractions
https://domex.nps.edu/cs3773/wiki/index.php/Coming_Attractions
http://www.warriorsofthe.net/
https://domex.nps.edu/cs3773/wiki/index.php/Office_Hours_Sign-Up
https://domex.nps.edu/cs3773/wiki/images/e/e8/XMLRPC.pdf
https://domex.nps.edu/cs3773/spring99/

Main Page - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (4 of 8) [8/26/08 5:09:49 PM]

February 21

February 12

February 10

● Final Project Ideas have been posted.

● Friday's class will be taught by Professor Jonathan Herzog. He will be

discussing Othello, Timers, and XMLRPC.

● Next week we will be building a basic chat system using the XMLRPC

system. Ambitious students may also build an Othello game.

● Please submit your 1-paragraph proposal for the final project by Friday.

The ideas will be summarized and placed on a web page (without your

name) for other students to see.

● Homework #7, due February 24th, is now optional. You may submit your

Homework #6 working in a web page.

● Homework #8, due March 3, will be the Desktop Search application.

● Homework #9, due March 10th, will be the Chat/Othello program. This is

your last homework.

● Final Projects will be due on March 27th.

● Apparently DoD policy allows session-tracking cookies, just not persistent

cookies.

● You are reminded to submit your homework through the class submission

website.

https://domex.nps.edu/cs3773/wiki/index.php/Final_Project_Ideas
http://www.defenselink.mil/webmasters/policy/dod_web_policy_12071998_with_amendments_and_corrections.html
https://domex.nps.edu/cs3773/submit/submit.cgi
https://domex.nps.edu/cs3773/submit/submit.cgi

Main Page - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (5 of 8) [8/26/08 5:09:49 PM]

February 6

February 4

January 31

Because homework #4 is in the 'hw4' package, you must do the following:

 jar cfv yourname.jar hw4/*.java hw4/*.class

● Be sure that there are no Subversion Conflicts in the code that you submit.

● Your homework should make it clear what you did that is special. One way

to do this is by including a README file.

● A Layout Demo has been added to the week5 subversion repository.

● I found an interesting article about Java Anonymous Classes at Developer.

com.

● Homework #3 and #4 grades have gone out.

● If you are not submitting homework, you are missing out on free credit. Try

to solve every problem.

● Media:Week5.pdf Week 5 slides are posted.

● Homework #4 can now be submitted using the new submission system

● Making the jarfile in the "hw4" package:

1. Put the line "package hw4;" at the beginning of each of your files.

2. Put your files in a directory called "hw4"

3. add the files to the jarfile with this command:

http://www.developer.com/java/other/article.php/3300881
https://domex.nps.edu/cs3773/wiki/images/9/9e/Week5.pdf
https://domex.nps.edu/cs3773/submit/submit.cgi

Main Page - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (6 of 8) [8/26/08 5:09:49 PM]

January 26

January 23

 svn checkout http://domex.nps.edu/cs3773/svn/ cs3773

January 18

Old News

● Equations of Motion have been posted to help you with the electrostatics.

● If you are willing to have your homework used as a class example on

debugging on Monday, please drop me an email. Let me know if I can use

your name or if you want to show your homework anonymously. Slgarfin

09:46, 27 January 2008 (PST)

● If you are having Null reference exceptions, you may find this discussion of

null reference exceptions useful.

● If you haven't done it lately, be sure to update your netbeans 6.0 and get

the new fixes.

● week3 source code has been posted. You can check it out using this

command line:

● There was a bug in the homework submission validation function, but it's

fixed now.

https://domex.nps.edu/cs3773/wiki/index.php/Equations_of_Motion
https://domex.nps.edu/cs3773/wiki/index.php/User:Slgarfin
http://domex.nps.edu/cs3773/svn/week3/

Main Page - Cs3773

CS 3773

● Main Page

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (7 of 8) [8/26/08 5:09:49 PM]

Main Page

Contributed Resources

● The Homework Submission Link now works.

● Need a laptop for this class? Please send your requests to Professor Mantak

Shing.

● Week 2 slides (first draft) Are uploaded.

● Week 2 thursday slides are also uploaded.

● Please take a look at the Talk:Blog

● A Bug in Week 02 code has been discovered. Click on the wiki page for the

fix.

● Useful Websites

Please feel free to contribute to this wiki, either by editing pages (as

appropriate) or contributing to the web-based discussion. You can log

into this wiki using your NPS username and password.

https://domex.nps.edu/cs3773/submit/submit.cgi
https://domex.nps.edu/cs3773/wiki/images/0/0e/Week2.pdf
https://domex.nps.edu/cs3773/wiki/images/9/94/Week2b.pdf
https://domex.nps.edu/cs3773/wiki/index.php/Talk:Blog
https://domex.nps.edu/cs3773/wiki/index.php/Bug_in_Week_02_code
https://domex.nps.edu/cs3773/wiki/index.php/Useful_Websites

Main Page - Cs3773
● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 15:02, 18 March 2008.This page has been accessed 2,418 times.Content is

available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Main_Page (8 of 8) [8/26/08 5:09:49 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Main_Page
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Main_Page
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Main_Page&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Main_Page&oldid=1107
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Syllabus - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (1 of 9) [8/26/08 5:10:26 PM]

Syllabus

Lectures will be held at Every day at 0800 in GE-117.

Although portions of this class may be taught using tele-presence equipment, this

class will not be videotaped. The making of video or audio recordings is strictly

prohibited.

Contact Information

Log in / create account

Contents

● 1 Contact Information

● 2 Catalog Description

● 3 Learning Outcomes

● 4 Course Format

● 5 Text

● 6 Assessment

● 7 Collaboration, Plagiarism and Academic Integrity

● 8 Citation Policy

● 9 Protocols

● 10 Course Outline

�❍ 6.1 Class Participation

�❍ 6.2 Grades

�❍ 9.1 Notifications

�❍ 9.2 Homework

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Syllabus&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Syllabus&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Syllabus&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Syllabus

Syllabus - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (2 of 9) [8/26/08 5:10:26 PM]

Catalog Description
CS3773 Java as a Second Language (4-2)

A first course in Java for students experienced in another programming language.

Students learn to implement problem solutions using the procedural and object-

oriented language features of Java. Topics include: program structures and

environment, arrays, exceptions, constructors and finalizers, class extension,

visibility and casting, overriding versus overloading, abstract classes and

interfaces, files and streams, class loaders, threads, and sockets. Programming

projects provide students the opportunity to implement techniques covered in

class. Prerequisite: Recent completion of the complete series in another

Course Location GE 117

Meeting Time:
MTWR 0800-0850

F 0800-0950

Professor:
Simson L. Garfinkel, Ph.

D.

Phone:
831-656-7602 (office);

617-876-6111 (home)

NPS e-mail: slgarfin

Office Hours: Tuesdays, 0900-1000

Professor's

Website:
http://www.simson.net

https://domex.nps.edu/cs3773/wiki/index.php/User:Simsong
http://www.simson.net/

Syllabus - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (3 of 9) [8/26/08 5:10:26 PM]

Learning Outcomes
Upon successful completion of this course, you will be able to:

Course Format
This course is divided into 11 weeks. Each week will follow roughly this schedule:

programming language course, or programming experience in another

programming language.

● Use NetBeans, Sun's integrated development environment (IDE) for Java.

● Decompose a problem using classes and objects.

● Identify, understand and use all of the Java reserved keywords.

● Use Java Container Classes and Iterators, including Array, Vector, Stack,

Hashtable, and BitSet.

● Develop classes and methods that match a specified signature.

● Create a JAR file that contains all information necessary to run a Java program.

● Write programs that use files and streams.

● Interact with an SQL database using JDBC.

● Write a program that displays a graphical user interface using Swing.

● Write an applet that displays itself in a web page

● Write an XMLRPC client and server.

● Develop a program that uses Lucene, the open source indexing kit.

● Monday 0800 - The week's assignment is released. Class commences at 0800.

● Monday & Tuesday - New material is presented.

● Wednesday - Class discussion regarding the assigned reading.

https://domex.nps.edu/cs3773/wiki/index.php/Java_reserved_keywords

Syllabus - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (4 of 9) [8/26/08 5:10:26 PM]

Text
This course has three texts:

We also have some recommended readings:

● Thursday - Additional new material on the week's theme is presented.

● Friday 0800 - 0950 - Brief Quiz; Q&A; Lab time to work on the assignment.

● Sunday 1800 - Assignments are due at 1800, submitted electronically. Late

assignments are not accepted.

You should bring a laptop equipped with NetBeans and JDK 1.6 (Java 6) to each

class and lab period.

● Sams Teach Yourself Java 6 in 21 Days (5th Edition), which can be ordered from

Amazon. The book may also be available in the campus book store. This isn't

the best book about Java, but it is serviceable and it covers Java 6.

● The Java Tutorial

● Papers that can be downloadable from this website

● Effective Java: Programming Language Guide , by Joshua Bloch. This book is

highly recommended; it will teach you a lot about Java in particular and

programming in general.

● The Java ™ Programming Language, 4th Edition, by James Gosling, Ken Arnold

and David Holmes. This 928-page book is the definitive guide to Java™ 2

Standard Edition 5.0 (J2SE 5.0). Unfortunately it's very difficult to read and is

really written for Java experts, not for Java beginners.

http://www.amazon.com/Sams-Teach-Yourself-Java-Days/dp/0672329433
https://domex.nps.edu/cs3773/wiki/index.php/The_Java_Tutorial
https://domex.nps.edu/cs3773/wiki/index.php/Papers
http://java.sun.com/docs/books/effective/index.html
http://www.sun.com/books/catalog/gosling_JPL4.xml

Syllabus - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (5 of 9) [8/26/08 5:10:26 PM]

Assessment
Grades are calculated as follows:

All work in this class should conform to the CS3773 Java Style Guide.

Class Participation

This is an intensive workshop-style class. As such, class participation is an

important part of the experience. You won't get a grade for your participation, but

participating will help you to understand the material better.

Grades

Grades are based on an absolute scale:

Weekly assessment (11) 25%

Programming Assignments (11): 50%

Final Project: 25%

Class Participation: priceless

A
90 to 100% of the total possible

points

B 80 to 89% of the total possible points

C 70 to 79% of the total possible points

D 60 to 69% of the total possible points

F 0 to 59% of the total possible points

https://domex.nps.edu/cs3773/wiki/index.php/CS3773_Java_Style_Guide

Syllabus - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (6 of 9) [8/26/08 5:10:26 PM]

Collaboration, Plagiarism and Academic
Integrity
It is strongly recommended that you discuss the readings and assignments with

your classmates. You may wish to organize reading or study groups for this

purpose. However, it is also expected that the homework you submit will be your

own work. You may not collaborate on homework; collaboration on the final

project is limited to approved groups.

Plagiarism in any form will not be tolerated in this course. This includes both direct

plagiarism, in which you reprint code or words written by another person without

reference, and to intellectual plagiarism, in which you present another person's

ideas or argument as if they are your own.

Academic integrity on the part of U.S. and international officers and civilians

participating in NPS programs is an important aspect of professional performance.

For this reason, the provisions of NAVPGSCOLINST 5370.1C of the Academic Honor

Code will be strictly enforced.

If you have questions about collaboration, plagiarism or academic integrity, please

contact the class staff.

Citation Policy
It is possible that you may wish to reference articles, algorithms, or websites in the

preparation of your assignments. Citations should include the author of the work

being cited, its title, where it is located (usually a URL), the date it was written, and

in the case of URLs, the date that you downloaded it. A URL without an author,

title, publication title, and publication date is not an acceptable citation format.

Syllabus - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (7 of 9) [8/26/08 5:10:26 PM]

Citations that are bare URLs will be ignored.

Protocols
Communication is a central part of every course. This section of the syllabus

describes what we expect from your communications with your fellow students

and the course staff.

Notifications

For announcements and assignments, the Web is our authoritative form of

communication. Students are expected to check the home page for both news and

assignments at least once a week. If you hear a rumor, check it there. If you miss

an announcement, it should be on the home page.

Homework

All homework is due at the start of class on the day for which it is assigned. In

most cases your homework will be uploaded to the course website. Late homework

is not accepted except in extraordinary cases.

Course Outline
Here is the week-by-week outline:

● Week 01: Java Without Classes

● Week 02: Classes

● Week 03: Object-Oriented Design

● Week 04: I/O

Syllabus - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (8 of 9) [8/26/08 5:10:26 PM]

Search

You can get a more detailed outline on the Week-by-week Outline page.

● Week 05: Basic Graphics and GUI with AWT and Swing

● Week 06: More Swing

● Week 07: Unicode, Text & Internationalization

● Week 08: Threads and the System

● Week 09: Network programming with Java

● Week 10: Style and Performance

● Week 11: The Big Finish

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_More_Swing

Syllabus - Cs3773

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 16:10, 15 February 2008.This page has been accessed 522 times.Content is

available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Syllabus (9 of 9) [8/26/08 5:10:26 PM]

https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Syllabus
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Syllabus
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Syllabus&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Syllabus&oldid=869
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week-by-week Outline - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week-by-week_Outline (1 of 7) [8/26/08 5:10:44 PM]

Week-by-week Outline

You have 11 weeks to learn Java and object-oriented design.

Each week will have:

Course Outline

Log in / create account

PRELIMINARY --- SUBJECT TO CHANGE

● Stuff to learn

● Programming homework, due Sunday night..

● Quiz, in Friday in Lab

Contents

● 1 Week 01: Java Without Classes

● 2 Week 02: Classes

● 3 Week 03: Object-Oriented Design

● 4 Week 04: I/O

● 5 Week 05: Basic Graphics and GUI with AWT and Swing

● 6 Week 06: More Swing

● 7 Week 07: Unicode, Text & Internationalization

● 8 Week 08: Threads and the System

● 9 Week 09: Network programming with Java

�❍ 2.1 Language Goals

�❍ 2.2 Environment Goals

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week-by-week_Outline&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week-by-week_Outline&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week-by-week_Outline&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week-by-week_Outline

Week-by-week Outline - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week-by-week_Outline (2 of 7) [8/26/08 5:10:44 PM]

Week 01: Java Without Classes

Week 02: Classes

Language Goals

Environment Goals

● Course Goals

● Understand Java and how it's different from C++

● Compile Hello World

● Turn in your first assignment.

● What is a class? What is an instance? What is an object?

● Understanding inheritance: methods & variables

● Encapsulation: public variables vs. accessor methods

● Final: final methods & final variables

● mutable vs. immutable objects

● Enums

● applets vs. stand-alone programs.

● GUI vs. command-line programs.

● What CLASSPATH does

● 10 Week 10: Style and Performance

● 11 Week 11: The Big Finish

Week-by-week Outline - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week-by-week_Outline (3 of 7) [8/26/08 5:10:44 PM]

Week 03: Object-Oriented Design

Week 04: I/O

● Using the debugger

● Inheritance

● Interfaces vs. Abstract classes

● Nested Classes

● Enumerated Types

● overriden methods

● overloaded methods

● overriding vs. overloading

● packages

● Annotations

● Exceptions - try/catch/finally/throws

● I/O Exceptions

● Keyboard input

● Streams, Buffered Streams

● Files

● Persistance

● SQL/MySQL/JDBC

https://domex.nps.edu/cs3773/wiki/index.php/Annotations

Week-by-week Outline - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week-by-week_Outline (4 of 7) [8/26/08 5:10:44 PM]

Week 05: Basic Graphics and GUI with
AWT and Swing

Week 06: More Swing

Week 07: Unicode, Text &
Internationalization

● Anonymous classes and pseudo-function pointers

● Swing

● HelloWorldSwing (anonymous classes)

● Basic GUI components

● Containment Hierarchy

● Frames, event-driven programming,

● Events & Listeners.

● http://java.sun.com/docs/books/tutorial/uiswing/components/

jcomponent.html

● Applets

● Really understand Swing

● Building GUI's with the NetBeans GUI builder.

● Understand ASCII, Latin1 and Unicode

● Learn about Lucene, the open source indexing kit.

● Build an application using Lucene that will index the files on your

https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_More_Swing
http://java.sun.com/docs/books/tutorial/uiswing/components/jcomponent.html
http://java.sun.com/docs/books/tutorial/uiswing/components/jcomponent.html

Week-by-week Outline - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week-by-week_Outline (5 of 7) [8/26/08 5:10:44 PM]

Week 08: Threads and the System

Week 09: Network programming with
Java
You should know this by the end of this week:

You may wish to know this:

Week 10: Style and Performance

Week 11: The Big Finish

computer.

● Threads

● Synchronization

● Serialization

● Theory: TCP/IP, client/server computing, OSI Stack, Sockets

● SOAP, XMLRPC, and REST

● Downloading a web pages

● JavaSocket, Server Socket

● Answer all outstanding questions

● Final Project Presentations

● Tuesday: SQL & JDBC

● Wednesday: JAVA Security

https://domex.nps.edu/cs3773/wiki/index.php/SQL_%26_JDBC
https://domex.nps.edu/cs3773/wiki/index.php/JAVA_Security

Week-by-week Outline - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

https://domex.nps.edu/cs3773/wiki/index.php/Week-by-week_Outline (6 of 7) [8/26/08 5:10:44 PM]

Search

● Thursday: My favorite Tools

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week-by-week_Outline
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week-by-week_Outline
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week-by-week_Outline&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week-by-week_Outline&oldid=827
https://domex.nps.edu/cs3773/wiki/index.php/My_favorite_Tools

Week-by-week Outline - Cs3773

This page was last modified 16:50, 7 February 2008.This page has been accessed 898 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week-by-week_Outline (7 of 7) [8/26/08 5:10:44 PM]

http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

Things to do - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Things_to_do (1 of 2) [8/26/08 5:10:59 PM]

Search

Things to do

Review:

Log in / create account

● http://en.wikipedia.org/wiki/Wikipedia:

Text_editor_support

● http://qbnz.com/highlighter/index.php - GeSHI -

Generic Syntax Highlighter

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Things_to_do
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Things_to_do
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Things_to_do&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Things_to_do&oldid=559
https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Things_to_do&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Things_to_do&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Things_to_do&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Things_to_do
http://en.wikipedia.org/wiki/Wikipedia:Text_editor_support
http://en.wikipedia.org/wiki/Wikipedia:Text_editor_support
http://qbnz.com/highlighter/index.php

Things to do - Cs3773

This page was last modified 20:10, 21 January 2008.This page has been accessed 25 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Things_to_do (2 of 2) [8/26/08 5:10:59 PM]

http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Assignments - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignments (1 of 3) [8/26/08 5:12:37 PM]

Assignments Log in / create account

Assignment 1 - Hello World!

Assignment 2 - Building and validating a simple class 'Bot ; Javadoc.

Assignment 3 - Abstract classes, packages, interfaces and more

behaviors.

Assignment 4 - I/O and Exceptions. Some exercises involving

exceptions, reading from the network, writing into an SQL database,

and having fun with Java.

Assignment 5 - Flatland with a new GUI.

Assignment 6 - Reimplement the Flatland Control Panel with the GUI

created with the Swing Builder..

Assignment 7 - optional Make your Flatland (or anything else) run as

an applet..

Assignment 8 - Chat program with the Othello Server (due March 7th) .

Final Project - You create your own project. mini project. See the web

page for ideas.

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Assignments&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignments&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignments&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignments

Assignments - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 22:59, 15 March 2008.This page has been accessed 1,309 times.Content is

https://domex.nps.edu/cs3773/wiki/index.php/Assignments (2 of 3) [8/26/08 5:12:37 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignments
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignments
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignments&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignments&oldid=1069
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Assignments - Cs3773
available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignments (3 of 3) [8/26/08 5:12:37 PM]

Assignment 1 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (1 of 11) [8/26/08 5:13:29 PM]

Assignment 1

JavaTM Programming Tools and Documentation

Due date: Sunday, January 13, 6pm Pacific Time

Purpose
To set up the Java programming environment, learn the compilation process, and

practice the submission process.

Grading
Assignment 1 is a chance to learn the grading process without having mistakes

Log in / create account

Contents

● 1 Purpose

● 2 Grading

● 3 Download the Software

● 4 Subversion

● 5 Hello World

● 6 Assign1 with the Add method

● 7 Counter

● 8 Primes

● 9 Upload

● 10 Contest

● 11 See Also

�❍ 3.1 Setting up Environment Variables on Windows

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Assignment_1
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_1&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_1&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_1

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (2 of 11) [8/26/08 5:13:29 PM]

counted against you. This assignment is graded pass/fail. If you turn it in, you get an

"A". If you don't, you get an "F". It is suggested that you take this opportunity to

familiarize yourself with the Java development environment, the assignment

submission process, and the stringency of coding-style requirements.

One of the nice things about Java is that virtually all of the tools you need to develop

Java programs available for free. What's more, there are many different free tools

from different sources. Sun Microsystems invented Java and distributes a version

called the Java Development Kit. The current JDK is number 6. The JDK includes a

Java compiler (javac), the Java interpreter (java) a debugger (jdb), a documentation

tool (javadoc) and many other tools. Unlike other development environments you

may have used, these tools are designed to be used from the command line, like a

DOS console, or UNIX xterm.

In addition to these command-line tools, there are a number of integrated

development environments (IDEs) available for Java. These include NetBeans from

Sun, Eclipse from the Eclipse Foundation, and EMACS, a text-mode editor distributed

by the Free Software Foundation.

The purpose of this lab is to have you locate and install JDK 6 and other relevant

tools on your computer.

Note:

Download the Software

● If you are using a Macintosh, JDK5 is pre-installed and JDK6 is not available.

● The PCs in the lab should have JDK 6 pre-installed.

http://java.sun.com/javase/downloads/index.jsp

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (3 of 11) [8/26/08 5:13:29 PM]

Setting up Environment Variables on Windows

Once you have the JDK installed, you need to set up your computer's Environment

Variables so that the JDK installation can be found. For reasons that defy

comprehension these environment variables are not set up automatically but must be

manually configured. On Windows this is done through the Environment Variables

control panel which is reached by clicking the "Environment Variables" button on the

Advanced tab of the System Properties panel. (On Mac/Unix/Linux this is done by

modifying your .bash_profile, .cshrc, or .profile startup scripts.)

1. Download and install JDK 6 Update 3 from Sun's website. (Note: if you have a

Mac, then you will be using JDK 5, and it's pre-installed.)

2. Download and install NetBeans 6.0 from the NetBeans site.

3. The standard install places the JDK in the directory c:\Program Files\Java

\jdk1.6._03. In order to use your newly installed JDK, you must ensure that

your system is configured properly. There are three environment variable

that must be properly setup in order to locate JDK components:

JAVA_HOME, PATH and CLASSPATH.

1. Right-click on the My Computer icon on your desktop and select properties

2. Click the Advanced Tab

3. Click the Environment Variables button

4. Assure that the following environment variables are set up:

JAVA_HOME

PATH your JDK bin directory needs to be in the PATH.

your JDK installation directory

http://www.netbeans.org/

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (4 of 11) [8/26/08 5:13:29 PM]

Subversion
Install Subversion on your computer and check out the repository from http://

domex.nps.edu/cs3773/svn/.

Hello World
Using a text editor (like Notepad or EMACS), enter the following Java program.

Remember, Java is case sensitive so watch your capitalization.

/**

 * My first Java Program.

 *

 * @author Simson Garfinkel (change to your name)

 */

public class Assign1 {

 public static void main(String args[]) {

 System.out.println("Hello World!");

 }

}

Save the file as Assign1.java in the src directory. Open a command window. Change

directories to the directory containing the source file you just created. Issue the

following command, from the base <your login> directory, to compile your program:

Information on setting JAVA_HOME and CLASSPATH on Windows 95/98

CLASSPATH
You'll use this to tell your system where additional classes

are installed.

https://domex.nps.edu/cs3773/wiki/index.php/Subversion
http://domex.nps.edu/cs3773/svn/
http://domex.nps.edu/cs3773/svn/
https://domex.nps.edu/cs3773/wiki/index.php/Information_on_setting_JAVA_HOME_and_CLASSPATH_on_Windows_95/98

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (5 of 11) [8/26/08 5:13:29 PM]

 javac Assign1.java

A successful compilation will create a Java class file named Assign1.class, consisting

of Java byte codes. The “-d classes” directive tells the compiler to place compiled

class files into the classes directory. This is the Java version of an object file created

by other language compilers. You may execute this class file by invoking the Java

interpreter (java) with the following command:

 java Assign1

The Java interpreter searches the CLASSPATH list to find the Assign1.class file. It

should find it in the classes directory. If you have any problems performing these two

steps, you need to ensure that your PATH and CLASSPATH variable are set properly.

In a DOS window you can see the values of all system variables by typing set.

Finally, we want to use the automatic documentation facility, javadoc. We want

documentation of all files from the src directory to be in the docs directory, so run

the command as follows:

 javadoc –d docs *.java

All java commands can be run with –help, as javac –help to get a list of possible

arguments.

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (6 of 11) [8/26/08 5:13:29 PM]

Assign1 with the Add method
Some of the programs that you submit for this course will be graded with an

automatic web-based grading system. Neat, huh? To get the sense of how it works,

we want you to add a method called calc to your Assign1 class. The calc method

should take two integer arguments and return a new integer.

Modify your class so it looks like this:

/**

 * My second Java Program.

 *

 * @author Simson Garfinkel (change to your name)

 */

public class Assign1 {

 public static int calc(int a,int b){

 return a+b;

 }

 public static void main(String args[]) {

 System.out.println("Hello World!");

 System.out.printf("3 + 4 = %d %n",Assign1.calc(3,4));

 }

}

The new calc method will add a+b and return the result. The new lines that we added

to the main() static method will create an Assign1 object and then run it's calc

method with (3,4). The printf method looks a lot like the C printf method, with the

exception that we use %n instead of \n as a newline.

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (7 of 11) [8/26/08 5:13:29 PM]

Counter
Create a program called Counter which outputs the numbers 1 through 10. The

program should be in a file called Counter.java and compiled into a file called

Counter.class . Your output should look like this:

1

2

3

4

5

6

7

8

9

10

Primes
Create a program called Primes which accepts an argument on the command line and

prints the prime numbers between 1 and that number. For example, if your program

is called with the command:

 java Primes 20

The output should be:

2 is prime

3 is prime

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (8 of 11) [8/26/08 5:13:29 PM]

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

Upload
Bundle all of your files together into a JAR file with your username.

You can do this with the jar command, like this:

$ jar cvf slgarfin.jar *.java *.class

added manifest

adding: Assign1.java(in = 316) (out= 223)(deflated 29%)

adding: Counter.java(in = 268) (out= 199)(deflated 25%)

adding: Primes.java(in = 311) (out= 201)(deflated 35%)

adding: Assign1.class(in = 684) (out= 422)(deflated 38%)

adding: Counter.class(in = 406) (out= 295)(deflated 27%)

adding: Primes.class(in = 984) (out= 561)(deflated 42%)

$

Notice that we can run all of the programs out of the jar file by using the -classpath

argument:

$ java -classpath slgarfin.jar Assign1

Hello World!

3 + 4 = 7

$ java -classpath slgarfin.jar Counter

Note: The dollar sign ($) is the prompt for the computer that I'm using.

Assignment 1 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (9 of 11) [8/26/08 5:13:29 PM]

1

2

3

4

5

6

7

8

9

10

$ java -classpath slgarfin.jar Primes 20

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

$

Here is what happens if you ask to run a function that isn't present:

$ java -classpath slgarfin.jar Count

Exception in thread "main" java.lang.NoClassDefFoundError: Count

Contest
For the contest, create Primes to print the number of primes between 1 and N, where

N is an argument on the command line, if the "-total" argument is given. (This way

you don't need to have two copies of Primes.java)

Assignment 1 - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (10 of 11) [8/26/08 5:13:29 PM]

Search

For example:

% java Primes -total 10

4

% java Primes -total 20

8

See Also
Assignments

Category: Assignments

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:Assignments&action=edit

Assignment 1 - Cs3773

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 17:14, 11 January 2008.This page has been accessed 331 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_1 (11 of 11) [8/26/08 5:13:29 PM]

https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_1
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_1
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_1&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_1&oldid=418
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Assignment 2 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_2 (1 of 7) [8/26/08 5:13:40 PM]

Assignment 2

In Week 2 we are learning all about Java classes.

Get Ready
Download the jarfile from https://domex.nps.edu/cs3773/week2/week2.jar

You can unpack the file if you wish. It will have the following in it:

Log in / create account

● Note: if you are using Internet Explorer, the week2.jar file may download as week2.zip; you will need to

rename it.

Flatland.java & Flatland.class

Source code and Bytecode for the Flatland class

FlatlandComponent.java & FlatlandComponent.class

Source code and byte code for the FlatlandComponent class (this is the GUI)

FlatlandDelegate.java & FlatlandDelegate.class

Contents

● 1 Get Ready

● 2 Build a Bot

● 3 Bounce 1

● 4 RandomBot

● 5 Extra Credit

● 6 Deliverables

● 7 Notes

● 8 See Also

�❍ 2.1 Test Your Bot

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Assignment_2
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_2&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_2&action=history
https://domex.nps.edu/cs3773/week2/week2.jar
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_2

Assignment 2 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_2 (2 of 7) [8/26/08 5:13:40 PM]

Build a Bot
In the assignment you will start with a class we have created called Bot. The Bot is a class for a

simple robot. These area ideal robots which are 1 meter square. We'll be doing a lot with these little robots.

Our Bots live on a 2-dimensional plane called Flatland. The Flatland class keeps track of all of the

objects that are in it, including the Bots, the Walls, and other objects that we haven't even thought about!

Your Bot class needs to have the following internal state:

Your Bot class needs to implement the following methods:

The interface that allows Flatland to communicate with the FlatlandComponent

FlatlandObject.java & FlatlandObject.class

Source code and byte code for the abstract superclass

Location.java & Location.class

Simple class that implements a place

Size.java & Size.class

Simple class that implements a size.

● A location

● A size

● A speed

● A heading (0 = north, 90 = east, 180 = south, 270 = west)

● Color

● Speed

● getCenter() (returns the Location of the center)

● getSize() (returns the size)

https://domex.nps.edu/cs3773/week2/doc/Bot.html

Assignment 2 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_2 (3 of 7) [8/26/08 5:13:40 PM]

This specification can be packaged into either a FlatlandObject interface, which your Bot could

implement, or a FlatlandObject abstract class, which your Bot would subclass. What are the

advantages or disadvantages of each?

We have provided the javadoc output for the instructor's Bot class.

Test Your Bot

The Flatland class contains a main() function that you can use to test your Bot class. The simulation

will create four bots with a starting location and move them around. If you unpack all of the files in the

JAR file, you can run your simulation with this command:

 java Flatland

Alternatively, you can run the simulation out of the jar file. Use this command:

 java -classpath week2.jar:. Flatland

On Windows, I had to use this command:

 java -classpath week2.jar;. Flatland

● setSpeed(double speed)

● setHeading(double heading)

● tick() (time passes)

● Bot(center,size) (constructor)

● toString() - turns it into a string

Assignment 2 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_2 (4 of 7) [8/26/08 5:13:40 PM]

Note that you do not need to put your Bot.class file into the week2.jar file; you can have the Bot.class file

in the current directory and the jar file specified by the classpath.

If you wish, you can visualize the simulation as well. This is done with the FlatlandComponent class.

The class has a public static method called launch. Call it with the Flatland object as its argument and

the simulation will start off; we won't discuss how the visualiation works for a few weeks.

This code automatically launches the visualization when the -gui flag is given to the Flatland class:

if(args.length==1 && args[0].equals("-gui")){

 FlatlandComponent.launch(fl);

 }

Get it?

Bounce 1

RandomBot
Create a subclass of your Bot Class called RandomBot. This bot should randomly change direction every

10 seconds.

Now, how are you going to get a RandomBot onto the playing field? You'll do this by creating a

1. Modify the Flatland class so that the simulation runs for 1000 seconds.

2. Modify your Bot class so that the bots bounce when they hit the walls of Flatland.

�❍ Hint: your tick object will need to inspect the size argument of what's passed in.

�❍ If the object is going to exceed the bounds, you could just reverse the direction. (Can you do this

in a line of code?)

�❍ Will this work for objects moving at angles?

Assignment 2 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_2 (5 of 7) [8/26/08 5:13:40 PM]

new simulation class called Simulation. Copy out the main() function in Flatland and create a

Simulation.main(). This Simulation class should create a Flatland object, add a RandomBot to it, and

then set the whole thing going.

Extra Credit
If you want, create a third class, add it to your simulation, and let it go. Here are some ideas:

Deliverables
Your entire deliverable is a jar file containing Bot.java, Bot.class, RandomBot.java, RandomBot.

class, Simulation.java, and Simulation.class. You can make this file with the jar command:

 jar -cf Bot.jar Bot.java Bot.class RandomBot.java RandomBot.class Simulation.java

Simulation.class

You should upload it to our the class server. Hopefully there will be some kind of automated testing

by Friday.

Notes

● Have a bot that chases the RandomBot.

● Right now the RandomBot will go through the other bots. How would you make it bounce off them?

● Give every object a mass. Compute the mutual attraction using Newton

● All submissions must be in compliance with the CS3773_Java_Style_Guide (JavaDoc, Naming Conventions,

�❍ How will your Chaser instance find and pursue the RandomBot?

�❍ What will your chaser do when it finds the RandomBot?

�❍ How will you create the next step? (Hint: split the tick() method into two methods: tick() and toc().

https://domex.nps.edu/cs3773/wiki/index.php/CS3773_Java_Style_Guide

Assignment 2 - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version
https://domex.nps.edu/cs3773/wiki/index.php/Assignment_2 (6 of 7) [8/26/08 5:13:40 PM]

Search

See Also

etc.)

● Your program should be robust: for example, inappropriate inputs should cause graceful failure.

Assignments

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_2
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_2
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_2&printable=yes

Assignment 2 - Cs3773

● Permanent link

This page was last modified 00:31, 18 January 2008.This page has been accessed 281 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_2 (7 of 7) [8/26/08 5:13:40 PM]

https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_2&oldid=521
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Assignment 3 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_3 (1 of 6) [8/26/08 5:13:52 PM]

Assignment 3

The goals of this week's assignment is to continue your exposure to object

oriented design and programming.

We will be building upon the Flatland with two new simulations:

The extra simulation will be:

Snake
In Week2 you created a Bot and RandomBot. In class we also created a ChaserBot.

For Week3 we will be creating yet another subclass of Bot called the AffinityBot.

The AffinityBot will look in the world for bots that have a certain tag and will try to

move closer to it.

We will start by adding Tags to the FlatlandObject. A tag is an integer attribute

Log in / create account

● Snake

● Electrostatics

● Shelling

Contents

● 1 Snake

● 2 Electrostatics

● 3 Schelling

● 4 What to turn in

● 5 See Also

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Assignment_3
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_3&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_3&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_3

Assignment 3 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_3 (2 of 6) [8/26/08 5:13:52 PM]

that can be added to any object. In the original version of this problem set we

suggested using a Tag interface, like this:

interface Tag {

 public int tag();

 public void setTag(int newTag);

}

And here is another interface, the Tag Search interface:

interface TagSearch {

 public ArrayList<TaggedFlatlandObject> search(int tag);

}

But this turned out to make the code really complicated, so we decided instead to

just build the Tag functionality into the FlatlandObject abstract object, with these

three methods:

 private int myTag=0;

 /** Tags are a way of keeping track of objects */

 public void setTag(int tag){

 this.myTag = tag;

 }

 public int tag(){

 return myTag;

 }

Either one works.

Assignment 3 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_3 (3 of 6) [8/26/08 5:13:52 PM]

We have posted code with the new classes, which we will describe in class on

Thursday. Here are the major changes:

You are welcome to use your own classes, the classes from the original version of

this assignment, or the final version of this assignment. You need to turn in a set

of .class and .java files that makes the snake work, as demonstrated in class. You

are welcome to add additional functionality as you wish. The only requirement for

this part is that you have a snake, that it work, and that your code be beautiful.

Electrostatics
Rework your simulation so that there is just one kind of Bot, a ChargedBot bot.

1. Flatland now supports Tags.

2. We have modified the Flatland class to make the names more sensible.

3. We have modified the Flatland class to make it clear which methods and

fields are private and which are public.

4. Flatland's tick() method no longer sends a tick() method to each of the

objects; it now sends a calculateNextPosition() message then a

updatePosition() message.

5. Flatland now includes a run() method which runs the simulation

indefinitely.

6. The Bot() implementation has been cleaned up.

7. The ChaseBot() implementation is now given to you. It's pretty clean too.

8. The AffinityBot() implement is given to you, but you need to finish it off.

● Every bot gets an electric charge, either +1 or -1.

https://domex.nps.edu/cs3773/svn/week3/

Assignment 3 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_3 (4 of 6) [8/26/08 5:13:52 PM]

Schelling
Schelling is a simulation of self-segregation. It's played on an n x m grid. Only

one object can be in each grid location at a time.

Run the simulation. See what happens.

Hints on implementing Schelling:

● Give bots that have a +1 charge the color Blue, -1 charge the color Red.

● By the way --- if a +1 and a -1 charge get too close, they should stick but not

fuse and become the same with exactly the same center. That is, if they both

have a radius of 1, one should go to (1,0) and one go to (3,0), but both should

not go to (2,0) and (2,0).

● Calculate each Bot's future position by calculating the force vector to every

other bot and adding together all of the force vectors.

● Create an interesting initial configuration and watch what happens.

● There are Red bots and Blue Bots.

● Every clock tick, 10% of the Reds and 10% of the Blues decide to move to

another grid location; of course, they can only move to an empty one.

● A Red bot is happy to live next to the same number of Reds and Blues, or is

happy to live with more Reds. It would rather not live with more Blues.

● A Blue bot is happy to live next to the same number of Reds and Blues, but

would rather not live with more Reds. (ie: same rules as the Blues, but

reversed.)

● Have Flatland maintain a grid of [x][y] coordinates with a two-dimensional

Assignment 3 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_3 (5 of 6) [8/26/08 5:13:52 PM]

Check out Peter Wayner's schelling simulation: http://www.wayner.org/texts/

seg/012298segregate-sim2.html

What to turn in
Turn in a jar file with your username.jar. The jar file should run each simulation

when the simulation's name is provided as the first argument. eg:

java -classpath slgarfin.jar snake

java -classpath slgarfin.jar electrostatic

java -classpath slgarfin.jar schelling

See Also

array that is sized 50x50 or 100x100 (the same as your initial size).

● Go back to a single tick() method; it will be too hard to have every Bot figure

out where they are moving and then all move at the same time. (Or have the

bots calculate their move and move on the second update method.)

● Remember, this part is extra work, not necessary to turn in.

● Assignments

● Week 3 Grading Rubrick

http://www.wayner.org/texts/seg/012298segregate-sim2.html
http://www.wayner.org/texts/seg/012298segregate-sim2.html
https://domex.nps.edu/cs3773/wiki/index.php/Week_3_Grading_Rubrick

Assignment 3 - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 01:53, 4 February 2008.This page has been accessed 238 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_3 (6 of 6) [8/26/08 5:13:52 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_3
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_3
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_3&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_3&oldid=778
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Assignment 4 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (1 of 12) [8/26/08 5:14:07 PM]

Assignment 4

This week we are learning about input, output, and persistent data.

And one last thing:

Problem 1
Download these two Java files to your computer:

Log in / create account

● We will dramatically simplify the simulation to avoid the threading problem that we've discovered.

● We will modify the so that the bot can take its commands from a file.

● You will run your simulation.

● You will then modify your simulation so that the commands can be taken from an SQL database over

the network.

● We will develop this simulation over the week in class, learning about exceptions and remote

database access.

● We will start using packages. In this case, package hw4.

Contents

● 1 Problem 1

● 2 Problem 2 - Throw an exception

● 3 Problem 3 - Create a File

● 4 Problem 4 - Download a web page

● 5 Problem 5 - The Web Crawler

● 6 HINT

● 7 What to turn in

● 8 Grading=

● 9 See Also

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Assignment_4
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_4&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_4&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_4

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (2 of 12) [8/26/08 5:14:07 PM]

Here is BTest.java:

package hw4;

public class BTest {

 public static void main(String[] args){

 B b = new B(1);

 System.out.printf("The value of the B function at 1 is: %d %n",b.calc());

 }

}

When BTest.main is run, the program prints out the value of the B function when calculated at 1.

Add a new static method to BTest called number_of_exceptions(int n) which returns the number

of exceptions that the B function generates when evaluated between 1 and n. The pseudocode for

this function looks something like this:

 public int number_of_exceptions(int n){

 for(int i=1;i<=n;i++){

 // some sort of try here

 B b = new B(i);

 b.calc();

 // some sort of catch here

 }

 return the number of exceptions that happened;

 }

 BTest.number_of_exceptions(1) should return 0

 BTest.number_of_exceptions(2) should return 0

● https://domex.nps.edu/cs3773/svn/week4/B.java

● https://domex.nps.edu/cs3773/svn/week4/BTest.java

So the following values should hold:

https://domex.nps.edu/cs3773/svn/week4/B.java
https://domex.nps.edu/cs3773/svn/week4/BTest.java

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (3 of 12) [8/26/08 5:14:07 PM]

 BTest.number_of_exceptions(3) should return 1

Modify BTest.main so that it prints the number of exceptions generated between 1 and 100 using

your static method number_of_exceptions()

Problem 2 - Throw an exception
Download this Java file to your computer:

 https://domex.nps.edu/cs3773/svn/week4/CTest.java

 https://domex.nps.edu/cs3773/svn/week4/CInterface.java

 https://domex.nps.edu/cs3773/svn/week4/CException.java

CTest.java wants a class called C which implements the CInterface.

Create C.java on your computer. It's going to look a bit like this:

public class C implements CInterface {

 // todo: add your code here

}

There is also

Your C class needs to implement a single method called calc(int). Here are the rules for the C.calc function:

Both of these are tested by the CTest.java

Test this with:

1. C.calc(n) for any even number should throw an ArithmeticException.

2. C.calc(99) should throw a CException with the exception's value set to be 33.

3. Otherwise, return n.

https://domex.nps.edu/cs3773/svn/week4/CTest.java
https://domex.nps.edu/cs3773/svn/week4/CInterface.java
https://domex.nps.edu/cs3773/svn/week4/CException.java

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (4 of 12) [8/26/08 5:14:07 PM]

 java CTest

Problem 3 - Create a File
Here is a program that puts "Hello World!" into a file called output.txt:

package hw4;

import java.io.*;

public class HelloToFile {

 public static void main(String[] args){

 try{

 PrintWriter out = new PrintWriter(new FileWriter("output.txt"));

 out.println("Hello World!");

 out.close();

 } catch (IOException e){

 System.out.println("Could not open output.txt");

 e.printStackTrace();

 }

 }

}

Because this class is called HelloToFile it should be stored in a file called HelloToFile.java.

1. Add a public static method to this file with the following signature:

 public static void makeHelloFile(String filename) throws IOException;

When makeHelloFile is called, it should put 'Hi Mom!' (followed by a newline) into the file named

by filename.

2. Modify the main static method so that, instead of putting Hello World! into the file called output.

txt, the program calls the makeHelloFile method 10 times with the filenames file 1.txt through

file 10.txt where file is specified on the command line. That is, this invocation should create the

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (5 of 12) [8/26/08 5:14:07 PM]

files foobar1.txt, foobar2.txt, etc.:

 java HelloToFile foobar

And this should create nosmis1.txt, nosmis2.txt, etc:

 java HelloToFile nosmis

You may find the following web pages helpful in performing this question:

If you want, you may also read:

Problem 4 - Download a web page
Here is some code that will not compile. The code should download a web page called http://domex.

nps.edu/cs3773/hello.txt and print it line-by-line. This code introduces three classes you have not

seen before: InputStream, InputStreamReader, and BufferedReader.

package hw4;

import java.io.*;

import java.net.*;

note -- if your main method encounters an exception on file N, it should continue with file N+1.

● Java PrintWriter documentation

● Java FileWriter documentation

● Java Console and File Input/Output Cheat Sheet

● PowerPoint deck on file I/o

● Day 15, Working with Input and Output, in Teach Yourself Java 6 in 21 days.

http://domex.nps.edu/cs3773/hello.txt
http://domex.nps.edu/cs3773/hello.txt
http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintWriter.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/FileWriter.html
http://www.cs.carleton.edu/faculty/dmusican/cs117s03/iocheat.html
http://www.cis.upenn.edu/~matuszek/cit591-2003/Lectures/35-java_io.ppt

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (6 of 12) [8/26/08 5:14:07 PM]

public class WebCalc {

 static public void main(String[] args){

 URL u = new URL("http://domex.nps.edu/cs3773/hello.txt");

 URLConnection con = u.openConnection();

 if(con instanceof HttpURLConnection){

 int code = ((HttpURLConnection) con).getResponseCode();

 if(code!=HttpURLConnection.HTTP_OK){

 System.out.println("Error code: "+code);

 return;

 }

 }

 InputStream is = con.getInputStream();

 InputStreamReader isr = new InputStreamReader(is);

 BufferedReader br = new BufferedReader(isr);

 while(true){

 String s = br.readLine();

 if(s==null) break;

 System.out.println(s);

 }

 br.close();

 is.close();

 }

}

1. Fix this code so that it compiles. Your output should look like this:

$ java hw4.WebCalc

Hello World!

2. Modify this program so that, if an argument is provided, the provided argument is treated as a URL

and that page is downloaded and printed. Your output should look like this:

$ java hw4.WebCalc http://domex.nps.edu/cs3773/mom.txt

Hi Mom!

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (7 of 12) [8/26/08 5:14:07 PM]

3. Modify the program so that a "-sum" option before the URL causes the program to add up all of

the numbers on the web page (assuming each number is on its own line). Here are two sample outputs

you should get:

$ java hw4.WebCalc -sum http://domex.nps.edu/cs3773/numbers.txt

6

$ java hw4.WebCalc -sum http://domex.nps.edu/cs3773/numbers2.txt

line 4: "foobar" is not a number.

Problem 5 - The Web Crawler
This problem is extra credit...

Create a new class called WebCrawler.

Give it a public static method called crawl(String url) which does the following:

Create a public static method called main(String args[]) which:

● Opens up the url url

● Reads each line

● Prints the line

● If the line contains a URL, calls crawl(url) with the URL on the line.

● Returns the contents of the web page

● Increments a static instance variable keeping track of the total number of lines printed and URLs visited.

● Calls crawl("http://domex.nps.edu/cs3773/hw4/one.txt")

● Prints the total number of pages printed and exits.

http://domex.nps.edu/cs3773/hw4/one.txt

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (8 of 12) [8/26/08 5:14:07 PM]

 Total lines: 29 total URLs: 6

HINT
If you are using NetBeans, you can keep track of each of these different commands with the run profiles.

If you tell NetBeans not to exclude the *.java files, it will automatically include them.

Change this:

This is really fun. If you can get it to work, try to add the following:

● A global variable that keeps track of each page visited and doesn't visit the same page twice.

(Very Important!!! You can test this with the url http://domex.nps.edu/cs3773/hw4/here.txt which

points to http://domex.nps.edu/cs3773/hw4/there.txt and vice-versa).

● A global counter which keeps track of the total number of pages visted; print this when you are done.

● Try printing the pages completely, rather than line by line. Hint: do this with a StringBuilder.

● Question: how could you make your program work with actual HTML rather than with these text files?

�❍ Hint: You want to use a Hashtable which maps the string URLs to a boolean flag.

�❍ Better Hint: Use a HashSet instead of a Hastable. Declare it as HashSet<String>; put strings into it and

then see if you were at the page by seeing if the HashSet contains the specified key.

http://domex.nps.edu/cs3773/hw4/here.txt
http://domex.nps.edu/cs3773/hw4/there.txt
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Hashtable.html

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (9 of 12) [8/26/08 5:14:07 PM]

to this:

https://domex.nps.edu/cs3773/wiki/index.php/Image:Include_java.png

Assignment 4 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (10 of 12) [8/26/08 5:14:07 PM]

What to turn in
Turn in a jar file containing at least the following:

hw4/BTest.java

hw4/BTest.class

hw4/C.java

hw4/C.class

hw4/HelloToFile.java

https://domex.nps.edu/cs3773/wiki/index.php/Image:Include_java2.png

Assignment 4 - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (11 of 12) [8/26/08 5:14:07 PM]

Search

hw4/HelloToFile.class

hw4/WebCalc.java

hw4/WebCalc.class

hw4/WebCrawler.java

hw4/WebCrawler.class

Grading=
Problems 1-4 are worth 25 points each; Problem 5 is worth 20.

See Also

● Homework Submission Link.

● The exceptions debate

Assignments

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_4
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_4
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/submit/submit.cgi
http://www.ibm.com/developerworks/java/library/j-jtp05254.html

Assignment 4 - Cs3773

● Special pages

● Printable version

● Permanent link

This page was last modified 16:47, 29 February 2008.This page has been accessed 303 times.Content is

available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_4 (12 of 12) [8/26/08 5:14:07 PM]

https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_4&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_4&oldid=936
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Assignment 5 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_5 (1 of 4) [8/26/08 5:14:17 PM]

Assignment 5

This week's assignment involves a code-cleaning exercise and

extensions to the Flatland GUI. You are to submit a jar file, but the

assignment will not be graded automatically.

Part 1: Newton
In the week5 subversion repository you will find two fractal programs:

Mandelbrot and Newton.

Plan on spending 2-3 hours cleaning this up.

Part 2: Flatland GUI

Log in / create account

● Download a copy of the subversion repository from http://domex.

nps.edu/cs3773/svn/

● Fix Newton.java. Turn it into beautiful code. Be especially aware of:

● At the beginning of Newton.java, put a summary of the code

cleaning you did.

�❍ Dupliate code that can be cleaned up.

�❍ Variable names that can be clarified.

�❍ Dead code that can be removed (is there any?)

�❍ Hard-coded constants that should be clarified.

�❍ Comments that should be improved.

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Assignment_5
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_5&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_5&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_5
http://domex.nps.edu/cs3773/svn/
http://domex.nps.edu/cs3773/svn/

Assignment 5 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_5 (2 of 4) [8/26/08 5:14:17 PM]

In the week5 subversion repository you will find a reworked version of

Flatland. This version uses just a single thread and, as a result, it does

not throw the exception that troubled is in Week 3. This version also

implements the clean architecture that we discussed in the homework.

Study the code that you have been given. Add at least four of the

following features:

● Buttons to start and stop the simulation

● Rework the simulation layout and make it more attractive.

● Make the simulation run in a JApplet instead of a JFrame

● Add walls to the inside simulation which the random objects bounce

off

● Let the user draw new walls with the mouse.

● Let the user select a bot with the mouse and:

● Make the bots bigger and draw the bot's tag in the middle of the bot.

● Draw a line between the ChaseBot and its target.

● Annotate the target line with the length.

Category: Assignments

�❍ Control it with the keyboard

�❍ Watch where it moves (show its trail)

�❍ Change its properties by right-clicking on it.

https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:Assignments&action=edit

Assignment 5 - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_5 (3 of 4) [8/26/08 5:14:17 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_5
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_5
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_5&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_5&oldid=818

Assignment 5 - Cs3773

This page was last modified 06:44, 6 February 2008.This page has been accessed 156 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_5 (4 of 4) [8/26/08 5:14:17 PM]

http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

Assignment 6 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_6 (1 of 2) [8/26/08 5:14:26 PM]

Assignment 6

Assignment #6 will be due on Monday, February 18th.

Re-implement the Flatland from HW5. This time create the

FlatlandControlPanel using the NetBeans GUI builder.

Extra credit: Add and document some new functionality. Here are

some ideas:

Log in / create account

● A bot you can steer

● A bot that creates new bots.

● A bot that destroys bots.

● A bot that changes colors

● A bot that displays an image

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Assignment_6
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_6&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_6&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_6

Assignment 6 - Cs3773

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 01:14, 13 February 2008.This page has been accessed 67 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_6 (2 of 2) [8/26/08 5:14:26 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_6
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_6
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_6&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_6&oldid=856
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

Assignment 7 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_7 (1 of 2) [8/26/08 5:14:37 PM]

Search

Assignment 7

Assignment 7 is optional. Please make

your Flatland run as an applet.

When you upload Assignment 7, you will

be given a URL for your applet.

Log in / create account

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_7
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_7
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_7&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Assignment_7&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_7&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_7&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_7

Assignment 7 - Cs3773

● Permanent link

This page was last modified 07:06, 3 March 2008.This page has been accessed 40 times.Content

is available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_7 (2 of 2) [8/26/08 5:14:37 PM]

https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_7&oldid=952
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Assignment 8 - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_8 (1 of 3) [8/26/08 5:14:49 PM]

Assignment 8

For this assignment, you are to create a simple application that communicates with the Othello

Server using the XML RPC API.

Here is the Othello Server:

Here are some code snippets:

We will discuss this API in greater depth in class and sample code will be provided by Wednesday.

Here is how you implement the chat program:

To implement a full-blown game, you would need to do this:

Here is a sample screenshot:

Log in / create account

● http://othello.nitroba.org/game.cgi

● joinGameButtonActionPerformed

● Join a game by calling joinGame() with your name as the playerID

● This will give you a gameID, which is an integer

● Every second, you must call stillAlive(playerID,gameID) to tell the server that you are still alive.

● Every second, you should call getMessages(gameID,playerID) to see if there are any messages for you.

If there are, display them.

● Every second, you should call getGameState(gameID) to find out if someone else has joined the game,

and to find out if you are white or black, and to find out if it is your turn to move.

● If you want to send a message to someone, call sendMessage(gameID, senderID, recipientID, message)

● Display the game board after getGameState() is called

● If it is your turn, pick up a mouse click on the game board and send it to the server as a submitMove

() function call.

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Assignment_8&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_8&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_8&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Assignment_8
http://othello.nitroba.org/game.cgi
https://domex.nps.edu/cs3773/wiki/index.php/JoinGameButtonActionPerformed

Assignment 8 - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_8 (2 of 3) [8/26/08 5:14:49 PM]

Assignment #8 is due on Friday, March 7th.

Grading will be as follows:

● 50% credit - turning in a jar file that connects to the othello server and displays the current status

(updated every second) in a text window.

● 25% credit - connects to the server, joins a game, and displays chat messages as they are received.

● 25% credit - allows the user to send chat messages to the other user.

● 25% extra credit - displays the blank othello board.

https://domex.nps.edu/cs3773/wiki/index.php/Image:Othelloscreen.PNG

Assignment 8 - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 07:07, 3 March 2008.This page has been accessed 162 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Assignment_8 (3 of 3) [8/26/08 5:14:49 PM]

Search

● 25% extra credit - lets you click on board positions and send the moves

● 25% extra credit - gets boards from the othello server and displays them

● 25% extra credit - properly handles game over.

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Assignment_8
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Assignment_8
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_8&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Assignment_8&oldid=955
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Final Project - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Final_Project (1 of 3) [8/26/08 5:15:01 PM]

Final Project

Final Projects are due on March 27th

Your final project must include:

To Create Your Final Project Proposal
If you wish, you may put your final project proposals on this wiki. If you would

prefer not to, you may email the final project proposal to the course staff.

Log in / create account

● Final Project Proposal

● Java source code that is well-written and well-documented.

● A written specification of at least one page that describes:

● Screen shots.

To enter the proposal on the wiki:

1. Type your name and the words "final project proposal" into the Search box

at the left of this window.

2. MediaWiki will ask if you want to create a new page; click "yes"

3. Enter your proposal.

�❍ The program's purpose.

�❍ The program's interface with the outside world.

�❍ The program's theory-of-operation.

�❍ What is original, and what (if anything) was developed by others.

�❍ Future work that can be done.

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Final_Project&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Final_Project&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Final_Project&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Final_Project

Final Project - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki
https://domex.nps.edu/cs3773/wiki/index.php/Final_Project (2 of 3) [8/26/08 5:15:01 PM]

Note: You will be responsible for making sure that your final project matches what

was promised in the proposal. If you put your proposal on the wiki it will be easier

for you to keep the proposal up to date as the project changes.

What to turn in

See Also

4. When you are done, please click "save page"

● A jar file (please submit using the online system and e-mail a copy to the

professor)

● A PDF file with your specification and screen shots (please upload separately

and email to me if you can't get that to work.)

Final Project Ideas

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Final_Project_Ideas

Final Project - Cs3773

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 04:35, 28 March 2008.This page has been accessed 84 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Final_Project (3 of 3) [8/26/08 5:15:01 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Final_Project
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Final_Project
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Final_Project&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Final_Project&oldid=1195
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 01: Java Without Classes - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (1 of 8) [8/26/08 5:15:55 PM]

Week 01: Java Without ClassesLog in / create account

● Next: Week 02: Classes

Introduction

Week 1

shortname Intro

Contents

● 1 Goals

● 2 Outline

● 3 Slides

● 4 Readings

● 5 Assignments

● 6

�❍ 2.1 Administrivia

�❍ 2.2 Welcome to Java

�❍ 2.3 Hello World!

�❍ 2.4 Writing Java

�❍ 2.5 Running Java

�❍ 2.6 Java Documentation

�❍ 2.7 Introduction to Java Sytax

�❍ 2.8 Java vs. C++

�❍ 2.9 Java vs Python

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_01:_Java_Without_Classes&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_01:_Java_Without_Classes&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_01:_Java_Without_Classes&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_01:_Java_Without_Classes

Week 01: Java Without Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (2 of 8) [8/26/08 5:15:55 PM]

Goals

Outline

Administrivia

Welcome to Java

● Course Goals

● Understand Java and how it's different from C++

● Compile Hello World

● Turn in your first assignment.

● Course Schedule

● Weekly Schedule:

● Survey: What do you know? What do you want to get out of the course?

● How to use the wiki

● How to use Subversion to get the course material.

● Busy Box - be amazed

�❍ Mondays - New Topic is introduced; slides

�❍ Tuesdays - Delve deeper into new topic; code

�❍ Wednesdays - Java Article to discuss; Q&A

�❍ Thursday - Corner cases; more about the topics.

�❍ Friday - Lab. Mini quiz; Q&A; homework must be submitted by 1800

Sunday (6pm) Pacific Time.

https://domex.nps.edu/cs3773/wiki/index.php/Subversion

Week 01: Java Without Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (3 of 8) [8/26/08 5:15:55 PM]

Hello World!

Here is a simple Java program:

public class hello {

 public static void main(String args[]){

 System.out.println("Hello World!");

 }

}

This program must be put in a file called hello.java.

You compile this program with the javac compiler:

 % javac hello.java

You run this program with the java command:

 % java hello

 Hello World!

● Java pros/cons

● History of Java

Other things that we'll teach today:

● Using the Java online documentation.

https://domex.nps.edu/cs3773/wiki/index.php?title=History_of_Java&action=edit

Week 01: Java Without Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (4 of 8) [8/26/08 5:15:55 PM]

Writing Java

Running Java

Java Documentation

Introduction to Java Sytax

● Installing the Java system on your computer.

● What CLASSPATH does

● applets vs. stand-alone programs.

● GUI vs. command-line programs.

● Compiling and running from the command line

● IDEs - emacs, BlueJ, NetBeans, Eclipse,

● We will be using Eclipse

● Windows & Unix

● CLASSPATH

● PATH, JAVA_HOME, and Classpath

● C:\Java\j2sdk1.4.2\jre\lib\ext

● How to find the documentation.

● Javadoc

● math (integer; float, etc)

● Data types & operators

● Using strings, ints, arrays

● Control flow - for (c-kind), if/then/else, switch, while, for (python kind)

Week 01: Java Without Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (5 of 8) [8/26/08 5:15:55 PM]

Java vs. C++

What's mostly the same:

What's different:

Java vs Python

What's mostly the same:

● import and packages

● operator precedence

● basic types (except for string)

● syntax

● classes

● System.output.println vs. cout <<

● Single inheritance

● string type

● no objects on the stack (no automatic object creation)

● no operator overloading

● JavaDoc

● bytecode vs. object code

● anonymous classes

● Single inheritance

● bytecode, not object code

Week 01: Java Without Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (6 of 8) [8/26/08 5:15:55 PM]

What's different:

Slides

Readings

Assignments

● basic types (including string)

● syntax

● classes

● no objects on the stack

● no operator overloading

● JavaDoc

● Slides for Week 1 Monday, Tuesday

● Wednesday

● Thursday

● Read the CS3773 Java Style Guide.

● Teach Yourself Java 6 in 21 Days. Please review chapters 1 through 5 by

the end of the week.

● Wednesday Paper: Enhancing the introductory computer science

curriculum: C++ or Java? Andrei Irimia, CCSC 2001.

Assignment 1 is due on Sunday, January 13, at 6pm pacific time

● Next: Week 02: Classes

https://domex.nps.edu/cs3773/wiki/images/7/7c/Week1_-_Java_without_classes.pdf
https://domex.nps.edu/cs3773/wiki/images/7/71/Week1b.pdf
https://domex.nps.edu/cs3773/wiki/images/d/d8/Week1c.pdf
https://domex.nps.edu/cs3773/wiki/index.php/CS3773_Java_Style_Guide
https://domex.nps.edu/cs3773/wiki/images/0/05/P159-irimia.pdf
https://domex.nps.edu/cs3773/wiki/images/0/05/P159-irimia.pdf

Week 01: Java Without Classes - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (7 of 8) [8/26/08 5:15:55 PM]

Search

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_01:_Java_Without_Classes
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_01:_Java_Without_Classes
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_01:_Java_Without_Classes&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 01: Java Without Classes - Cs3773

● Permanent link

This page was last modified 16:37, 14 January 2008.This page has been accessed 146 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_01:_Java_Without_Classes (8 of 8) [8/26/08 5:15:55 PM]

https://domex.nps.edu/cs3773/wiki/index.php?title=Week_01:_Java_Without_Classes&oldid=460
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 02: Classes - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_02:_Classes (1 of 6) [8/26/08 5:16:09 PM]

Week 02: ClassesLog in / create account

● Previous: Week 01: Java Without Classes

● Next: Week 03: Object-Oriented Design

Classes

Week 2

shortname Classes

Contents

● 1 Goals

● 2 Outline

● 3 Some code to discuss

● 4 Readings

● 5 Class Notes

● 6 Navigation

�❍ 1.1 Language Goals

�❍ 1.2 Environment Goals

�❍ 2.1 Monday: Basics of Classes and Object-Oriented Design

�❍ 2.2 Tuesday: Classes With Code

�❍ 4.1 For Tuesday

�❍ 4.2 For Wednesday

�❍ 4.3 For Thursday

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_02:_Classes&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_02:_Classes&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_02:_Classes&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_02:_Classes

Week 02: Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_02:_Classes (2 of 6) [8/26/08 5:16:09 PM]

Goals

Language Goals

Environment Goals

Outline

Monday: Basics of Classes and Object-Oriented
Design

Tuesday: Classes With Code

● What is a class? What is an instance? What is an object?

● Understanding inheritance: methods & variables

● Encapsulation: public variables vs. accessor methods

● Final: final methods & final variables

● mutable vs. immutable objects

● Enums

● applets vs. stand-alone programs.

● GUI vs. command-line programs.

● What CLASSPATH does

● Using the debugger

● Monday Slides

● Show the Demo

�❍ Download week2.jar

https://domex.nps.edu/cs3773/wiki/images/0/0e/Week2.pdf

Week 02: Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_02:_Classes (3 of 6) [8/26/08 5:16:09 PM]

New Java reserved keywords for working with a single class:

Some code to discuss

Readings
Last week we asked you to review Chapters 1-5 in Teach Yourself Java 6...

This week we be working through the book.

For Tuesday

● Show JavaDoc for week2

public

New Java reserved keywords for working with class hierarchies:

abstract

extends

implements

instanceof

interface

protected

● Day 3, Teach Yourself Java 6 in 21 Days. This chapter discusses new,

methods, method calls, nested method calls, casting, and the instance of

�❍ Create a Bot.java

�❍ java -classpath week2.jar;. Flandland (on Windows)

https://domex.nps.edu/cs3773/wiki/index.php/Java_reserved_keywords
https://domex.nps.edu/cs3773/week2/doc/
https://domex.nps.edu/cs3773/wiki/index.php/Java_reserved_keywords

Week 02: Classes - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_02:_Classes (4 of 6) [8/26/08 5:16:09 PM]

For Wednesday

(But you may wish to do it in advance of Wednesday):

For Thursday

Class Notes

operator.

● Review the Q&A on p. 112. You should know the answer to all of these

questions.

● Take the quiz on p. 112--113.

● Review the Q&A on p. 85. Be sure you can answer all of the questions.

● Take the Quiz on p. 86.

● If they look hard, do the exercises on p. 87 (for yourself, not to hand in).

● Java Pitfalls for Beginners , Robert Biddle and Ewan Tempero, SIGCSE, June

1998

● Day 5, Teach Yourself Java 6 in 21 Days. This chapter discusses new,

methods, method calls, nested method calls, casting, and the instance of

operator.

● Appendix A: Using the Java Development Kit, Teach Yourself Java 6 in 21

Days. This chapter discusses new, methods, method calls, nested method

calls, casting, and the instance of operator.

Week 02 Thursday Notes

https://domex.nps.edu/cs3773/wiki/images/6/63/P48-biddle.pdf
https://domex.nps.edu/cs3773/wiki/index.php/Week_02_Thursday_Notes

Week 02: Classes - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes
https://domex.nps.edu/cs3773/wiki/index.php/Week_02:_Classes (5 of 6) [8/26/08 5:16:09 PM]

Search

Navigation

● Previous: Week 01: Java Without Classes

● Next: Week 03: Object-Oriented Design

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_02:_Classes
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_02:_Classes
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 02: Classes - Cs3773

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 00:35, 18 January 2008.This page has been accessed 135 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_02:_Classes (6 of 6) [8/26/08 5:16:09 PM]

https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_02:_Classes&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_02:_Classes&oldid=523
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 03: Object-Oriented Design - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (1 of 18) [8/26/08 5:16:23 PM]

Week 03: Object-Oriented DesignLog in / create account

● Previous: Week 02: Classes

● Next: Week 04: I/O

Object-Oriented

Design

Week 3

shortname OOP

Contents

● 1 Goals

● 2 Class Notes

�❍ 2.1 Finishing up from last week

�❍ 2.2 Abstract Classes vs. Interfaces

�❍ 2.3 Java Packages

�❍ 2.4 Java Scoping Rules

�❍ 2.5 -cp vs -classpath

■ 2.1.1 super constructors

■ 2.1.2 default constructors

■ 2.1.3 BotTester vs. BotTester2

■ 2.1.4 Common Mistakes on the Homework

■ 2.1.5 What is "Business Logic?"

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_03:_Object-Oriented_Design&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_03:_Object-Oriented_Design&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_03:_Object-Oriented_Design&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_03:_Object-Oriented_Design

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (2 of 18) [8/26/08 5:16:23 PM]

Goals
● Inheritance

● Interfaces vs. Abstract classes

● Nested Classes

● Enumerated Types

● overriden methods

● 3 References

● 4 Wisdom from Effective Java

● 5 Readings

● 6

�❍ 2.6 Nested Classes

�❍ 2.7 Enumerated Types

�❍ 4.1 Item 1: Consider providing static factory methods instead of constructors

�❍ 4.2 Item 4: Avoid creating duplicate objects

�❍ 4.3 Item 5: Eliminate obsolete objects references

�❍ 4.4 Item 13: Favor immutability

�❍ 4.5 Item 14: Favor composition over inheritance

�❍ 4.6 Item 15: Design and document for inheritance or else prohibit it

�❍ 4.7 Item 16: Prefer interfaces to abstract classes

�❍ 4.8 Item 17: Use interfaces only to define types

�❍ 4.9 Item 19: Replaces structures with classes

�❍ 4.10 Item 20: Replace unions with class hierarchies

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (3 of 18) [8/26/08 5:16:23 PM]

Class Notes

Finishing up from last week

super constructors

To call the the constructor in the super-class, use this syntax:

 super();

So the ChaseBot implementation that we presented in class on Friday is more properly implemented as

this:

import java.lang.Math.*;

public class ChaseBot extends Bot {

 public ChaseBot(Location center,Size size) {

 super(center,size);

 }

 public void tick(Flatland fl){

 /* Find the random bot */

 RandomBot target = null; // the random bot that we are looking

● overloaded methods

● overriding vs. overloading

● packages

● Annotations

https://domex.nps.edu/cs3773/wiki/index.php/Annotations

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (4 of 18) [8/26/08 5:16:23 PM]

for

 for (FlatlandObject o : fl.things){

 if(o instanceof RandomBot) target=(RandomBot)o;

 }

 if(target==null) return; // don't move if there is no

target

 /* First calculate the values for what this Bot will look like in 1

second... */

 double dx = target.center.x-this.center.x;

 double dy = -(target.center.y-this.center.y);

 /* Set the new Heading with the atan2 function */

 heading = Math.toDegrees(Math.atan2(dx,dy));

 super.tick(fl); // and

move

 }

}

And the RandomBot looks like this:

import java.lang.Math.*;

public class RandomBot extends Bot {

 int duration = 0;

 public RandomBot(Location center,Size size) {

 super(center,size);

 }

 public void tick(Flatland fl){

 if(duration<=0){

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (5 of 18) [8/26/08 5:16:23 PM]

 duration = (int)(Math.random()*100.0+30.0);

 heading = Math.random()*360;

 }

 duration = duration - 1;

 super.tick(fl);

 }

}

Get all my code: http://domex.nps.edu/cs3773/svn/week2/

default constructors

If you don't create one, Java creates one for you:

public class Default {

 public print() {

 System.out.println("Hello!");

 }

}

...

Default d = new Default();

d.print();

BotTester vs. BotTester2

BotTester implemented Regression Testing

http://domex.nps.edu/cs3773/svn/week2/
http://domex.nps.edu/cs3773/svn/week2/BotTester.java

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (6 of 18) [8/26/08 5:16:23 PM]

Common Mistakes on the Homework

BotTester2 implemented Conformance Testing or Unit Testing

Regression Testing:

● Run the same code with the same inputs and see if the output changes.

● Code 1 was slgarfin.jar

● Code 2 was yourname.jar

Conformance Testing:

● Run the code with a 'test harness and check the outputs.

Regression Testing Advantages:

● Easy to implement.

● Great for test new versions of code for release.

Regression Testing Disadvantages:

● May not find bugs.

Conformance Testing Advantages:

Conformance Testing Disadvantages:

● Duplicated code between Bot and RandomBot

● Hard-coded constants.

http://domex.nps.edu/cs3773/svn/week2/BotTester2.java

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (7 of 18) [8/26/08 5:16:23 PM]

This is useless:

// publicRandomBot() creates a RandomBot():

public RandomBot(Location center, Size s){

 ...

This is almost useless:

// Decrement counter

counter -= 1;

Try this:

// When counter reaches 0, it's time to change direction:

counter -= 1;

if(counter<=0){

 ...

What is "Business Logic?"

Abstract Classes vs. Interfaces

Flatland uses both an Abstract class and an Interface.

● Comments that weren't relevant.

● Model/View/Controller [See http://en.wikipedia.org/wiki/Model-view-controller]

● Three-Tier Architecture

http://en.wikipedia.org/wiki/Model-view-controller

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (8 of 18) [8/26/08 5:16:23 PM]

Advantages of Abstract Classes:

Advantages of Interfaces:

Java Packages

Java Scoping Rules

See http://mindprod.com/jgloss/scope.html

● Abstract Class: FlatlandObject

● Interface: FlatlandDelegate

● Syntax

● What's in the package

● import

● local scope

● package scope

● protected scape

● public scope

public

any class can reference it

protected

only classes that extend this class can reference it.

default (package; friendly)

any method in this package can access it.

http://mindprod.com/jgloss/scope.html
http://domex.nps.edu/cs3773/svn/week2/FlatlandObject.java
http://domex.nps.edu/cs3773/svn/week2/FlatlandDelegate.java

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (9 of 18) [8/26/08 5:16:23 PM]

package one;

public class A {

 protected int b;

 void public scope_demo() {

 int local_scope = 3;

 }

}

package two;

import one.A;

class B extends A {

 void myMethod() {

 p = 1; // ok

 A a = new A();

 a.p = 1; // not okay; p would have to be public

 }

}

Example from http://mindprod.com/jgloss/protectedscope.html

-cp vs -classpath

A question was asked in class about -cp vs. -classpath. Apparently they both work. See http://

javahowto.blogspot.com/2006/06/new-options-in-javac-155-classpath-cp.html .

private

no class can reference it

local

only visible in the block.

http://mindprod.com/jgloss/protectedscope.html
http://javahowto.blogspot.com/2006/06/new-options-in-javac-155-classpath-cp.html
http://javahowto.blogspot.com/2006/06/new-options-in-javac-155-classpath-cp.html

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (10 of 18) [8/26/08 5:16:23 PM]

Nested Classes

Java 1.5 and above allows you to create classes inside a class. This is useful if you wish to create an

internal class which no other class should be able to use.

Here is a somewhat trivial example:

public class Test {

 private class InnerClass {

 StringBuilder res = new StringBuilder();

 String appendFoo(int i){

 while(i-- > 0){

 res.append("foo ");

 }

 return res.toString();

 }

 }

 public void run(){

 System.out.println("let's run the foo function...");

 InnerClass ic = new InnerClass();

 System.out.println("foo(3)="+ic.appendFoo(3));

 System.out.println("foo(2)="+ic.appendFoo(2));

 System.out.println("foo(1)="+ic.appendFoo(1));

 }

 public static void main(String[] args){

 Test t = new Test();

 t.run();

 }

}

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (11 of 18) [8/26/08 5:16:23 PM]

The InnerClass is private, so it can only be accessed from within the Test class.

Here is what the output looks like:

10:27 PM imac2:~$ javac Test.java

10:27 PM imac2:~$ java Test

let's run the foo function...

foo(3)=foo foo foo

foo(2)=foo foo foo foo foo

foo(1)=foo foo foo foo foo foo

10:27 PM imac2:~$

Don't worry if this seems complicated right now.

Enumerated Types

Added in JDK 1.5.

See http://java.sun.com/docs/books/tutorial/java/javaOO/enum.html

public enum Day {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

 THURSDAY, FRIDAY, SATURDAY

}

Points of note:

● Enumerated types are types, like classes. You could put the enum Day into a file called Day.java

http://java.sun.com/docs/books/tutorial/java/javaOO/enum.html

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (12 of 18) [8/26/08 5:16:23 PM]

Here is how the Day.class file decompiles:

10:53 PM imac2:~$ jad Day.class

Parsing Day.class... Generating Day.jad

10:53 PM imac2:~$ more Day.jad

// Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.

// Jad home page: http://www.kpdus.com/jad.html

// Decompiler options: packimports(3)

// Source File Name: Day.java

public final class Day extends Enum

{

 public static final Day[] values()

 {

 return (Day[])$VALUES.clone();

 }

 public static Day valueOf(String s)

 {

 return (Day)Enum.valueOf(Day, s);

 }

 private Day(String s, int i)

 {

 super(s, i);

 }

 public static final Day SUNDAY;

and compile it with javac.

● Enumerated types are really syntactic sugar. They don't exist at the bytecode level.

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (13 of 18) [8/26/08 5:16:23 PM]

 public static final Day MONDAY;

 public static final Day TUESDAY;

 public static final Day WEDNESDAY;

 public static final Day THURSDAY;

 public static final Day FRIDAY;

 public static final Day SATURDAY;

 private static final Day $VALUES[];

 static

 {

 SUNDAY = new Day("SUNDAY", 0);

 MONDAY = new Day("MONDAY", 1);

 TUESDAY = new Day("TUESDAY", 2);

 WEDNESDAY = new Day("WEDNESDAY", 3);

 THURSDAY = new Day("THURSDAY", 4);

 FRIDAY = new Day("FRIDAY", 5);

 SATURDAY = new Day("SATURDAY", 6);

 $VALUES = (new Day[] {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

 });

 }

}

Enumerated types are useful when you have a variable that you want to restrict to particular values, but

it doesn't make sense to have a different class defined for each variable type.

Here are examples:

Several students asked what is a enumerated type good for?

● Days of the week.

● Months

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (14 of 18) [8/26/08 5:16:23 PM]

References

Wisdom from Effective Java
The book Effective Java (Bloch, 2001) is the very best book on Java that I've found. Everything I tell

you that is at odds with the book is wrong. Really, this book is amazing.

The books substance is 57 items which describe good, effective, clear and efficient programming style

in Java. I'll list them here as we've covered enough about Java for them to make sense. Where the items

are in odds with something I've done or said, I'll let you know.

Item 1: Consider providing static factory methods instead of
constructors

The reason for this is that a class can have multiple static factory methods, but only one constructor

with a signature. This has already bitten us in the Flatland example; I should have done things

differently, it seems. Another advantage of this approach is that the static constructors can cache

objects that are created and return multiple references to the same object, especially if the objects are

immutable. So I should have followed this advance with the Size() and Location classes. If we have

time, I'll show you how.

● Planets

● Card suits (clubs, diamonds, hearts, spades)

● HSQLDB, a relational database written entirely in Java.

● Java Tutorial on packages

● Java Tutorial on Annotations

● equals

http://hsqldb.sourceforge.net/
http://java.sun.com/docs/books/tutorial/java/package/packages.html
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
https://domex.nps.edu/cs3773/wiki/index.php/Equals

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (15 of 18) [8/26/08 5:16:23 PM]

Item 4: Avoid creating duplicate objects

Don't do this:

 String s = new String("silly");

do this:

 String s = "No longer silly";

Item 5: Eliminate obsolete objects references

We haven't come up against this one yet. But when you don't need an object anymore, overwrite its

reference with null to force garbage collection.

Item 13: Favor immutability

We do this with our Location and Size classes.

Item 14: Favor composition over inheritance

We are doing this too. It's usually better to have an object that contains other helper objects, rather

than to try to bundle everything into parent classes.

Item 15: Design and document for inheritance or else prohibit it

Item 16: Prefer interfaces to abstract classes

Week 03: Object-Oriented Design - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (16 of 18) [8/26/08 5:16:23 PM]

Item 17: Use interfaces only to define types

Item 19: Replaces structures with classes

Bloch recommends avoiding this:

class Point {

 public float x;

 public float y;

}

and instead doing this:

class Point {

 private float x;

 private float y;

 public Point(float x, float y) {

 this.x = x;

 this.y = y;

 }

 public float getX() { return x; }

 public float getY() { return y; }

 public void setX(float x) { this.x = x; }

 public void setY(float y) { this.y = y; }

}

Week 03: Object-Oriented Design - Cs3773

CS 3773

● Main Page

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (17 of 18) [8/26/08 5:16:23 PM]

Did you notice that Bloch violates his own rules about immutability and static factory members?

Item 20: Replace unions with class hierarchies

Readings
● Day 6, Packages, Interfaces, and Other Class Features, Teach Yourself Java in 21 Days,

● Read the Java Tutorials Lesson on Packages

● Taming the Tiger: Teaching the Next Version of Java™ , Jeremy D. Frens, SIGCSE'04

● Previous: Week 02: Classes

● Next: Week 04: I/O

Category: JavaWeek

�❍ Be sure you understand the Q&A on p. 178.

�❍ Take the Quiz on p. 179

�❍ Answer the Certification Practice on pp. 179-180

�❍ Do the exercises on p. 181 (not graded)

�❍ Do the Java Tutorial Questions and Exercises on Packages]

http://java.sun.com/docs/books/tutorial/java/package/index.html
https://domex.nps.edu/cs3773/wiki/images/6/6b/P151-frens.pdf
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit
http://java.sun.com/docs/books/tutorial/java/package/QandE/packages-questions.html

Week 03: Object-Oriented Design - Cs3773

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 08:21, 24 January 2008.This page has been accessed 202 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_03:_Object-Oriented_Design (18 of 18) [8/26/08 5:16:23 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_03:_Object-Oriented_Design
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_03:_Object-Oriented_Design
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_03:_Object-Oriented_Design&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_03:_Object-Oriented_Design&oldid=610
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 04: I/O - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (1 of 25) [8/26/08 5:16:35 PM]

Week 04: I/O Log in / create account

● Previous: Week 03: Object-Oriented Design

● Next: Week 05: Basic Graphics and GUI with AWT and Swing

● Week 3 Redux

I/

O

Week 4

shortname
I/

O

Contents

● 1 Goals

● 2 Notes

�❍ 2.1 Null reference exceptions

�❍ 2.2 Uses of Java Exceptions

�❍ 2.3 Typical Java exceptions

�❍ 2.4 Catching One Exception

�❍ 2.5 Catching Multiple Exceptions

�❍ 2.6 Java Exception Classes and Instances

�❍ 2.7 Printing the stack trace

�❍ 2.8 The finally statement

�❍ 2.9 Checked vs. Unchecked Exceptions

�❍ 2.10 Throwing Exception

�❍ 2.11 Throwing Another Exception

�❍ 2.12 Making your own exceptions

�❍ 2.13 Reporting Exceptions

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_04:_I/O&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_04:_I/O&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_04:_I/O&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_04:_I/O
https://domex.nps.edu/cs3773/wiki/index.php/Week_3_Redux

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (2 of 25) [8/26/08 5:16:35 PM]

Goals

Notes

Null reference exceptions

Many students have been encountering errors that look like this:

Exception in thread "main" java.lang.NullPointerException

 at ChaseBot.rangeToTarget(ChaseBot.java:21)

 at A.main(A.java:5)

This is a stack trace. You read it from the top down:

● Exceptions - try/catch/finally/throws

● I/O Exceptions

● Keyboard input

● Streams, Buffered Streams

● Files

● Persistance

● SQL/MySQL/JDBC

This is a draft right now; it should be ready by Monday morning.

Exception in thread "main" java.lang.NullPointerException

This means that there was a Null Pointer Exception, which means that there was an attempt to reference

a method or field of a pointer, but the pointer pointed to null .

at ChaseBot.rangeToTarget(ChaseBot.java 21)

● 3 Readings

● 4 Technologies

● 5 See Also

�❍ 2.14 Notes on Exceptions

�❍ 2.15 Assertions

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (3 of 25) [8/26/08 5:16:35 PM]

Let's look at the ChaseBot.rangeToTarget method. The numbers on the left are line numbers:

20 public double rangeToTarget(){

21 double dx = target.getCenter().x-this.getCenter().x;

22 double dy = -(target.getCenter().y-this.getCenter().y);

23 return Math.sqrt(dx*dx + dy*dy);

24 }

In line 21, you'll see that there is an attempt to run the getCenter() method of target and of this .

The variable this is always set (it's always the object which has received the method), but the

instance variable target is only set if somebody has called the object's setTarget() method.

Now it's time to look at the file A.java. This is test program that was constructed to demonstrate

the exception:

public class A {

 public static void main(String[] args){

 ChaseBot b1 = new ChaseBot(new Location(10,10),1.0);

 ChaseBot b2 = new ChaseBot(new Location(20,20),1.0);

 System.out.printf("b1 range to b2: %g %n",b1.rangeToTarget());

 }

}

So what's clearly happened is that we've asked b1 to calculate its range to the target, but we never gave it

a target. So it's thrown a null reference exception. The fix is easy: just set the target!

 public static void main(String[] args){

This tells you where the exception took place: the rangeToTarget method in the ChaseBot class,

and specifically at line 21 inside the file (which is going to be the ChaseBot.java file)

at A.main(A.java 5)

This tells you where the call was made to the ChaseBot.rangetoTarget() method. The call was made

in the method A.main, specifically line 7 of the file A.java.

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (4 of 25) [8/26/08 5:16:35 PM]

 ChaseBot b1 = new ChaseBot(new Location(10,10),1.0);

 ChaseBot b2 = new ChaseBot(new Location(20,20),1.0);

 b1.setTarget(b2);

 System.out.printf("b1 range to b2: %g %n",b1.rangeToTarget());

 }

And now we'll get the answer:

$ java A

b1 range to b2: 14.1421

$

Uses of Java Exceptions

Exceptions don't have to make your program crash: Java gives us tools to allow programs to

catch exceptions and do intelligent error recovery. This allows your program to deal with

exceptional cases, rather than simply crashing.

All programming languages have a strategy for dealing with runtime errors. In C the traditional approach

is to look at the return codes of system calls. For example, if you want to open a file in C, you use

code like this:

 File *f = fopen("filename.txt","r");

The C documentation says that you need to examine the return code of "fopen" to see if the file is

properly opened or not:

 File *f = fopen("filename.txt","r");

 if(f==0) {

 printf("File filename.txt not found\n");

 }

Usually this happens in a function, so you need to return:

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (5 of 25) [8/26/08 5:16:35 PM]

 File *f = fopen("filename.txt","r");

 if(f==0) {

 printf("File filename.txt not found\n");

 return -1;

 }

Of course, there may be several reasons that you can't open the file. It may not exist, or there may be

a permission error, or there may be an IO error (disk failure). In C this information is stored in a

global variable called errno which you need to inspect:

 File *f = fopen("filename.txt","r");

 if(f==0) {

 if(errno==ENOENT) {

 printf("File filename.txt not found\n");

 return -1;

 }

 if(errno==EPERM){

 printf("You do not have permission to open filename.txt\n");

 exit(0);

 }

 if(errno==EIO){

 printf("I/O error on opening the file. Get help! Your hard drive is

crashing!\n");

 get_help();

 }

 }

To read the file we need to use the fread() function, which can also return errors --- it can return end-

of-file, but it can also return I/O errors and other errors as well. Then you need to close the file with

close(), and that can generate errors too. Each time you call a system call, you need to check all of

the return codes and handle them appropriate. Ick. This is getting way out of control!

Java takes a different approach: any method can throw an exception. This creates an error

condition which must be caught. Exception handling roughly follows this procedure:

1. Is the exception caught in the method that generated the exception?

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (6 of 25) [8/26/08 5:16:35 PM]

In your code, you were getting a stack trace and having your program terminated because you were

not catching the Null reference exception. Your error, incidentally, is not that you were not catching

the exception --- your error was that you were not setting the instance variable. In general you

should not catch the null reference exception when you are developing code. You should,

instead, write your code so that you don't get null reference exceptions.

Typical Java exceptions

Here are some typical Java exceptions and examples of what an intelligent program might want to do

with them:

2. If you reach the top of the callstack, then this is an uncaught exception. Print the stack trace and

terminate the current thread.

ArithmeticException Division by 0.

IllegalFormatConversionException Illeagal format in a printf statement

IOException
Something bad happened when your program was trying to read or write a

file. Perhaps the file didn't exist, perhaps the disk is failing.

URISyntaxException
An invalid URL or URI was given to a parser. For example, you may have

tried to open the URL httpx://www.nps.edu/.

PrintException Your program tried to print something, and for some reason it can't print.

SQLException Your program sent invalid SQL to the database server.

UnsupportedLookAndFeelException

Your program asked to use a look and feel that is not available on the

current platform. For example, you may have told your program to use the

Macintosh look and feel and it may be running on Windows.

SAXException You attempted to parse invalid XML

1. if so, run the code that catches the exception.

2. If not, go to the method that called the current method and repeat step #1

Exception Typical uses

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (7 of 25) [8/26/08 5:16:35 PM]

Catching One Exception

Here is some simple code that calculates the mysterious B function:

public class B {

 int total=0;

 public B(int startValue){

 this.total = startValue;

 }

 int calc(){

 /* Calculate a complicated function of i,j and k */

 for(int q = 1; q< 20;q+=1){

 total += total/q;

 total += (total-30) / (total);

 }

 return total;

 }

 public static void main(String[] args){

 int initialValue = Integer.parseInt(args[0]);

 B b = new B(initialValue);

 System.out.printf("b.calc()=%d %n",b.calc());

 }

}

Let's run it a few times:

$ java B 1

b.calc()=-20

$ java B 2

b.calc()=8

And here's the exception:

$ java B 3

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (8 of 25) [8/26/08 5:16:35 PM]

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at B.calc(B.java:10)

 at B.main(B.java:19)

So now we have a complicated piece of code which sometimes generates a fatal error. We could try

to figure out every possible condition that might generate the error, but that's not the correct

approach. This is an error based on user input. We just need to tell the user that the function doesn't

work with that input. To do this, we need to catch the exception:

 public static void main(String[] args){

 int initialValue = Integer.parseInt(args[0]);

 B b = new B(initialValue);

 try{

 System.out.printf("b.calc()=%d %n",b.calc());

 } catch (ArithmeticException e){

 System.out.printf("The B function cannot be calcualted for %d %

n",initialValue);

 }

 }

When this runs, we get:

$ java B 3

The B function cannot be calculated for 3

$

Catching Multiple Exceptions

It turns out that there are two different ways that the user can give us invalid input:

These generate different exceptions:

1. The user can supply a non-numeric argument

2. The user can supply no argument

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (9 of 25) [8/26/08 5:16:35 PM]

$ java B f

Exception in thread "main" java.lang.NumberFormatException: For input string: "f"

 at java.lang.NumberFormatException.forInputString

(NumberFormatException.java:48)

 at java.lang.Integer.parseInt(Integer.java:447)

 at java.lang.Integer.parseInt(Integer.java:497)

 at B.main(B.java:16)

$ java B

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

 at B.main(B.java:16)

$

This code catches both exceptions:

 public static void main(String[] args){

 int initialValue;

 try {

 initialValue = Integer.parseInt(args[0]);

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("You must supply at least one argument");

 return;

 } catch (NumberFormatException e){

 System.out.println("You must supply a number.");

 return;

 }

 B b = new B(initialValue);

 try {

 System.out.printf("b.calc()=%d %n",b.calc());

 } catch (ArithmeticException e){

 System.out.printf("The B function cannot be calcualted for %d %

n",initialValue);

 }

 }

Java Exception Classes and Instances

In this code:

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (10 of 25) [8/26/08 5:16:35 PM]

 } catch (ArithmeticException e){

The variable e is your exception variable. it's actually a local variable that is set to be the value of

the exception.

There are some important things about Java exceptions that make them very different from C+

+ exceptions (but very similar to Python exceptions):

Printing the stack trace

Even if you catch the exception, you may still want to print the stack trace. You do this by calling

the exception object's printStackTrace() method, like this:

 B b = new B(initialValue);

 try {

 System.out.printf("b.calc()=%d %n",b.calc());

 } catch (ArithmeticException e){

 System.out.printf("The B function cannot be calcualted for %d %

n",initialValue);

 e.printStackTrace();

 }

And here is the code in action:

$ java B 3

The B function cannot be calcualted for 3

java.lang.ArithmeticException: / by zero

 at B.calc(B.java:10)

● Exceptions generated in your code are represented as instances of Exception Classes

● All exception classes inherit from the base class java.lang.Exception which, itself, is a subclass of

java.lang.Throwable

● You can create your own exceptions by subclassing Exception.

● You can throw your own exceptions with the throw statement.

● There is another subclass of Throwable called Error. These generally aren't caught.

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (11 of 25) [8/26/08 5:16:35 PM]

 at B.main(B.java:30)

$ %

Notice that the stack trace is printed for where the exception happened, not where it was printed.

The finally statement

You may want to have some code that always runs:

This is what the finally statement is for. You might use it:

Here is an example:

 B b = new B(initialValue);

 try {

 System.out.printf("b.calc()=%d %n",b.calc());

 } catch (ArithmeticException e){

 System.out.printf("The B function cannot be calcualted for %d %

n",initialValue);

 e.printStackTrace();

 return;

 } finally {

 System.out.println("This code always runs");

 }

Notice that the return statement now appears after the e.printStackTrace();

Here's what it looks like when the code runs:

$ java B 2

● If an exception is thrown.

● If no exception is thrown.

● If there is a return statement.

● To erase a temporary file.

● To print some kind of special message.

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (12 of 25) [8/26/08 5:16:35 PM]

b.calc()=8

This code always runs

$ java B 3

The B function cannot be calcualted for 3

java.lang.ArithmeticException: / by zero

 at B.calc(B.java:10)

 at B.main(B.java:30)

This code always runs

$

Checked vs. Unchecked Exceptions

Java programmers use the term checked exception to indicate that method call that might generate

an exception that happens within an appropriate try {} catch {} block. The phrase unchecked

exception refers to an exception that is thrown without being in an appropriate block.

The compiler will force you to check all methods that can throw an exception unless the exception is

a subclass of RuntimeException or any of its subclasses.

Checked Exceptions

● Used for runtime error conditions that are expected to occur and must be handled.

● Occur even after a program has been tested and deployed in the field.

● Must be declared if you throw them (see below)

Unchecked Exceptions

● Used for runtime errors that are not expected to occur.

● Things you want to catch when the program is in development.

● Usually the result of a bug in your program.

● Represent defects in the program

java.lang.ArithmeticException is a subclass of java.lang.RuntimeException and is therefore

unchecked. You do not need to check for this exception. If it were a checked exception, then every

time you wanted to have a division, you would need to put it in a try {} catch {} block, and that would be

a huge pain.

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (13 of 25) [8/26/08 5:16:35 PM]

Throwing Exception

So let's say you want to throw an exception....

In the ChargedBot() class, you may have a method that computes the electrostatic attractive force

between two bots:

 public double electrostaticForce(ChargedBot cb){

 double range = rangeToObject(cb);

 return -(charge * cb.charge) / (range*range);

 }

What happens if two bots are in the same position?

We want to generate an ArithmeticException, but don't want it to say "divide by 0." We want it to

say something that will make sense to the programmer.

Here is the code that does it:

 public double electrostaticForce(ChargedBot cb){

 double range = rangeToObject(cb);

 if(range==0) throw new ArithmeticException("Two bots cannot occupy the

same space");

 return -(charge * cb.charge) / (range*range);

 }

Notice:

● range will be 0

● This will generate a divide-by-zero error.

● This will make NO SENSE TO THE PROGRAMMER!

● To throw an exception, we say throw <object>

● Before we can throw, we need to make the exception object (new ArithmeticException(""))

● ArithmeticException's constructor takes an optional String s which creates a detail message . http://

java.sun.com/j2se/1.5.0/docs/api/java/lang/ArithmeticException.html

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ArithmeticException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ArithmeticException.html

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (14 of 25) [8/26/08 5:16:35 PM]

Instead of saying this:

 if(range==0) throw new ArithmeticException("Two bots cannot occupy

the same space");

We could use ugly code :

 if(range==0){

 ArithmeticException e = new ArithmeticException("Two bots

cannot occupy the same space");

 throw e;

 }

That e is the same instance that would be picked up by the appropriate catch statement.

Throwing Another Exception

We could bullet-proof the ChaseBot.setTarget method to make sure that nobody ever sets a bot to

chase itself:

 public void setTarget(FlatlandObject aTarget){

 if(aTarget==this) throw new RuntimeException("ChaseBots cannot

chase themselves");

 target = aTarget;

 }

Making your own exceptions

Instead of having electrostaticForce() throw an ArithmeticException, we may wish to create a new

Exception class --- call it a RangeException.

 public class RangeException extends RuntimeException {

 RangeException(String message){

 super(message);

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (15 of 25) [8/26/08 5:16:35 PM]

 }

 }

Then to throw it, you would say:

 if(range==0) throw new RangeException("Two bots cannot occupy the

same space");

There are two places you could put the RangeException:

 /** Inner exception class for invalid electrostatic

force calculation

 */

 public class RangeException extends RuntimeException {

 RangeException(String message){

 super(message);

 }

 }

 /

**

 * returns the electrostatic force applied by the

provided object.

 * where the electrostatic force is proportional to

the product

 * of the two charge divided by the distance

between them.

 */

 public double electrostaticForce(ChargedBot cb){

 double range = rangeToObject(cb);

 if(range==0) throw new RangeException("Two bots cannot occupy the

same space");

 return -(charge * cb.charge) / (range*range);

 }

● In a file called RangeException.java

● As an inner class within the ChargeBot.java file, like this:

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (16 of 25) [8/26/08 5:16:35 PM]

Reporting Exceptions

Methods that can throw a checked exceptions must report which exceptions they throw.

Because RangeException extends RuntimeException, it doesn't need to be checked.

Here is a weird X class and related function:

public class X {

 int tally = 0;

 public int calc(int n){

 if(n==5) throw new RuntimeException("We do not like n==5");

 tally += n;

 return tally+n*n;

 }

 public void print10(){

 for(int i=0;i<10;i++){

 System.out.printf("calc(%d)=%d %n",i,calc(i));

 }

 }

 public static void main(String[] args){

 X obj = new X();

 obj.print10();

 }

}

And here's it running:

$ java X

calc(0)=0

calc(1)=2

calc(2)=7

calc(3)=15

calc(4)=26

Exception in thread "main" java.lang.RuntimeException: We do not like n==5

 at X.calc(X.java:4)

 at X.print10(X.java:11)

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (17 of 25) [8/26/08 5:16:35 PM]

 at X.main(X.java:18)

$

If calc threw an Exception and not a RuntimeException, it wouldn't compile.

Here is the modified code:

 public int calc(int n){

 if(n==5) throw new Exception("We do not like n==5");

 tally += n;

 return tally+n*n;

 }

And here is what happens when it is compiled:

$ javac X.java

X.java:4: unreported exception java.lang.Exception; must be caught or declared to

be thrown

 if(n==5) throw new Exception("We do not like n==5");

 ^

1 error

$

 public int calc(int n) throws Exception{

 if(n==5) throw new Exception("We do not like n==5");

 tally += n;

 return tally+n*n;

 }

But the X.class still won't compile:

$ javac X.java

X.java:11: unreported exception java.lang.Exception; must be caught or declared

The calc() method needs to be modified:

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (18 of 25) [8/26/08 5:16:35 PM]

to be thrown

 System.out.printf("calc(%d)=%d %n",i,calc(i));

 ^

1 error

$

Look at the code:

public class X {

 int tally = 0;

 public int calc(int n) throws Exception{

 if(n==5) throw new Exception("We do not like n==5");

 tally += n;

 return tally+n*n;

 }

 public void print10(){

 for(int i=0;i<10;i++){

 System.out.printf("calc(%d)=%d %n",i,calc(i));

 }

 }

 public static void main(String[] args){

 X obj = new X();

 obj.print10();

 }

}

public class X {

● print10 doesn't catch the Exception().

● You can see this by looking at the code.

● So can the compiler!

Two ways to get the code to compile

Approach #1 --- Catch the Exception

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (19 of 25) [8/26/08 5:16:35 PM]

 int tally = 0;

 public int calc(int n) throws Exception{

 if(n==5) throw new Exception("We do not like n==5");

 tally += n;

 return tally+n*n;

 }

 public void print10(){

 for(int i=0;i<10;i++){

 try{

 System.out.printf("calc(%d)=%d %n",i,calc(i));

 } catch(Exception e){

 System.out.println("Woot! Got an exception:");

 e.printStackTrace();

 }

 }

 }

 public static void main(String[] args){

 X obj = new X();

 obj.print10();

 }

}

$ javac X.java

$ java X

calc(0)=0

calc(1)=2

calc(2)=7

calc(3)=15

calc(4)=26

Woot! Got an exception:

java.lang.Exception: We do not like n==5

 at X.calc(X.java:4)

 at X.print10(X.java:12)

 at X.main(X.java:23)

calc(6)=52

calc(7)=72

calc(8)=95

calc(9)=121

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (20 of 25) [8/26/08 5:16:35 PM]

$

public class X {

 int tally = 0;

 public int calc(int n) throws Exception{

 if(n==5) throw new Exception("We do not like n==5");

 tally += n;

 return tally+n*n;

 }

 public void print10() throws Exception {

 for(int i=0;i<10;i++){

 System.out.printf("calc(%d)=%d %n",i,calc(i));

 }

 }

 public static void main(String[] args){

 X obj = new X();

 obj.print10();

 }

}

Compile it:

$ javac X.java

X.java:17: unreported exception java.lang.Exception; must be caught or declared

to be thrown

 obj.print10();

 ^

1 error

$

Now the compiler knows that main() is not catching the exception. It needs to be fixed too:

public class X {

 int tally = 0;

Approach #2 --- Declare print10() as throwing the exception

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (21 of 25) [8/26/08 5:16:35 PM]

 public int calc(int n) throws Exception{

 if(n==5) throw new Exception("We do not like n==5");

 tally += n;

 return tally+n*n;

 }

 public void print10() throws Exception {

 for(int i=0;i<10;i++){

 System.out.printf("calc(%d)=%d %n",i,calc(i));

 }

 }

 public static void main(String[] args){

 X obj = new X();

 try{

 obj.print10();

 } catch(Exception e){

 System.out.println("Woot! Got an exception:");

 e.printStackTrace();

 }

 }

}

$ javac X.java

$ java X

calc(0)=0

calc(1)=2

calc(2)=7

calc(3)=15

calc(4)=26

Woot! Got an exception:

java.lang.Exception: We do not like n==5

 at X.calc(X.java:4)

 at X.print10(X.java:11)

 at X.main(X.java:18)

$

Note:

● This time the loop doesn't restart. (why not?)

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (22 of 25) [8/26/08 5:16:35 PM]

Notes on Exceptions

Assertions

Java has a system called Assertions which allow you to specify invariants. This is done with the

assert keyword.

This code:

 public void setTarget(FlatlandObject aTarget){

 if(aTarget==this) throw new RuntimeException("ChaseBots cannot

chase themselves");

 target = aTarget;

 }

Could be rewritten like this:

 public void setTarget(FlatlandObject aTarget){

 assert aTarget!=this;

 target = aTarget;

 }

When you run a program with assertions, you must give the Java runtime the -ea or -

enableassertions flag (enable assertions).

Here is a little demo program:

public class x {

 public static void main(String[] args){

 assert false;

● Exceptions are SLOW --- use them only for exceptional conditions (Bloch Item 39)

● Avoid Unnecessary use of checked exceptions (Bloch Item 41) --- Frequently the exceptions you

throw should be unchecked.

● Throw exceptions appropriate to the abstraction (Bloch item 43) (NoSuchUser instead of SQLException) [1]

http://www.ibm.com/developerworks/java/library/j-jtp05254.html

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (23 of 25) [8/26/08 5:16:35 PM]

 }

}

And let's run it:

$ java x

$ java -ea x

Exception in thread "main" java.lang.AssertionError

 at x.main(x.java:3)

$ java -enableassertions x

Exception in thread "main" java.lang.AssertionError

 at x.main(x.java:3)

Assertion theory:

BAD PROGRAM EXAMPLE:

assert (i=j) == k;

● Put lots of assertions in when developing the code.

● Run with -ea during Q&A.

● Run without -ea when the product is shipped and running in the field.

Advantages of assertions:

● Clear language Support

● Clearly document expected internal state (e.g., assert radius>0)

● Easy to disable in production code without having to edit your source file.

Disadvantages of assertions:

● They get disabled in the field, so people don't know if the program is not performing properly.

● Hard to give meaningful feedback other than assertion failed.

● An assertion statement that has a side-effect will change behavior if assertions are turned off.

Week 04: I/O - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (24 of 25) [8/26/08 5:16:35 PM]

See also: Programming with Assertions

Readings
For Tuesday:

For Wednesday:

This Week:

If you purchased Head First Java, you should now be familiar with these chapters:

For this week, read:

Technologies

See Also

● Java Tutorial trail on exceptions

● Teaching Defensive Programming in Java, Marsha Zaidman, 2003.

● Day 7: Exceptions, Assertions, and Threads, in Teach Yourself Java in 21 days

● Chapter 1, Breaking the Surface

● Chapter 2, A Trip to Objectville

● Chapter 3, Know your Variables

● Chapter 4, How Objects Behave

● Chapter 7, Better Living in Objectville

● Chapter 9, Life and Death of an Object

● Chapter 10, Numbers Matter

● Chapter 11, Risky Behavior.

Checked vs. unchecked exceptions

● http://www.javapractices.com/topic/TopicAction.do?Id=129

● http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html

● http://www.ibm.com/developerworks/java/library/j-jtp05254.html

http://java.sun.com/j2se/1.5.0/docs/guide/language/assert.html
http://java.sun.com/docs/books/tutorial/essential/exceptions/
https://domex.nps.edu/cs3773/wiki/images/2/2f/P33-zaidman.pdf
http://www.javapractices.com/topic/TopicAction.do?Id=129
http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html
http://www.ibm.com/developerworks/java/library/j-jtp05254.html

Week 04: I/O - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 06:20, 30 January 2008.This page has been accessed 245 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_04:_I/O (25 of 25) [8/26/08 5:16:35 PM]

Search

● http://www.psynixis.com/blog/2007/06/06/the-ungreat-checkedunchecked-exceptions-debate/

● http://java.sun.com/docs/books/tutorial/essential/exceptions/runtime.html

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_04:_I/O
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_04:_I/O
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_04:_I/O&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_04:_I/O&oldid=735
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer
http://www.psynixis.com/blog/2007/06/06/the-ungreat-checkedunchecked-exceptions-debate/
http://java.sun.com/docs/books/tutorial/essential/exceptions/runtime.html
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 05: Basic Graphics and GUI with AWT and Swing - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing (1 of 6) [8/26/08 5:16:51 PM]

Week 05: Basic Graphics and GUI with AWT
and Swing

Log in / create account

● Slides: Media:Week5.pdf Week 5 slides are posted.

● Media:Week5b.pdf Tuesday's slides

● Media:Week5c.pdf Thursday's slides

● Previous: Week 04: I/O

● Next: Week 06: Java 2D and 3D

Basic Graphics and GUI with AWT and

Swing

Week 5

shortname Swing

Contents

● 1 Goals

● 2 Notes

● 3 Consider a simple Swing Program:

● 4 See Also

�❍ 2.1 JFrame

�❍ 2.2 JComponent

�❍ 2.3 Layout Managers

https://domex.nps.edu/cs3773/wiki/index.php/Talk:Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing
https://domex.nps.edu/cs3773/wiki/images/9/9e/Week5.pdf
https://domex.nps.edu/cs3773/wiki/images/7/75/Week5b.pdf
https://domex.nps.edu/cs3773/wiki/images/b/b5/Week5c.pdf

Week 05: Basic Graphics and GUI with AWT and Swing - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing (2 of 6) [8/26/08 5:16:51 PM]

Goals

Notes
Additions onto the class notes:

JFrame

● Anonymous classes and pseudo-function pointers

● Swing

● HelloWorldSwing (anonymous classes)

● Basic GUI components

● Containment Hierarchy

● Frames, event-driven programming,

● Events & Listeners.

● http://java.sun.com/docs/books/tutorial/uiswing/components/jcomponent.

html

● The Java Tutorial has a nice page on Using Top-Level Containers JFrame,

JDialog, and JApplet.

● 5 Readings

● 6

�❍ 4.1 Some good examples of Swing applications

�❍ 4.2 Information on CSS

http://java.sun.com/docs/books/tutorial/uiswing/components/jcomponent.html
http://java.sun.com/docs/books/tutorial/uiswing/components/jcomponent.html
http://java.sun.com/docs/books/tutorial/uiswing/components/toplevel.html

Week 05: Basic Graphics and GUI with AWT and Swing - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing (3 of 6) [8/26/08 5:16:51 PM]

JComponent

Layout Managers

Layout managers describe how JComponents added to a JComponent or a JFrame

are layed out.

The one "gatcha," as Sun calls it, is that the contentPane of the JFrame is a

Container and not a JComponent. Sun says you need to do one of the following:

Sun recommends the following. Here is an easy way to do it:

//Create a panel and add components to it.

JPanel contentPane = new JPanel(new BorderLayout());

contentPane.setBorder(someBorder);

contentPane.add(someComponent, BorderLayout.CENTER);

contentPane.add(anotherComponent, BorderLayout.PAGE_END);

topLevelContainer.setContentPane(contentPane);

Fourth GUI in the SVN repository has been updated to follow this approach.

Consider a simple Swing Program:

● Java Layout Page

1. Typecast the return value.

2. Create your own component to cover the content pane.

http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html

Week 05: Basic Graphics and GUI with AWT and Swing - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing (4 of 6) [8/26/08 5:16:51 PM]

import javax.swing.*;

public class FirstGUI {

 public static void main(String[] args) {

 JFrame frame = new JFrame();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(300,300);

 frame.setVisible(true);

 }

}

This program will create a window with no functionality. All Swing objects are

JFrame objects. This includes windows, buttons, etc.

Now we add a clickable button

public class FirstGUI {

 public static void main(String[] args) {

 JFrame frame = new JFrame();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("click me");

 frame.getContentPane().add(button);

 frame.setSize(300,300);

 frame.setVisible(true);

 }

}

See Also

Week 05: Basic Graphics and GUI with AWT and Swing - Cs3773

CS 3773
https://domex.nps.edu/cs3773/wiki/index.php/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing (5 of 6) [8/26/08 5:16:51 PM]

Some good examples of Swing applications

Information on CSS

Readings

● http://examples.oreilly.com/jswing2/code/

● http://www.javabeginner.com/java-swing-tutorial.htm

● http://www.w3schools.com/css/

● Read the Wikipedia article on the Therac-25

● Please skim the Therac-25 article

● A streaming lecture on the Therac-25 [1]

● Previous: Week 04: I/O

● Next: Week 06: Java 2D and 3D

Category: JavaWeek

http://examples.oreilly.com/jswing2/code/
http://www.javabeginner.com/java-swing-tutorial.htm
http://www.w3schools.com/css/
http://en.wikipedia.org/wiki/Therac-25
https://domex.nps.edu/cs3773/wiki/images/3/3b/Therac-25.pdf
http://wla.berkeley.edu/data/cs61a_spring2005/lec_37_cs61a_therac25.html#software_reliability_therac_failures_title
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 05: Basic Graphics and GUI with AWT and Swing - Cs3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 16:25, 8 February 2008.This page has been accessed 173 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing (6 of 6) [8/26/08 5:16:51 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_05:_Basic_Graphics_and_GUI_with_AWT_and_Swing&oldid=831
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 06: More Swing - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_Java_2D_and_3D (1 of 6) [8/26/08 5:17:03 PM]

Week 06: More Swing
(Redirected from Week 06: Java 2D and 3D)

Goals

Log in / create account

● Week 6 Slides - Monday

● Week 6 Slides - Thursday

● Previous: Week 05: Basic Graphics and GUI with AWT and Swing

● Next: Week 07: Unicode, Text & Internationalization

● Media:Lecture15.pdf

Java 2D and

3D

Week 6

shortname 2D and 3D

Contents

● 1 Goals

● 2 Class Notes

● 3 Readings

● 4 References

● 5

�❍ 2.1 Applet Examples

�❍ 2.2 NetBeans GUI Builder (Matisse)

https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_More_Swing
https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_06:_More_Swing&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_06:_More_Swing&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_06:_More_Swing&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_06:_Java_2D_and_3D&redirect=no
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_06:_More_Swing
https://domex.nps.edu/cs3773/wiki/images/0/09/Week6.pdf
https://domex.nps.edu/cs3773/wiki/images/b/b6/Week6b.pdf
https://domex.nps.edu/cs3773/wiki/images/3/3e/Lecture15.pdf

Week 06: More Swing - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_Java_2D_and_3D (2 of 6) [8/26/08 5:17:03 PM]

Class Notes

Applet Examples

NetBeans GUI Builder (Matisse)

Readings
By the end of this week you should be comfortable writing programs using JFC/

Swing. In our book Teach Yourself Java in 21 Days you should read and be familiar

with the material in these chapters:

● Applets

● Really understand Swing

● Building GUI's with the NetBeans GUI builder.

● A mime.types file

● IANA's official mime.types

● Java3D with applet tags

● Week6 Applet Demo

● GUI Builder home page

● Quick Start Guide

● Java GUIs and Project Matisse Learning Trail at netbeans.org

● John O'Conner's Java.net blog post

● Day 9: Working with Swing

● Day 10: Building a Swing Interface

● Day 11: Arranging Components on a User Interface

https://domex.nps.edu/cs3773/wiki/index.php/Mime.types
http://www.iana.org/assignments/media-types/
https://java3d.dev.java.net/applets/FourByFour.html
https://domex.nps.edu/cs3773/week6
http://form.netbeans.org/
http://www.netbeans.org/kb/50/quickstart-gui.html
http://www.netbeans.org/kb/articles/matisse.html
http://weblogs.java.net/blog/joconner/archive/2006/10/fighting_with_n.html

Week 06: More Swing - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_Java_2D_and_3D (3 of 6) [8/26/08 5:17:03 PM]

If you are working in Head First Java, be familiar with these chapters:

Wednesday Reading: Originally we were going to read this article:

Instead, we will try something different.

Pick one of the following Java visualization toolkits. Spend 30 minutes learning

what you can about it. Read the documentation, look at the screen shots, see if

you can download a demo and get something to work. Be prepared to speak for 2-

3 minutes about the toolkit of your choice (those in bold were from the original

list):

● Day 12: Responding to User Input

● Day 13: Using Color, Fonts, and Graphics

● Chapter 12: A Very Graphic Story

● Chapter 13: Work on your Swing

● Visualizing Java in Action, Steven P. Reiss, Software Visualization, 2003

● JUNG

● Improvise

● Graph Interface Library (GINY) - Java

● Gravisto: Graph Visualization Toolkit - An editor and toolkit for developing

graph visualization algorithms.

● HyperGraph - Hyperbolic trees, in Java. Check out the home page. Try clicking

on the logo...

● InfoViz Toolkit - Java, originally developed at INRA. Does not appear to be

currently maintained Tmrashid 08:41, 13 February 2008 (PST)

https://domex.nps.edu/cs3773/wiki/images/6/67/P57-reiss.pdf
http://jung.sourceforge.net/
http://www.personal.psu.edu/faculty/c/e/cew15/improvise/index.html
http://csbi.sourceforge.net/index.html
http://www.gravisto.org/
http://hypergraph.sourceforge.net/
http://ivtk.sourceforge.net/
https://domex.nps.edu/cs3773/wiki/index.php?title=INRA&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=User:Tmrashid&action=edit

Week 06: More Swing - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_Java_2D_and_3D (4 of 6) [8/26/08 5:17:03 PM]

References

● Jdigrah - Java Directed Graphs.

● JGraphT - A Java visualization kit designed to be simple and extensible.

● Linguine Maps - An open-source Java-based system for visualizing software

call maps.

● Perfuse - A Java-based toolkit for building interactive information

visualization applications

● Rox Graph Theory Framework - An open-source plug-in framework for graph

theory visualization.

● TouchGraph - Library for building graph-based interfaces.

● VisAD - A Java component library for interactive and collaborative

visualization.

● The Visualization Toolkit - C++ multi-platform with interfaces available

for Tcl/Tk, Java and Python. Professional support provided by Kitware.

● Zoomable Visual Transformation Machine - Java. Originally started at Xerox

Research Europe.

● Processing.org - A new language for doing graphics and visualization.

● javax.swing.JPanel

● java.awt.Desktop

● java.awt.SystemTray

● Article about using the System Tray

● Painting in AWT and Swing: Good Painting Code Is the Key to App Performance,

by Amy Fowler

https://jdigraph.dev.java.net/
http://jgrapht.sourceforge.net/
http://www.softwaresecretweapons.com/jspwiki/Wiki.jsp?page=LinguineMaps
http://prefuse.org/
http://www.gnu.frb.br:8080/rox
http://touchgraph.sourceforge.net/
http://www.ssec.wisc.edu/~billh/visad.html#intro
http://public.kitware.com/VTK/
http://www.kitware.com/
http://zvtm.sourceforge.net/index.html
http://processing.org/
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JPanel.html
http://java.sun.com/javase/6/docs/api/java/awt/Desktop.html
http://java.sun.com/javase/6/docs/api/java/awt/SystemTray.html
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/systemtray/
http://java.sun.com/products/jfc/tsc/articles/painting/
http://java.sun.com/products/jfc/tsc/articles/painting/

Week 06: More Swing - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file
https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_Java_2D_and_3D (5 of 6) [8/26/08 5:17:03 PM]

Search

● Previous: Week 05: Basic Graphics and GUI with AWT and Swing

● Next: Week 07: Unicode, Text & Internationalization

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_06:_More_Swing
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_06:_More_Swing
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 06: More Swing - Cs3773

● Special pages

● Printable version

● Permanent link

This page was last modified 16:24, 14 February 2008.This page has been accessed 173 times.Content is

available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_06:_Java_2D_and_3D (6 of 6) [8/26/08 5:17:03 PM]

https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_06:_More_Swing&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_06:_More_Swing&oldid=866
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 07: Unicode, Text & Internationalization - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_07:_Unicode%2C_Text_%26_Internationalization (1 of 4) [8/26/08 5:17:11 PM]

Week 07: Unicode, Text &
Internationalization

Goals

Lucene

Log in / create account

● Media:week7.pdf

● Understand ASCII, Latin1 and Unicode

● Learn about Lucene, the open source indexing kit.

● Build an application using Lucene that will index the files on your computer.

● Previous: Week 06: Java 2D and 3D

● Next: Week 08: Threads and the System

Unicode, Text &

Internationalization

Week 7

shortname Text

Contents

● 1 Goals

● 2 Lucene

● 3 Readings

● 4

�❍ 2.1 See Also

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_07:_Unicode%2C_Text_%26_Internationalization&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_07:_Unicode%2C_Text_%26_Internationalization&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_07:_Unicode%2C_Text_%26_Internationalization&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_07:_Unicode%2C_Text_%26_Internationalization
https://domex.nps.edu/cs3773/wiki/images/8/83/Week7.pdf

Week 07: Unicode, Text & Internationalization - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_07:_Unicode%2C_Text_%26_Internationalization (2 of 4) [8/26/08 5:17:11 PM]

Lucene is the open source indexing kit. Lucene can build an index of documents

on your hard drive or on a website, and then provide you with tools for rapidly

searching that index for words or phrases.

We are learning about Lucene for several reasons:

Below are some links that you may find helpful in trying to understand Lucene:

See Also

Readings

● Working with text is hard, and Lucene does an excellent job.

● In many of your programs you may wish to rapidly search through some data.

Lucene is a fast way to do it.

● You're almost always better off using debugged code than trying to develop

something on your own.

● Using Lucene will teach you more about using other people's code.

● Lucene home page

● JavaDocs for Lucene 2.3

● Lucene getting started guide

● Lucene Download

● org.apache.lucene.demo.SearchFiles source

● org.apache.lucene.demo.IndexFiles source

● WordNet

�❍ Lucene command-line demo (try it!)

http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/2_3_0/api/index.html
http://lucene.apache.org/java/2_3_0/gettingstarted.html
http://www.apache.org/dyn/closer.cgi/lucene/java/
https://domex.nps.edu/cs3773/wiki/index.php/Org.apache.lucene.demo.SearchFiles_source
https://domex.nps.edu/cs3773/wiki/index.php/Org.apache.lucene.demo.IndexFiles_source
http://wordnet.princeton.edu/
http://lucene.apache.org/java/2_3_0/demo.html

Week 07: Unicode, Text & Internationalization - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

https://domex.nps.edu/cs3773/wiki/index.php/Week_07:_Unicode%2C_Text_%26_Internationalization (3 of 4) [8/26/08 5:17:11 PM]

We were going to read this:

You are still welcome to read it, but we will be discussing this in class:

● Comparing Java vs. C/C++ Efficiency Differences to Interpersonal Differences,

Lutz Prechelt, October 1999

● Your Passport to Proper Internationalization, Benson I. Margulies, Dr. Dobb's

Journal, May 2000.

Please read Chapter 2 of the Unicode book:

● Chapter 02

● Previous: Week 06: Java 2D and 3D

● Next: Week 08: Threads and the System

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/images/7/78/P109-prechelt.pdf
http://www.ddj.com/architect/184414603
http://www.unicode.org/versions/Unicode4.0.0/ch02.pdf
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 07: Unicode, Text & Internationalization - Cs3773
● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 06:02, 21 February 2008.This page has been accessed 130 times.Content is

available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_07:_Unicode%2C_Text_%26_Internationalization (4 of 4) [8/26/08 5:17:11 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_07:_Unicode%2C_Text_%26_Internationalization
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_07:_Unicode%2C_Text_%26_Internationalization
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_07:_Unicode%2C_Text_%26_Internationalization&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_07:_Unicode%2C_Text_%26_Internationalization&oldid=889
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 08: Threads and the System - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_08:_Threads_and_the_System (1 of 6) [8/26/08 5:17:19 PM]

Week 08: Threads and the System

Goals

Log in / create account

● Previous: Week 07: Unicode, Text & Internationalization

● Next: Week 09: Network programming with Java

Threads and the

System

Week 8

shortname Threads

Contents

● 1 Goals

● 2 Slides

● 3 Notes on Class

Topics

● 4 See Also

● 5 Readings

● 6

�❍ 3.1 Serialization

�❍ 3.2 Reflection

�❍ 5.1 See Also

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_08:_Threads_and_the_System&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_08:_Threads_and_the_System&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_08:_Threads_and_the_System&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_08:_Threads_and_the_System

Week 08: Threads and the System - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_08:_Threads_and_the_System (2 of 6) [8/26/08 5:17:19 PM]

Slides

Notes on Class Topics

Serialization

When an object is serialized, java writes a 'serialVersionUID into the object archive.

This is supposed to be a unique version number for the object that you are using.

Whenever you change the object's instance variables that are not transient, you need

to change the serialVersionUID.

If you do not declare your own serialVersionUID, the compiler will figure one up for

you at runtime. The problem with this approach, though, is that newer versions of

your object can't read older versions.

Some people put things like this into their class files:

//Added to make warning go away. private static final long serialVersionUID = 1L;

This is usually a bad idea, because it means that any change to the class will not result

in the object serialVesionUID being saved in the archive. That's fine if you want to

write code that can handle reading the older versions of your objects.

● Threads

● Synchronization

● Serialization

● Media:week8.pdf

● The Life Cycle of a Thread

https://domex.nps.edu/cs3773/wiki/images/d/d7/Week8.pdf
https://domex.nps.edu/cs3773/wiki/index.php/The_Life_Cycle_of_a_Thread

Week 08: Threads and the System - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_08:_Threads_and_the_System (3 of 6) [8/26/08 5:17:19 PM]

To get the UID, you can use the java program serialver.

Here is a sample class:

import java.io.*;

public class y implements Serializable {

 int f;

}

To get the serialVersionUID, compile it and then run serialver:

$ javac y.java

$ serialver y

y: static final long serialVersionUID = 1534365507996228659L;

$

The class should now look like this:

import java.io.*;

public class y implements Serializable {

 int f;

 static final long serialVersionUID = 1534365507996228659L;

}

If you make a change to the class, you get a different serialVersionUID:

Week 08: Threads and the System - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_08:_Threads_and_the_System (4 of 6) [8/26/08 5:17:19 PM]

import java.io.*;

public class y implements Serializable {

 int f;

 int g;

}

$ javac y.java

$ serialver y

y: static final long serialVersionUID = -4791259395666985996L;

$

Note that Eclipse (but not NetBeans) can figure this out for you if you click the

lightbulb.

Reflection

See Also

● Sun documentation on serialver command

● Sun documentation on Serializable

● Discussion on the Sun chat boards

● Managing Volatility: Guidelines for using volatile variables, Brian Goetz, Senior

Staff Engineer, Sun Microsystems, IBM Developer Works.

● Multithreaded toolkits: A failed dream?, Graham Hamilton, java.net developer's

blog, October 19, 2004.

● Java Performance Chapter 4 - I/O Performance - Nice discussion about Basic I/O,

http://java.sun.com/javase/6/docs/technotes/tools/solaris/serialver.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://forum.java.sun.com/thread.jspa?messageID=3491115&tstart=0
http://www.ibm.com/developerworks/java/library/j-jtp06197.html
http://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html

Week 08: Threads and the System - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

https://domex.nps.edu/cs3773/wiki/index.php/Week_08:_Threads_and_the_System (5 of 6) [8/26/08 5:17:19 PM]

Readings

See Also

Buffered Streams, and Serialization.

Writing Solaris Device Drivers in Java

● http://en.wikipedia.org/wiki/Trampoline_(computers)

● Previous: Week 07: Unicode, Text & Internationalization

● Next: Week 09: Network programming with Java

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/images/3/33/A3-yamauchi.pdf
http://en.wikipedia.org/wiki/Trampoline_(computers)
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 08: Threads and the System - Cs3773

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 08:07, 28 February 2008.This page has been accessed 160 times.Content is

available under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_08:_Threads_and_the_System (6 of 6) [8/26/08 5:17:19 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_08:_Threads_and_the_System
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_08:_Threads_and_the_System
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_08:_Threads_and_the_System&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_08:_Threads_and_the_System&oldid=931
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 09: Network programming with Java - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_09:_Network_programming_with_Java (1 of 5) [8/26/08 5:17:27 PM]

Week 09: Network programming with Java

Goals
You should know this by the end of this week:

Log in / create account

● Theory: TCP/IP, client/server computing, OSI Stack, Sockets

● SOAP, XMLRPC, and REST

● Downloading a web pages

● Previous: Week 08: Threads and the System

● Next: Week 10: Style and Performance

Network programming with

Java

Week 9

shortname net

Contents

● 1 Goals

● 2 Lesson Plan: Monday

● 3 Lesson Plan: Tuesday

● 4 Lesson Plan: Wednesday

● 5 Readings

● 6

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_09:_Network_programming_with_Java&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_09:_Network_programming_with_Java&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_09:_Network_programming_with_Java&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_09:_Network_programming_with_Java

Week 09: Network programming with Java - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_09:_Network_programming_with_Java (2 of 5) [8/26/08 5:17:27 PM]

You may wish to know this:

Lesson Plan: Monday

Lesson Plan: Tuesday
Things to think about:

Lesson Plan: Wednesday

● JavaSocket, Server Socket

● Review Final Project

● Show how to add a web page to the wiki

● Discuss Networking (See Goals above)

● We use the HttpURLConnection, InputStreamReader, and BufferedReader

classes to read from a URL.

● Go over modified single-threaded server

● Go over modified multi-threaded server

�❍ Is it better to read the entire web page at one time, or to read it line-

by-line, or something else?

�❍ Can you always read an entire web page?

�❍ Show with one client

�❍ Show with two simultaneous clients

�❍ Examine synchronize methods.

�❍ Show with one client

https://domex.nps.edu/cs3773/wiki/index.php/Modified_single-threaded_server
https://domex.nps.edu/cs3773/wiki/index.php/Modified_multi-threaded_server

Week 09: Network programming with Java - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_09:_Network_programming_with_Java (3 of 5) [8/26/08 5:17:27 PM]

Readings
Please review the following chapters in Teach Yourself Java 6 in 21 Days:

You may also find these chapter sot be useful for work that we have previously

discussed:

There is no reading for Wednesday; instead, David Pollack will give a special

presentation about Scala Programming Language on Thursday.

● Day 17, Communicating Across the Internet

● Day 14, Developing Swing Applications (especially the section about java

Web Start)

● Day 16, Serializing and Examining Objects (just read pages 433-442)

● Day 15, Working with Input and Output (especially pages 422-429)

Good article on threading:

● Threading Lightly, Part 1: Synchronization is not the enemy

● Previous: Week 08: Threads and the System

● Next: Week 10: Style and Performance

Category: JavaWeek

�❍ Show with two simultaneous clients

http://www.scala-lang.org/
http://www.ibm.com/developerworks/java/library/j-threads1.html
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 09: Network programming with Java - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 08:47, 5 March 2008.This page has been accessed 74 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_09:_Network_programming_with_Java (4 of 5) [8/26/08 5:17:27 PM]

Search

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_09:_Network_programming_with_Java
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_09:_Network_programming_with_Java
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_09:_Network_programming_with_Java&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_09:_Network_programming_with_Java&oldid=979
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 09: Network programming with Java - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_09:_Network_programming_with_Java (5 of 5) [8/26/08 5:17:27 PM]

Week 10: Style and Performance - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (1 of 8) [8/26/08 5:17:37 PM]

Week 10: Style and Performance

Possible Topics:

Log in / create account

● Reflection

● Memory Management

● Profiling

● GCJ

● Security Policy

● Java RMI

● Previous: Week 09: Network programming with Java

Style and

Performance

Week 10

shortname style

Contents

● 1 Reflection

● 2 Notes For Effective Java

● 3 Choices for Text Field Validation

�❍ 2.1 Comparable

�❍ 2.2 Clone

�❍ 3.1 Handling Document Events

�❍ 3.2 Another way to do it

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_10:_Style_and_Performance&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_10:_Style_and_Performance&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_10:_Style_and_Performance&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_10:_Style_and_Performance
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

Week 10: Style and Performance - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (2 of 8) [8/26/08 5:17:37 PM]

Reflection
Here is a little program that prints the methods for java.lang.String:

import java.lang.reflect.*;

public class ReflectionDemo {

 public static void main(String[] args){

 System.out.println("Get a String class and show the methods that it

implements");

 try {

 Class stringClass = Class.forName("java.lang.String");

 System.out.println("Class: "+stringClass.getName());

 System.out.println("Methods:");

 Method[] methods = stringClass.getMethods();

 for(Method m: methods){

 System.out.println(" "+m.getName());

 }

 } catch (ClassNotFoundException e){

 System.out.println("Class not found: "+e.getMessage());

 }

 }

}

Output 1

Change the print line to do this see the return type of each:

● 4 Readings

● 5

�❍ 3.3 References

https://domex.nps.edu/cs3773/wiki/index.php/Output_1

Week 10: Style and Performance - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (3 of 8) [8/26/08 5:17:37 PM]

 System.out.printf(" (%s) %s %n",m.getReturnType().getName(),m.

getName());

Notes For Effective Java

Comparable

Advantages of new Comparable:

Here is a simple class that implements comparable:

public class Person implements Comparable<Person>{

 String name;

 int age;

 public int compareTo(Person p){

 int r = name.compareTo(p.name);

 if(r!=0) return r;

 if(age<p.age) return -1;

 if(age>p.age) return 1;

 return 0;

 }

}

Output 2

● Interface Comparable<t>

● article on pre-Java5 Comparable

● You don't need to do instanceof (type safety)

● Less code to implement.

https://domex.nps.edu/cs3773/wiki/index.php/Output_2
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Comparable.html
http://www.onjava.com/pub/a/onjava/2003/03/12/java_comp.html

Week 10: Style and Performance - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (4 of 8) [8/26/08 5:17:37 PM]

Clone

String is an immutable object. They have a lot of advantages:

Choices for Text Field Validation

Handling Document Events

The correct way to do validation of a text field is by creating a DocumentEvent handler class and

object. The object receives document changed events. a removeUpdate() event is generated when text

is removed from the text field and an insertUpdate() event is generated when text is added.

● Note that "cloneable" is misspelled.

● Please see the CloneDemo.java and Person.java in the subversion repository.

● If the class you are extending implements clone(), your class must implement clone()

● To clone:

● JavaPractices.com recommends avoiding clone entirely:

● Are thread-safe

● Do not need a copy constructor

● Do not need an implementation of clone (since copying the fields is fine)

● Lots of other advantages (see Immutable objects).

�❍ First make a copy with super.clone()

�❍ Next, clone (or copy) the instance variables that are mutable.

�❍ Avoid clone

�❍ use Copy constructors instead.

�❍ Use Immutable objects when possible.

http://domex.nps.edu/cs3773/svn/week10/src/week10/CloneDemo.java
http://domex.nps.edu/cs3773/svn/week10/src/week10/Person.java
http://www.javapractices.com/topic/TopicAction.do?Id=29
http://www.javapractices.com/topic/TopicAction.do?Id=71
http://www.javapractices.com/topic/TopicAction.do?Id=12
http://www.javapractices.com/topic/TopicAction.do?Id=29

Week 10: Style and Performance - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (5 of 8) [8/26/08 5:17:37 PM]

Here is some code from the JPanel constructor of my test program:

 initComponents();

 textField.getDocument().addDocumentListener(new DocumentListener() {

 public void changedUpdate(DocumentEvent e){

 String text = textField.getText();

 dlStatus.setText("changedUpdate: textField has " + text.length() + "

characters");

 }

 public void removeUpdate(DocumentEvent e){

 String text = textField.getText();

 dlStatus.setText("removeUpdate: textField has " + text.length() + "

characters");

 }

 public void insertUpdate(DocumentEvent e){

 String text = textField.getText();

 dlStatus.setText("insertUpdate textField has " + text.length() + "

characters");

 }

 });

 dlStatus.setText("dlListener created");

the initComponents() is put in by the NetBeans GUI builder. This creates an anonymous subclass of

the DocumentListener interface. The changedUpdate() event is called when a document's

ATTRIBUTES change (like bold), not when its text changes.

This is a better approach for input validation than picking up the keyTyped() events because it will pick

up changes to the "document" (the text of the text field) that are caused by copy and paste.

Another way to do it

Week 10: Style and Performance - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (6 of 8) [8/26/08 5:17:37 PM]

Another way to make this work is to use java's invokeLater method which causes a piece of code to be

run after the current event is processed. This works (as shown below), but it has a problem:

document change events that are not the result of keyboard characters (like a cut and paste) will not

cause the textFieldKeyTyped event to be sent.

 private void textFieldKeyTyped(java.awt.event.KeyEvent evt) {

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 String text = textField.getText();

 statusLabel.setText("textField has " + text.length() + "

characters");

 }

 });

 }

References

Lots of people seem confused by this. Here are some relevant URLs:

Readings

● JTextField documentation.

● Java Forum Key Pressed Event Problem discussion

● Java Tutorial How to write a document listener

● The Reflection API

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JTextField.html
http://www.velocityreviews.com/forums/t132891-keypressed-event-problem.html
http://java.sun.com/docs/books/tutorial/uiswing/events/documentlistener.html
http://java.sun.com/docs/books/tutorial/reflect/index.html

Week 10: Style and Performance - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (7 of 8) [8/26/08 5:17:37 PM]
Search

Readings From Effective Java :

● Chapter 1 (bits) - on Google Books

● Chapter 3 - Methods Common to All Objects

● Chapter 5 - Substitutes for C Constructions

● Chapter 6 - Methods

● Chapter 7 - General Programming

● Previous: Week 09: Network programming with Java

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
http://java.sun.com/docs/books/effective/chapters.html
http://books.google.com/books?id=ZZOiqZQIbRMC&dq=effective+java&pg=PP1&ots=UZK04vgK80&sig=GjYD6P3Ydw2PTCzDoXdYgefWcnM&hl=en&prev=http://www.google.com/search?client=safari&rls=en-us&q=effective+java&ie=UTF-8&oe=UTF-8&sa=X&oi=print&ct=title&cad=one-book-with-thumbnail#PPA5,M1
http://developer.java.sun.com/developer/Books/effectivejava/Chapter3.pdf
http://developer.java.sun.com/developer/Books/effectivejava/Chapter5.pdf
http://www.informit.com/articles/article.aspx?p=31551
http://www.informit.com/content/images/0201310058/samplechapter/ch7generalp.pdf
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 10: Style and Performance - Cs3773

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version

● Permanent link

This page was last modified 16:39, 14 March 2008.This page has been accessed 112 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_10:_Style_and_Performance (8 of 8) [8/26/08 5:17:37 PM]

https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_10:_Style_and_Performance
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_10:_Style_and_Performance
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_10:_Style_and_Performance&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_10:_Style_and_Performance&oldid=1067
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

Week 11: The Big Finish - Cs3773

ArticleDiscussionView sourceHistory

https://domex.nps.edu/cs3773/wiki/index.php/Week_11:_The_Big_Finish (1 of 6) [8/26/08 5:18:19 PM]

Week 11: The Big Finish

Goals

Log in / create account

The Big

Finish

Week 11

shortname Finish

Contents

● 1 Goals

● 2 Bloch, Chapter 4: Classes and Interfaces

● 3 Sign-up for Final Projects

�❍ 2.1 Item 12: Minimize the accessibility of classes and members

�❍ 2.2 Item 13: Favor Immutability

�❍ 2.3 Item 14: Favor composition over inheritance

�❍ 2.4 Item 15: Design and Document for inheritance or else prohibit it

�❍ 2.5 Item 16: Prefer interfaces to abstract classes

�❍ 2.6 Item 17: Use interfaces only to define types

�❍ 2.7 Item 18: Favor static member classes over nonstatic

�❍ 3.1 Thursday

�❍ 3.2 Friday

https://domex.nps.edu/cs3773/wiki/index.php?title=Talk:Week_11:_The_Big_Finish&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_11:_The_Big_Finish&action=edit
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_11:_The_Big_Finish&action=history
https://domex.nps.edu/cs3773/wiki/index.php?title=Special:Userlogin&returnto=Week_11:_The_Big_Finish

Week 11: The Big Finish - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_11:_The_Big_Finish (2 of 6) [8/26/08 5:18:19 PM]

Bloch, Chapter 4: Classes and Interfaces

Item 12: Minimize the accessibility of classes and
members

● Answer all outstanding questions

● Final Project Presentations

● Tuesday: SQL & JDBC

● Wednesday: JAVA Security

● Thursday: My favorite Tools

find copyright violations

● Make each class or member as inaccessible as possible.

● Accessibility hiearchies:

● Make things final unless they need to be modifiable

● Make things static unless they need to access instance variables.

● Don't use public fields---if a field is non-final or a final reference to a

mutable object, you give up the ability to:

�❍ public

�❍ protected

�❍ package-private (default access)

�❍ Private

�❍ local

�❍ validate a field

https://domex.nps.edu/cs3773/wiki/index.php/SQL_%26_JDBC
https://domex.nps.edu/cs3773/wiki/index.php/JAVA_Security
https://domex.nps.edu/cs3773/wiki/index.php/My_favorite_Tools
http://www.google.com/search?client=safari&rls=en-us&q=%22Item+12:+Minimize+the+accessibility+of+classes+and+members%22&ie=UTF-8&oe=UTF-8

Week 11: The Big Finish - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_11:_The_Big_Finish (3 of 6) [8/26/08 5:18:19 PM]

Item 13: Favor Immutability

Advantages of immutable objects:

Item 14: Favor composition over inheritance

Item 15: Design and Document for inheritance or
else prohibit it

Item 16: Prefer interfaces to abstract classes

1. Don't provide any methods that modify the object (mutators)

2. Ensure that no methods may be overridden

3. Make all fields final

4. Make all fields private

5. Ensure exclusive access to any mutable components

● They are thread-safe and require no synchronization

● They can be shared freely

● The internals can also be shared

● Immutable objects make great building blocks for other objects

● Use static factories instead of constructors

● Subclasses need to understand their parent classes

�❍ Take an action when a field is modified

�❍ Contents of a final array are modifiable!

Week 11: The Big Finish - Cs3773

https://domex.nps.edu/cs3773/wiki/index.php/Week_11:_The_Big_Finish (4 of 6) [8/26/08 5:18:19 PM]

Item 17: Use interfaces only to define types

Item 18: Favor static member classes over
nonstatic

Sign-up for Final Projects

Thursday

0800 - Craig Schwetje

Friday

0800 - 0815: Jason Nelson

0815 - 0830: Brian Hawkins

0830 - 0845: Tariq Rashid

0845 - 0900:

0900 - 0915:

0915 - 0930:

0930 - 0945:

0945 - 1000:

● Existing classes can be easily retrofitted to implement new interfaces

● Interfaces are ideal for defining mixins.

● Don't define constants in interfaces

Week 11: The Big Finish - Cs3773

CS 3773

● Main Page

● Week-by-week Outline

● Assignments

● Readings

Wiki

● Recent Changes

Toolbox

● What links here

● Related changes

● Upload file

● Special pages

● Printable version
https://domex.nps.edu/cs3773/wiki/index.php/Week_11:_The_Big_Finish (5 of 6) [8/26/08 5:18:19 PM]

Search

Category: JavaWeek

https://domex.nps.edu/cs3773/wiki/index.php/Readings
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchanges
https://domex.nps.edu/cs3773/wiki/index.php/Special:Whatlinkshere/Week_11:_The_Big_Finish
https://domex.nps.edu/cs3773/wiki/index.php/Special:Recentchangeslinked/Week_11:_The_Big_Finish
https://domex.nps.edu/cs3773/wiki/index.php/Special:Upload
https://domex.nps.edu/cs3773/wiki/index.php/Special:Specialpages
https://domex.nps.edu/cs3773/wiki/index.php?title=Week_11:_The_Big_Finish&printable=yes
https://domex.nps.edu/cs3773/wiki/index.php/Special:Categories
https://domex.nps.edu/cs3773/wiki/index.php?title=Category:JavaWeek&action=edit

Week 11: The Big Finish - Cs3773

● Permanent link

This page was last modified 01:14, 21 March 2008.This page has been accessed 96 times.Content is available

under Public Domain.Privacy policyAbout Cs3773Disclaimers

https://domex.nps.edu/cs3773/wiki/index.php/Week_11:_The_Big_Finish (6 of 6) [8/26/08 5:18:19 PM]

https://domex.nps.edu/cs3773/wiki/index.php?title=Week_11:_The_Big_Finish&oldid=1168
http://www.mediawiki.org/
https://domex.nps.edu/cs3773/wiki/index.php/Public_Domain
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:Privacy_policy
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:About
https://domex.nps.edu/cs3773/wiki/index.php/Cs3773:General_disclaimer

	nps.edu
	Main Page - Cs3773
	Syllabus - Cs3773
	Week-by-week Outline - Cs3773
	Things to do - Cs3773
	Assignments - Cs3773
	Assignment 1 - Cs3773
	Assignment 2 - Cs3773
	Assignment 3 - Cs3773
	Assignment 4 - Cs3773
	Assignment 5 - Cs3773
	Assignment 6 - Cs3773
	Assignment 7 - Cs3773
	Assignment 8 - Cs3773
	Final Project - Cs3773
	Week 01: Java Without Classes - Cs3773
	Week 02: Classes - Cs3773
	Week 03: Object-Oriented Design - Cs3773
	Week 04: I/O - Cs3773
	Week 05: Basic Graphics and GUI with AWT and Swing - Cs3773
	Week 06: More Swing - Cs3773
	Week 07: Unicode, Text & Internationalization - Cs3773
	Week 08: Threads and the System - Cs3773
	Week 09: Network programming with Java - Cs3773
	Week 10: Style and Performance - Cs3773
	Week 11: The Big Finish - Cs3773

	IPGILDOAODFKENJONIDGEACALAMOPGMB:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	BMLAIMHFMGFIBHICHPFLFDMHPJKCIHFK:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	AGAHPAFLEEEPHDKPNFAMBGNEDKBELPJH:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	EFIJHPPPLFCEGHPDEDKEHONEEHIGPFPM:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	LDJJPFJPGAAPOEIGMMEJHCGFEIKNJGFL:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	MGAGCLKOOCLPKILBNOFCAEJMHBNPCNJM:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	FDNKIBBMLNIDJGANFKHNKLAIOLKOFADF:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	MOOLFAABGDKCLAGNJKDKEJMJJLFNJPHD:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	HKAOJFJIMIJKNJGLGNCBFLLMNPBPFBMG:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	KFFMFMKAJPAHGOFMDAANHHHMMKMMOPPLAGNB:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	LEHNBGNLBDEACNFCEMCJHGLLFMAHECLHHI:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	JLDHHIAMFMAHHAAHNGGPDEBFECEMCLFMAHPH:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	JFLLCBPLNJBEFFGILFJJKPMKLAKECFDM:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	JEAMEMAJGBBDJMAEKDCGHACAMEFLAEAF:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	NIHBJDIGLCAIHLGINDCBAEIKLBIKMJJB:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	NIKGPDGCEBFFMFLPNMGJMHONNINPCIAO:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	HAPIOCOLHIDIKDAHMEFIKJKOPCIAFOMP:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	DPDOFMAHGJGCNIHOMINJKFDCECAMMFGIJL:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	IAIDINCIMLOAGPNCBKCLDJGJBNAEIIOJ:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	HFBFCGNPBLPPGLLGLKJLJDOOKHBDLONO:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	LGECEKIAKDDEBDMPIEHNIGBPOEDIHMKP:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	FMAHPLJELJPPEGEHFJBALDJLOMIMPICNNN:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	HBIAIGIIDFFAGLLEFEMFEJJMLADKDOAG:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	EFPFFEJHODFPOHPBFPHCKJGLEKDFMLHJ:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

	LMGBKHLPDFGAMCMBBFDFMBNDOIHDDIJE:
	form1:
	x:
	f1:

	f2: Go
	f3:
	f4: Search
	f5:

