Figure 1 - Embedded WOFS

Application Program
W _openfile ()

W _readdata ()
W_mkdir ()

HOST 0/8
5.25 inch
device driver

12 inch
device driver

b WOES [nleridUEe

read . sector (
I write__sector (

[ogEs

Embedded and Transpate

Using the embedded WOFS interface, a program-
rmer can link a WOFS library the same way as any
other callable function library.

The WOFS function library interfaces the applica-
tion to the WOFS device driver and also allows a
high level Interrace 1o the file system.

The ilustration represents the flow of control
when an application makes a WOFS system call.

In the embedded interface, all of the file system
logic is contained within the application program.
The operating system, therefore, is used only as
a means to send read sector/write sector instruc-
tions to & device driver configured to the WORM
drive in use.

Figure 2 —Transparent WOFS

Application Program

fread () Dos find first ()
fopen ()} mkdir ()

HOST 0/8

read _sectar ()
write__sector ()

5.25inch |~
device driver
12 inch
device driver

WOFS, WQFS-Curatnr are trademarks, and N/Hance
1% & registersd irademark of N/Hance Systems, Inc,
Xenix, M5-DOS and 0572 are rapistered trademarks
of Microsaft Gorp,

UNIX i a regisiered tragemark of AT&T

The transparent WOFS interface functions at a
higher level than the embedded mode. It ac-
sesses e wrile-file system via the native 05
thereby making it “‘transparent,” indistinguish-
able from other media available on the syster.

The illustration shows WOFS contained within the
operating system, making read/write requests
directly to the drive-specific device driver,

The application program issues the file-system
function calls in the form appropriate for the
operating system language in use. For example, a
C programmer developirig an application under
Xenix would use fopen () and fread (). A pro-
grammer working in MASM under M&-DOS
would issue an INT 21h request after setting up
the CPU registers for “'Find First” or *'Create
Subdirectory.”’

In addition to the standard 0S file system inter-
face, IOCTL calls may be used to directly access
WOES via its native irtorface.

Disk volumes created by embedded WOFS can be
used with transparent WOFS and vice versa.

N/Hance Systems, Inc.

808 R Providence Highway

Dedham, MA 02008

(617) 461-1970 FAX (617) 461-0352
(800) BULY-WORM

& 1988, all rights resarved, WHance Systems, Inc. Printed inLLSA. Subject to changg withoul notice

(Write-Once File
System) ..

your universal
file structure for

data stored on
WORM
(Write-Once-Read
Many) optical disk
subsystems.

WOFS is a high performance file system
tailored for write-once media, designed to
function independently of your host operat-
ing system or CPU platform.

WOFS supports all optical drives, and juke-
boxes; and allows interchangeability of files
between virtually any operating system using
removable optical media. It works equally
well under XENIX, UNIX, 05/2, MS-DOS, and
other operating systems; providing file porta-
billty between systems,

The WOFS Advantage

W Enhances WORM capabilities: Data per-
manenee, audit trails, very large file
management, and enormous data stor-
age capacity on removable media.

W Sefs a standard for moving data across
multi-vendor and multi-operating system
platforms.

m Create custom WORM drivers easily for
proprigtary systems.

M Manipulate large date files up 1o 4 giga-
bytes with powerful UNIX-like file han-
dling features, The number of files is
limited only by your media size.

W The WOFS-Curator Utility enables users
to search and access previous versions
of files and directories in a volume.

WOFS Application
Programmer’s Interface

The WOFS C language programming

interface is modeled after the powerful,

easy-to-use UNIX file system calls. For

example:

wofs_mnt (}— mount a write-once file
system

wofs_dis ()~ dismount a write-ance file
system

W __dirname () — translate a directory

number to its ASCI name

stmilar to the UNIX stat

{2) function

W_lookup ()— convert a part string to
directory number, filg
number, and file name
string

W_mkdir ()~ create a subdirectory

W_putile () — copy a file from native file

W._finfo () —

system to WOFS volume
W_openfile () — open afile, similar to
UNIX fopen ()
W _closefile {} — close a file opened by
W openfile ()

W_readdata () — read data from a file, a
combination of Unix’'s
fseek {) and fread ()

W_remove () — deletes afile

W_rename ()— rename a file, possibly
moving it 1o a new

subdirectory
W_unrm()— undelete a file deleted by
W__remove ()
W_read ()— read data from file
W_write ()— write data to file
W_lseek () — posiliun read/write

pointer within file
W _rewind () - reset read/write pointer to
beginning of file

