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1. Differential Privacy at 15
Differential privacy is under attack.

In 2006, a group of computer scientists invented
differential privacy as an approach to provide mathe-
matically provable privacy guarantees for statistical data
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publications based on confidential data. Systems that im-
plement differential privacy inject privacy-protecting noise
into statistics that are computed on the confidential data.
To date, differential privacy is the only data privacy system
for which the privacy guarantee does not depend on as-
sumptions about attackers who seek to undo the privacy
guarantee—assumptions such as how much auxiliary data
the attacker might have, how much computer power is at
their disposal, or how today’s data publications might be
combined with future data releases.

But differential privacy has its critics. They say that dif-
ferential privacy injects too much noise into published sta-
tistics, making them unusable for any practical purpose
[RFMS19]. As a result, academic journals and the US
courts are debating and questioning whether data practi-
tioners should use differential privacy for official and com-
mercial statistics.

Differential privacy emerged from the computer science
community as a rigorous definition for the privacy loss, or
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amount of disclosure risk, associated with data publishing.
The community refers to these rigorous and quantifiable
definitions as formal privacy loss measures. Since then,
many data privacy experts have come to regard differential
privacy as the “gold standard” for privacy protection. It’s
called a formally private method because statisticians can
mathematically prove the worst-case, or maximum, pri-
vacy loss that will result from a data publication that uses
differentially private methods.

Differential privacy was transformative. For the first
time, the scientific community had a quantifiable defi-
nition of privacy—or more specifically, a mathematical
definition for the incremental privacy loss from a publi-
cation based on confidential data. Previous techniques
for privacy-preserving data publishing, such as k-anonymity
[Swe02], were based on operational, empiric definitions:
these methods described how a dataset would be protected,
but they made no claims as to whether the resulting pub-
lished data actually achieved the goal of protecting the
data subjects’ privacy. As a result, mathematicians using
those techniques could notmake assertions about the data
protection without making sweeping assumptions as to
how an attacker might exploit the published data, harness
computational capabilities, and leverage available auxil-
iary datasets.

A secondmajor breakthrough of differential privacywas
that it did away with the (incorrect) belief that published
data were either privacy protecting or privacy eroding. In-
stead, the definition of differential privacy recognizes that
the privacy loss associated with each data publication or
statistic is incremental and cumulative. Differential pri-
vacy then gives data practitioners an adjustable knob that
can be tuned to control themaximum amount of potential
privacy loss in any specific statistic or data publication.

Wewill walk through an example to understand the fun-
damental difference between differential privacy and tradi-
tional methods for statistical disclosure limitation or control.
Imagine an organization that is required to publish aggre-
gate statistics regarding the ages of people who live on a
block, but is simultaneously prohibited from publishing
any person’s individual age. In one publication, the or-
ganization notes that there are three people who live on
the block, and that their median age is 30. Of course, this
immediately reveals that one person on the block is 30.
Oh well! In another publication, the organization states
that the average age is 44. At this point, there are only 30
possible combinations of integer ages that produce those
official statistics. Hmm...

Now suppose that a local newspaper publishes an arti-
cle the following month with a photo of the oldest person
in the city, who just happens to live on that block and just
celebrated their 80th birthday. Suddenly the cat is out of
the bag: the ages of the block’s inhabitants are 22, 30, and
80 [GAM19].

With differential privacy, the organization is prohibited
from publishing exact statistics about the block. Instead
of stating that 𝑛 = 3, ̄𝑥 = 44, and ̂𝑥 = 30, the organization
might publish that 𝑛 = 3.5, ̄𝑥 = 42.4, ̂𝑥 = 39 (𝜖 = 2.0),
where 𝜖 is the so-called privacy loss budget.

With this improved publication strategy, the newspaper
article no longer undoes the privacy protection. Revealing
the age of the oldest person doesn’t compromise the ages
of the other two, because the statistics organization pub-
lished noisy measurements. Even better, because noise was
intentionally added to the organization’s official statistics,
there is no way to validate the newspaper’s article: perhaps
the person really is 80, but perhaps the person is 79 or 83.
This simple example shows why adding intentional inac-
curacy to published statistics is a powerful approach for
protecting privacy.

Differential privacy acknowledges that every data release
based on confidential data fundamentally achieves two
competing results: it benefits the public by making avail-
able new statistics, and it causes privacy loss to the individ-
uals on whose data the publication is based. The inventors
of differential privacy realized this balance between public
benefit and private cost is inherently a public policy deci-
sion that is best left to policymakers and not something
that can be reasoned about and decided by mathemati-
cians. The privacy loss budget, 𝜖, is the knob that differ-
ential privacy gives policymakers to negotiate this trade-
off. Differential privacy allows privacy researchers to exper-
iment with a wide range of 𝜖 values, but only the practition-
ers who use differential privacy to publish statistics need
to be concerned with the final value that policymakers dic-
tate.

Balancing the privacy loss against the social good in a
data publication is not new: the US government has made
this trade-off since 1840 when it first started protecting in-
formation collected about establishments and businesses
for the decennial census. Statistical protection was ex-
tended to data about individuals in 1930.1 The US Census
Bureau has traditionally protected this information using
suppression or generalization. However, such techniques
do not compose, making them brittle when there are mul-
tiple data releases based on the same dataset, or when the
attacker has auxiliary information.

Differential privacy does compose: the math makes
it possible to compute the total potential privacy loss
frommultiple individual releases. Differential privacy also
gives policymakers fine-grain control over that trade-off be-
tween accuracy and privacy loss because 𝜖 can enjoy any
value between 0 and ∞. Furthermore, policymakers can
split a single 𝜖 into many individual parameters, 𝜖0, … , 𝜖𝑘,
giving many knobs for the statistics an organization pub-
lishes.

1See https://www.census.gov/history for a history of privacy-preserving
techniques used by the US Census Bureau.
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Differential privacy is a definition of the maximum pri-
vacy loss that can result from a data publication or statis-
tic. As such, there is no single differentially private mecha-
nism, algorithm, method, or technique (we will use these
terms interchangeably). Instead, privacy researchers have
created variousmathematicalmechanisms that can produce
a wide range of data products—including statistical tables,
public use microdata (or individual level data), and statis-
tical machine learning classifiers. Somewhat confusingly,
researchers have also created variants of differential privacy
itself, each with definitions that are typically relaxed from
the original.

The version of differential privacy created in 2006 is
known as 𝜖-differential privacy (or sometimes “pure” dif-
ferential privacy). When 𝜖 = 0, the data published have
no relationship to the confidential data that are being pro-
tected. Although covered under the definition, this is not
useful in practice. When 𝜖 = ∞, no noise is added to
the published data products. This is not privacy protect-
ing. But it is acceptable under differential privacy to pub-
lish the confidential data when 𝜖 = ∞ and should lay to
rest themisconception that differential privacy cannot pro-
duce data with sufficient accuracy. If 𝜖 = ∞ has insufficient
accuracy, then the underlying data have insufficient accu-
racy or the differentially private mechanism is poorly con-
structed! Typically 0 < 𝜖 < ∞, and policymakers have the
tough job of deciding the value.

Since 2006, members of the formal privacy research
community have developed a variety of differential privacy
variants, each with a different definition, some with ad-
ditional parameters. The most common definitions are
(𝜖, 𝛿)-differential privacy, concentrated differential privacy,
and Rényi differential privacy. Most of these mechanisms
use Laplace or Gaussian noise, while some use less known
distributions, such as Wishart. Each have different composi-
tion properties and different error distributions that result
from their application.

In the following sections, we continue to explain the
philosophy of differential privacy, provide the basic ter-
minology associated with differential privacy, and show
how mechanisms can be applied to protect simple statis-
tical products. We discuss the two fundamental models
of using differential privacy: the trusted curator model and
the local model. We also review some of the challenges,
both technical and political, that organizations have en-
countered when applying differential privacy. However,
this article will refrain from a detailed presentation of dif-
ferentially private algorithms and proofs of their correct-
ness. For that information, we refer interested readers to
our references.

We also refer to various groups within the formal pri-
vacy community. This community consists of researchers
(e.g., privacy experts), practitioners, data curators, data

users, and public policymakers. Researchers are individ-
uals who specialize in developing data privacy methods.
Practitioners are those who implement differentially pri-
vate methods on real systems and release data, often to the
public. Data curators are individuals or institutions that
are responsible for the collection and storage of the confi-
dential data. Data users are analysts and other researchers
(e.g., economists) of the publicly released data.

2. It’s About the Uncertainty
The existential reason that Dwork, McSherry, Nissim, and
Smith created differential privacy was to provide privacy
for individuals whose data were incorporated into statis-
tical databases. “Intuitively, if the database is a represen-
tative sample of an underlying population, the goal of
a privacy-preserving statistical database is to enable the
user to learn properties of the population as a whole
while protecting the privacy of the individual contributors”
[DMNS06].

With this intuition, the authors first imagined that the
data would be held by a “trusted server,” and processed
with an arbitrary “query function” (𝑓) to produce a “true
answer.” Today we call the server a trusted curator. Previ-
ously Nissim and Dinur had shown that if the server an-
swers too many questions with sufficient accuracy, then
all of the private data in the database can be compromised
[DN03].

But what if some specific individual’s data weren’t part
of that collection? In that case, that person’s privacy
couldn’t be impacted by the published statistical product.

To understand this intuition, let’s go back to our city
block example with three people on it. Imagine that Alice
is an elderly woman who lives across town. When the sta-
tistical agency publishes that the average age of the block’s
residents is 44, clearly Alice’s age cannot be compromised,
because her age was not included in the statistic! But if
Alice moves to the block and the city publishes that the
average age is now 55.5, an attacker trying to determine
Alice’s age could reasonably infer that she is 90.

The literature of statistical disclosure limitation uses the
term “data intruder” to describe an attacker who takes a
data publication and attempts to learn something about
one ormore of the respondents that the trusted curator has
pledged to keep confidential. The statistical agency applies
a query function to its confidential database to produce the
published statistics, while the data intruder tries to infer
the preimage of the query function—the underlying confi-
dential data—that produced the statistical publication.

Differential privacy uses noise to produce uncertainty
about the preimage. With differential privacy, a statisti-
cal agency might start consulting with data users to learn
what they wanted to do with the published statistics and
the level of accuracy they required. The agencymight learn
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Figure 1. Differential privacy constructs a noise wall around
the confidential database. Any query crossing the noise wall
is changed unpredictably, creating uncertainty in the mind of
the attacker regarding function 𝑓’s preimage, the confidential
database.

that data users want the count of people under and over a
specific age instead of the count of people and the aver-
age and median ages. For the previous year, the agency
might then publish that there were two people living on
the block under the age of 65 and two people over the age
of 65 (𝜖 = 2). In the current year, the agency might publish
that there are three people under 65 and two people over
65 (𝜖 = 2).

In other words, differential privacy creates a wall of
noise that surrounds and protects the confidential data:
any query results that cross the noise wall must be mod-
ified in a manner that is unpredictable to the attacker (Fig-
ure 1).

Earlier we stated that differentially private methods
are fundamentally different from another popular privacy
mechanism, k-anonymity [Swe02]. Differentially private
methods are based on the relationship between the confi-
dential database and the public data publication, whereas
k-anonymity is based on the mechanism applied to the
confidential database itself. Here k-anonymity relies on
the assumption that a data intruder cannot reliably single
out a person’s data if there are at least 𝑘 individuals in a par-
ticular group who share the same identifying characteris-
tics. k-anonymity had the aspirational hope that applying
the k-anonymity mechanism produces a dataset that pro-
tects privacy. Researchers soon discovered that it did not,
because any characteristic is potentially identifying when
linked with an appropriate external database [Gar15].

Another difference between differentially private meth-
ods and k-anonymity mechanisms is that differential pri-
vacy does not provide absolute private guarantees. Differ-
ential privacy does not say that certain values of 𝜖 are “safe”
and others are not. It also does not say that a single dataset
benefits all attackers equally. Attackers with auxiliary

information will learn more about the confidential data-
base than attackers without such information: differential
privacymakes it possible to compute how much better those
attackers will be able to do so.

3. Differential Privacy’s Math
Although this article refrains from covering the proofs, we
present the basic differential privacy terminology. We pro-
vide both a high-level explanation and the mathematical
definitions.
3.1. Differential privacy. From the previous section, we
understand that differential privacy protects a data publi-
cation or statistic with noise to create uncertainty, but how
does it determine the amount of noise to add? At a high
level, differential privacy links the potential for privacy loss
to how much the estimate for a unique statistic (or query)
from the underlying confidential data changes with the ab-
sence or presence of any individual record that could possibly
be in the database.

More specifically, differential privacy quantifies the pri-
vacy loss for each statistic by the parameter 𝜖. When adding
or removing a single user from the data, a differentially pri-
vate algorithm’s output distribution changes by an amount
limited by 𝜖. This framework allows for a formal guarantee
of the amount of information released about a confiden-
tial database over an arbitrary number of analyses, and it
does not require assumptions concerning how a data in-
truder would attack the data or the amount of information
they possess compared to other privacy loss measures.

However, the definition we present assumes the records
are disjoint from one another. Records are often not
in practice, requiring privacy researchers to make adjust-
ments when developing their differentially private meth-
ods.

Mathematically, we define differential privacy as fol-
lows. Let 𝑋 ∈ ℝ represent the original database with di-
mension 𝑛×𝑞. We define 𝑛 as the number of records in the
original database and a statistical query as 𝑓 ∶ ℝ𝑛×𝑞 → ℝ𝑘,
where the 𝑓 maps the possible datasets of 𝑋 to 𝑘 real num-
bers.

Differential privacy ([DMNS06]). A sanitization algo-
rithm, ℳ, satisfies 𝜖-differential privacy if for all subsets
𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ) and for all 𝑋, 𝑋 ′ such that 𝑑(𝑋, 𝑋 ′) = 1,

Pr(ℳ(𝑋) ∈ 𝑆)
Pr(ℳ(𝑋 ′) ∈ 𝑆) ≤ exp(𝜖), (1)

where 𝜖 > 0 is the privacy loss budget and 𝑑(𝑋, 𝑋 ′) = 1
represents the possible ways that 𝑋 ′ differs from 𝑋 by one
record.

This distance can be alternatively interpreted as the pres-
ence or absence of a record, or as a change in a record,
where 𝑋 and 𝑋 ′ have the same dimensions. Both are valid
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interpretations, but have different impacts mathematically
on how the differentially private methods compose.

When adding Laplace noise, one of the most popular 𝜖-
differential privacy mechanisms, many data users find the
extremes of Laplace noise to be inconvenient in some ap-
plications. A popular variant of differential privacy known
as (𝜖, 𝛿)-differential privacy offers similar theoretical levels
of privacy protectionwith less noise, but with a small prob-
ability that, in some cases, the privacy definition bound
does not hold.

(𝜖, 𝛿)-Differential privacy ([DKM+06]). A sanitization al-
gorithm, ℳ, satisfies (𝜖, 𝛿)-differential privacy if for all
𝑋, 𝑋 ′ that are 𝑑(𝑋, 𝑋 ′) = 1,

Pr(ℳ(𝑋) ∈ 𝑆) ≤ exp(𝜖) Pr(ℳ(𝑋 ′) ∈ 𝑆) + 𝛿, (2)

where 𝛿 ∈ [0, 1]. 𝜖-differential privacy is a special case of
(𝜖, 𝛿)-differential privacy when 𝛿 = 0.

Most recent applications have used 10−7 ≤ 𝛿 ≤ 10−10.
This additional privacy parameter can produce significant
improvements in query accuracy with very little real-world
impact on privacy lossmost of the time. As with 𝜖, the value
for 𝛿 is a policy decision and more research is needed to
gain a better sense of what an appropriate 𝛿 should be.
3.2. Composition theorems. An advantage of differen-
tial privacy over other attempts to createmathematical defi-
nitions for privacy is that anymethod or algorithm that sat-
isfies differential privacy will compose. This composition
allows differential privacy practitioners to adjust an overall
𝜖 (sometimes referred to as the global privacy loss budget)
for any use of the confidential data, and then divvy out
smaller values of 𝜖 (i.e., 𝜖 = 𝜖1 + 𝜖2 + 𝜖3 +⋯) for each data
publication or statistic that makes use of the confidential
data.

Mathematically, we define this distinction through two
composition theorems.

Composition theorems ([DR13]). Suppose a mechanism,
ℳ, provides (𝜖𝑗, 𝛿𝑗)-differential privacy for 𝑗 = 1, … , 𝑘.

(a) Sequential composition. The sequence of ℳ𝑗(𝑋)
applied on the same 𝑋 provides (∑𝑗 𝜖𝑗 ,∑𝑗 𝛿𝑗)-
differential privacy.
(b) Parallel composition. Let 𝐷𝑗 be disjoint subsets
of the input domain 𝐷. The sequence of ℳ𝑗(𝑋 ∩ 𝐷𝑗)
provides (max(𝜖𝑗),max(𝛿𝑗))-differential privacy.

For 𝑘-many statistical queries on 𝑋 , the composition
theorems state that the practitioner may allocate a portion
of the overall desired level of 𝜖 to each statistic by sequen-
tial composition. As an example, a common practice is
splitting 𝜖 equally by 𝑘, such as a practitioner wanting to re-
lease 𝑘-many summary statistics and allocating 𝜖/𝑘 to each
statistic.

Unlike sequential composition, parallel composition
does not require the privacy loss budget to be divided be-
cause the differentially private noise is applied to disjoint
subsets of the input domain. A popular example is inject-
ing noise to a histogram, where the bins are disjoint sub-
sets of the data. This means a differentially private mech-
anism can add noise to each bin independently, without
needing to split 𝜖. Most differentially private methods try
to leverage parallel composition instead of sequential to
avoid splitting the privacy loss budget, because smaller 𝜖
means less accuracy. As we noted, this assumes that each
person can only occupy a single bin, which may not be the
case for some histograms.
3.3. Post-processing. Another important theorem with-
in the differential privacy framework is the post-processing
theorem, which states that any function applied to a differ-
entially private output produces a new output that is also
differentially private.

Post-processing theorem ([DMNS06]). Let ℳ be a mech-
anism that satisfies 𝜖-differential privacy, and let 𝑔 be any func-
tion. Then 𝑔 (ℳ(𝑋)) also satisfies 𝜖-differential privacy.

In practice, most applications of differential privacy
use the post-processing theorem to enforce physical or
structural data constraints, to avoid splitting the privacy
loss budget further, and/or to generate synthetic data (i.e.,
pseudo records that are statistical representative of original
data based on an underlying model). For instance, some
differentially private methods sanitize the underlying dis-
tribution of the confidential data and sample from that
noisy distribution to create synthetic data.
3.4. Sensitivity. Up to this point, we have focused on how
the privacy loss parameter 𝜖may be allocated to adjust the
amount of noise being injected to an output. However,
the query function’s sensitivity to a single person’s data
contribution also determines how much noise should be
added. Broadly, this sensitivity encodes how robust or re-
sistant the differentially private mechanism is to the pres-
ence of outliers. Differential privacy quantifies this sensi-
tivity by measuring how much the output changes in the
confidential data given the absence or presence of themost
extreme possible record that could exist in the population,
but might not be observed in the data. The reasoning be-
hind this measure is that if we do not know how the data
intruder will attack the data or what external information
they may have to help them, then we should protect for ev-
ery possible version of the data that could exist. If the output
crossing the noise barrier is very sensitive to the presence
of a single outlier, thenmore noise is added to decrease the
chance that an attacker will determine whether the outlier
is present or absent.

To help understand this concept better, imagine the
data we want to protect contains demographic and
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financial information. The query we want answered is,
“what is the median net worth of people on this block?”
According to differential privacy, we must consider the
change of the most extreme possible record that could ex-
ist or be in any given data that has socioeconomic infor-
mation. For our example, that person is Jeff Bezos.2 As it
turns out, the median function is not very sensitive to the
addition or removal of a single outlier in a population. If
Bezos is altered or removed in the data, the median net
worth will not change very much. This means we can pro-
vide a more accurate answer by adding less noise to the
median net worth result, because the median net worth
query is less sensitive to outliers like Bezos. Not all func-
tions have this property! Consider the query, “what is the
average net worth of people living on this block?” Unlike
the previous query, the answer would significantly change
if Bezos is or is not living on the block. In order to protect
Bezos, a differentially private algorithm would then need
to provide a significantly less accurate answer by adding
more noise for the same privacy loss parameter.

We mathematically define this sensitivity as follows:

𝑙1-Global sensitivity ([DMNS06]). The global sensitivity
of a function 𝑓 is

Δ1𝑓 = sup
𝑑(𝑋,𝑋′)=1

‖𝑓(𝑋) − 𝑓(𝑋 ′)‖1. (3)

Some differentially private mechanisms calculate the
sensitivity under different norms, such as 𝑙2 distance, re-
ferred to as 𝑙2-global sensitivity. Choosing a norm depends
on the specific differential privacy definition and the noise
distribution being used.

While the definition is straightforward, calculating the
global sensitivity can be difficult. For instance, we cannot
directly calculate the global sensitivity of one of the most
common statistical analyses, regression analysis, if the co-
efficients are unbounded. To address this issue, privacy
researchers creatively figured out ways to add noise within
the regression analyses, such as adding noise on the objec-
tive function.
3.5. Fundamental mechanisms. Most differentially pri-
vate algorithms build from the basic or fundamental differ-
entially private mechanisms that add noise from various
probability distributions. The Laplace Mechanism is the
most basic mechanism that satisfies 𝜖-differential privacy.
This mechanism adds noise drawn from a Laplace distribu-
tion with a mean of zero and a scale parameter based on
the sensitivity of the output and the privacy loss parame-
ter.

Laplace Mechanism. The Laplace Mechanism satisfies 𝜖-
differential privacy by adding noise to 𝑓 that are drawn

2According to Forbes, Jeff Bezos is the richest person in the world by net worth
for 2020.

from a Laplace distribution with the location parameter at
0 and scale parameter of Δ1𝑓𝜖−1 such that:

𝑓∗(𝑋) = 𝑓(𝑋) + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, Δ1𝑓𝜖−1) . (4)

Another popular mechanism is the Gaussian Mecha-
nism that satisfies (𝜖, 𝛿)-differential privacy that relies on
𝑙2-global sensitivity.
Gaussian Mechanism. The Gaussian Mechanism satisfies
(𝜖, 𝛿)-differential privacy by adding Gaussian noise with
zero mean and variance, 𝜎2, such that:

𝑓∗(𝑋) = 𝑓(𝑋) + 𝑁 (0, 𝜎2𝐼) , (5)

where 𝜎 = Δ2𝑓𝜖−1√2 log(1.25/𝛿).
Both of these fundamental mechanisms are easy to ap-

ply in practice, but can only be readily applied to numeri-
cal outputs. A more general mechanism is the Exponential
Mechanism, that satisfies 𝜖-differential privacy and sam-
ples from the possible outputs rather than adding noise di-
rectly. In practice, the Exponential Mechanism can be com-
putationally expensive without adjustments to the code or
limiting the possible outputs for the target statistic.

Exponential Mechanism. The Exponential Mechanism re-
leases values with a probability proportional to

exp (𝜖𝑓(𝑋, 𝜃)2Δ1𝑓
) (6)

and satisfies 𝜖-differential privacy, where 𝑓(𝑋, 𝜃) is the
score or quality function that determines the values for
each possible output, 𝜃, on 𝑋 .

Although there are many other differentially private
mechanisms that use different noise distributions, the
Laplace Mechanism and Gaussian Mechanism are the
most common. The advantages and disadvantages of
each varies based on the data and the use case. For in-
stance, the Laplace Mechanism has smaller variation than
the Gaussian Mechanism. However, the Gaussian Mecha-
nism performs better over multiple queries, because multi-
ple Gaussian distributions are still Gaussian. The Laplace
Mechanism has only one tuning parameter, 𝜖, whereas
users of the Gaussian Mechanism must balance 𝜖 and 𝛿.
3.6. Setting epsilon. Setting the value of 𝜖 is up to the pol-
icymakers, who will ultimately shoulder the responsibility
for selecting the budget. Yet, the decision should also be
informed by the privacy researcher, who can explain to pol-
icymakers how to interpret the privacy and utility trade-off,
and the participants in the data, who will have their own
sense of personal privacy versus the common good. Con-
sidering all these perspectives still leaves the important de-
cision of selecting a privacy loss budget open to debate.

Early in the development of differential privacy, re-
searchers said that setting 𝜖 was a policy decision. At the
same time, they stated that an 𝜖 less than or equal to one
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was ideal, whereas an epsilon of two or three would re-
lease too much information. The researchers also noted
that 𝜖 < 1.0 allowed for certain algorithmic simplifications.
Today we can look back at these statements and explain
them as reflecting both the immaturity of the field and the
fact that early research was almost entirely theoretical. Re-
searchers had little to no experience balancing privacy loss
against the societal benefit of a data release.

In contrast, many practitioners who have used differ-
ential privacy for actual data releases have required larger
values of 𝜖 to achieve query results that are statistically
“fit for purpose.” In 2008, for example, researchers ap-
plied the (𝜖, 𝛿)-differential privacy method with values
at (8.6, 10−5) to release a synthetic version of the On-
TheMap data, a dataset based on individual US commuters
[MKA+08]. More recently, Google’s 2020 COVID-19 Mo-
bility Reports provided movement trends over time by ge-
ography (e.g., county level in the United States) for dif-
ferent categories, such as transit stations and workplaces;
Google used 𝜖 = 2.64-differential privacy for the daily re-
ports. Of course, the total privacy loss steadily increases
as these daily reports are combined. In the same year,
LinkedIn revealed their LinkedIn’s Audience Engagement
API that protected LinkedIn members’ content engage-
ment data, which used (𝜖, 𝛿)-differential privacy with daily
values of (0.15, 10−10) [ABC+20,RSP+20].

As for how data participants perceive an appropriate
value of 𝜖, there is little published research on that topic.
To date, very few federal agencies have adopted differen-
tial privacy for their data products. For the initial data re-
leases of the 2020 Census, the Census Bureau decided on
𝜖 = 17.14 for the persons file and 𝜖 = 2.47 for the housing
unit data, with 𝛿 = 10−10 for each.3

These examples (and the lack thereof) suggest there are
many factors that affect the choice of 𝜖 and 𝛿, including the
type of information released to the public, social percep-
tion of privacy protection, statistical accuracy of the release
data, among others. Essentially, more research is necessary
to address the open question of how to select 𝜖. More on
this later.
3.7. Models of operation. Over the years, differential pri-
vacy has evolved into two distinct approaches, or mod-
els: the “trusted curator” model and “local differential pri-
vacy.”

3.7.1. Trusted curator model. Also called the central
model, the trusted curator model is what we have been dis-
cussing for most of this article. A trusted curator receives
confidential data, performs the queries and applies the dif-
ferentially private noise, and releases the results. If the

3See https://www2.census.gov/programs-surveys/decennial
/2020/program-management/data-product-planning/2010
-demonstration-data-products/ppmf20210428/2021-04-28-PPMF
-rho-allocation-tables.xlsx.

trusted curator is asked two similar queries, then noise
must be applied twice. This results in expending more of
the total privacy loss budget. If the privacy loss is capped,
at some point the trusted curator must stop answering
queries. If the privacy loss budget is not capped, then every
time a query is answered, an attacker will be able to make
more precise inferences about the nature of the confiden-
tial data.

3.7.2. Local differential privacy. Local differential pri-
vacy does not have a trusted curator. It instead focuses on
how individual data are collected, where each respondent
applies differential privacy locally, to their own data, before
submitting the protected data to the curator. As a result,
the curator no longer needs to be trusted. Local differen-
tial privacy is conceptually similar to the survey technique
known as randomized response [War65]. In fact, the two ap-
proaches are mathematically equivalent under many con-
ditions [WZFY20].

When employing randomized response, each individ-
ual receives a privacy budget (𝜖) where the log-difference in
the probability of generating the same noisy response from
two different individual responses is bounded by (−𝜖, 𝜖).
This framework contrasts from the other differential pri-
vacy definitions, where 𝜖 is applied to the entire confiden-
tial data.

Local differential privacy can be modeled as a single
complex query on a dataset, where the query asks for the
value of every row. Alternatively, it can be modeled as 𝑛
queries on a database of 𝑛 rows, in which the first query
asks for the first row, the second query asks for the sec-
ond row, and so on. Local differential privacy thus enjoys
parallel composition, because each row (or each of the 𝑛
queries) is not related to any other row (or query).

At first, local differential privacy seems quite attrac-
tive to data curators considering approaches for privacy-
preserving data analysis. After all, the resulting dataset is
differentially private, and the data are microdata, allowing
repeated reanalysis without additional privacy loss. The
problemwith this approach, as Kifer andMachanavajjhala
eloquently phrased it, is that there is “no free lunch in
data privacy” [KM11]. In the case of local differential pri-
vacy, substantially more noise is added to queries com-
puted with locally noised microdata than on queries that
are computed over true data by a trusted curator.

3.7.3. Hybrid models. Google’s experience with inte-
grating differential privacy into the Chrome web browser
shows both the promise and real-world limitations of
local differential privacy. In 2014, Google integrated
Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse (RAPPOR) into the Chrome web browser to collect
sensitive statistics from users without jeopardizing their
privacy [EPK14]. The system implemented local differen-
tial privacy, adding noise to microdata about a browser’s
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home page, visited sites, and the processes running on end-
user machines. One of the purposes of RAPPOR was to
assist in the collection of security metrics. The idea was
that even with the added noise, if Google detected that
malware running on a user’s machine was correlated with
having visited a particular URL, Google would have addi-
tional data that could be used to improve its malware fil-
tering systems. Unfortunately, Google no longer uses RAP-
POR in practice. “There’s just toomuch noise, even though
the epsilon was pretty high.”4

Following the release and use of RAPPOR, Google de-
veloped a hybrid approach that used secure aggregation to
first combine statistics frommultiple users, after which the
differentially private noise is applied. “Thus, secure aggre-
gation over just 1024-user subgroups holds the promise
of 32× improvement in differentially private estimate pre-
cision,” reported researchers from Google and Cornell
[BIK+17]. Google noted that this extra precision is criti-
cal for machine learning applications.

4. Challenges for Adoption
Differential privacy was invented in 2006, so it is only 15
years old as of this writing. To put this into context, it’s
instructive to look at another breakthrough mathematical
privacy-protecting technique, public key cryptography.

The basics of public key cryptography were researched
in 1976 (the Diffie-Helman key exchange), 1977 (the RSA
algorithm), and 1978 (certificates). But it wasn’t until 17
years later that the ssh and SSL protocols were invented for
sending information securely over the Internet. Bugs in
these algorithms and their implementations were still be-
ing worked out as recently as the past decade. And today,
despite billions of users deploying end-to-end encryption
through various messaging platforms (e.g., Signal), a sig-
nificant part of the global internet traffic still occurs over
unencrypted HTTP.

Likewise, the invention of differential privacy inspired
an explosion of new data privacy research, applying differ-
ential privacy to Bayesian inference, deep learning, facial
recognition, generative adversarial network, genome-wide
association studies, location privacy, multiparty compu-
tation, principal component analysis, recommender sys-
tems, social network analysis, and SQL queries, to name
a few.

But while the number of publications grow, deep chal-
lenges persist in transitioning these mathematics from re-
search to production. We group these challenges into sci-
entific challenges owing to the immaturity of the field, tran-
sition challenges of moving theory to practice, and social

4Comment by Ulfar Erlingsson at the 2018 Theory and Practice of Dif-
ferential Privacy. https://twitter.com/TedOnPrivacy/status
/1051848416416976896?s=19. Mentions of the deprecation are also
evident in the Chromium source code at https://bit.ly/370fr45.

challenges due to the radical differences between differ-
ential privacy and the previous techniques for privacy-
preserving data analysis and publication.
4.1. Scientific challenges. One of the major persisting
problems is that much of the differential privacy research
is highly theoretical. Some proposed algorithms can only
be used with data that meet specific conditions not typi-
cally met in real-world data, or have unrealistic assump-
tions on what information is publicly available to inform
or improve the method’s results. Although the science is
correct, it doesn’t apply to real-world applications.

As an example, Google’s first release of RAPPOR only
worked well for the small number of cases in the origi-
nal paper. More importantly, the privacy researchers ini-
tially did not track the cumulative privacy loss resulting
from repeated use of the system to make measurements
on the same individuals. Later, privacy researchers who
did not work for Google showed that RAPPOR with a 30-
minute reporting period would result with a privacy loss
budget of 𝜖 = 25.63 per day or 𝜖 = 769 over the course of a
month [RSP+20].

Another example is Uber’s differentially private SQL
queries system [JNS18]. In 2018, Johnson et al. developed
a differentially private approach for 8.1 million queries for
data gathered on rider and driver information, trip logs,
and customer support from March 2013 to August 2016.
While their method was a great step towards creating prac-
tical differentially private applications, at least one of dif-
ferential privacy’s creators argued that themethod suffered
from errors that led to the unintentional overreporting of
the quality of their results.5

With any new methodology or technology, testing and
experimenting is a necessary part of the process. Re-
searchers are learning from their mistakes and continue
to improve their methods. For instance, Google’s previ-
ous research into differential privacy allowed the company
to quickly develop “mobility reports” to provide access
to invaluable data during the COVID-19 global pandemic
[ABC+20].

4.1.1. Evaluating mechanisms. Another concern fac-
ing researchers is the correctness of approaches for evalu-
ating differential privacy mechanisms.

From November 2018 to May 2019, the National Insti-
tute of Standards and Technology Public Safety Commu-
nications Research (NIST PSCR) Division hosted the first
“Differential Privacy Synthetic Data Challenge.” The data
challenge called for researchers to develop practical and vi-
able differentially private data synthesismethods that were
scored based on specific metrics that were given ahead of
time. Three “Marathon Matches” provided participants

5See footnote 2 on page 4 of https://arxiv.org/pdf/1909.01917.pdf,
where the authors found that the open-source software version of Flex released
the full list of all user identifiers with simple queries.
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with training data that were identical in structure and vari-
ables to the real-world test data used for final scoring. Al-
though the challenge inspired new differentially private
synthetic generation methods, many of the top scoring
methods heavily relied on the training data to improve the
method’s results for the scoringmetrics. This consequently
caused some of these methods to perform worse on other
utility metrics not used in the competition [BS21].

4.1.2. Applications to non-tabular data. One of the
largest scientific challenges facing the differential privacy
research community is applying the framework to non-
tabular data, such as blocks of text longer than a fewwords,
qualitative information, images, and video. To date, most
of these efforts are experimental and not ready to be ap-
plied in practice. This is why many differentially private
applications to date have been applied to tabular data.

Both Google’s RAPPOR and COVID-19 Mobility Re-
ports added noise to the counts of bits or counts of peo-
ple within certain location categories, respectively. The
OnTheMap and 2020 Census data products are counts of
the United States population within specific geographic re-
gions. The NIST PSCR Data Challenge used the San Fran-
cisco Fire Department’s Call for Service data and the state
Public Use Microdata Sample, where many of the competi-
tors considered the data as tabular to apply their methods
and then later post-processed the synthetic data to resem-
ble the confidential data structure.

The few non-tabular differentially private applications
tend to oversimplify the problem or significantly sacri-
fice privacy to improve utility. One such data type is
social network data that represents a relational network
among individuals or groups. In social network analysis,
researchers define the people or entities in the network as
nodes with various attributes (e.g., demographic informa-
tion) and edges that represent a paired interaction between
two nodes. Facebook data could be considered social net-
work data, where the individuals are the nodes with at-
tributes like gender and age while the edges are if the indi-
viduals are “Facebook friends” or not.

This structure is why social network data are very chal-
lenging to protect with differential privacy, because dif-
ferential privacy must protect the worst-case scenario be-
tween two neighboring networks. An example scenario
is comparing an empty network (i.e., all isolated or non-
connecting nodes) and a star network (i.e., all nodes are
only connected to one node). If the confidential data is
a star network, then the worst-case scenario is to remove
the central node, which makes the network into an empty
network.

Given this difficulty, privacy researchers initially fo-
cused on protecting the privacy of the edges rather than
the node and edges together to increase the statistical in-
ference. This form of differential privacy is known as edge

differential privacy, which examines the absence or pres-
ence of a particular edge, instead of node differential privacy,
which examines the absence or presence of a node and all
the adjacent edges. However, under the edge differential
privacy framework, the privacy research assumes that node
attributes are known or not private, which is not always the
case in real life.

Researchers have developed models to generate differ-
entially private synthetic data that satisfy node differential
privacy. Modeling certain features in the data is how some
researchers are trying to tackle text and image data, but
there are still both technical and philosophical challenges
to overcome.

For example, consider a photo of a person in a subur-
ban neighborhood. If we want to protect the image using
differential privacy, simply applying noise to every pixel
produces unusable gibberish for any amount of noise that
is privacy protecting. Instead, we could extract a model
that contains the person’s hair color, their facial features,
and so on. We could then computationally remove the
person from the image and insert a new, synthetic person,
with noise added to each of the image parameters.

While this approach might obscure a person’s face, an
attacker might infer the person’s identity from other infor-
mation in the image. If a house address is clearly visible in
the picture background, a data intruder might use that to
learn the person’s identity. If we continue down this path,
we might end up trying to synthesize the entire image, pos-
sibly protecting more information than really needs to be
protected. To date, efforts along these lines are starting to
appear in research venues, but they do not appear to be
ready for use in production.

4.1.3. Making use of public data. Although the differ-
ential privacy model assumes that an attacker might have
all of the information in the world, few differentially pri-
vate mechanisms make use of publicly available data to
improve their accuracy without causing additional privacy
loss. This is somewhat frustrating, given that the amount
of noise being addedmay be substantial to achieve specific
levels of privacy protection. Approaches for making use of
public data are thus a largely unrealized opportunity for re-
searchers to develop newmechanisms that would improve
accuracy and corresponding impact on privacy.
4.2. Transition challenges. As our previous example of
public key cryptography demonstrates, the time to transi-
tion new mathematics technology from the academic to
practice can be quite lengthy. Often this is because the
clean, idealized conditions of the lab do not map well to
the messy realities of the world.

4.2.1. Human resource limitations. Probably the
largest barrier to the deployment of differential privacy is
the lack of practitioners who are simultaneously knowl-
edgeable of the math and skilled in building production
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systems. Although there are a growing number of
production-ready differential privacy libraries, such as
Google’s Privacy on Beam,6 the process of designing, build-
ing, deploying, and maintaining a working differential pri-
vacy system requires far more than a vetted differentially
private algorithms library. On the technical side, the prac-
titioner must identify which algorithms to use and where
to insert them into the statistical pipeline. Frequently, the
practitioner must rework statistical computations to allow
the 𝜖 to be used more efficiently.

Knowledgeable data practitioners must also defend the
very decision to use differential privacy in the first place.
This includes explaining why the release of exact aggregate
statistics inherently compromises the privacy of individu-
als, and defending the decision to intentionally add error
(e.g., noise) to data products after a substantial amount of
funds have been spent to make the data products as accu-
rate as possible.

4.2.2. Setting the privacy loss budget. One of the dif-
ferential privacy’s characteristics is that the protection is
tunable, allowing the tuning for any given data release to be
set by a policymaker, rather than a technician or dictated
by the privacy mechanism. This approach is advantageous
for differential privacy researchers, because it frees them
from the need to make a policy choice. The mathematics
are clear: someone’s ox is going to get gored. For any set-
ting of 𝜖, it is always the case that the data could be more
accurate by sacrificing just a little more privacy, and the re-
lease could be a little more privacy preserving by making
the data a little less accurate. So how should this choice be
made?

While setting the value of 𝜖 is clearly a policy decision,
it is a policy decision for which little has been researched
or otherwise written to aid policymakers. This lack of guid-
ance results inmany differentially private applications that
have privacy loss budgets that seem unjustifiably high or
low.

As an example of too high, Apple announced in 2016
that they would deploy a local differentially private ap-
proach on their iPhone to gain information about sug-
gested emojis based on keyboard strokes (in iOS 10 and
11). Apple did not divulge many details, so external pri-
vacy researchers conducted experiments to better under-
stand the methodology [TKB+17]. They discovered the
privacy loss budget used to collect users’ data on mobile
devices to be a daily value of 4 and thus a monthly value
of 120. The scientific community viewed these values as
unreasonably high. For differential private systems that
use high values of 𝜖, a concern is data intruders could re-
construct the entire confidential data, especially when the
number of queries are unbounded.

6To learn more about Privacy on Beam, check out their website at https://
github.com/google/differential-privacy/tree/main/privacy
-on-beam.

Conversely, many data practitioners criticize differen-
tially private applications that set 𝜖 too low. For example,
in 2018, the US Census Bureau announced their new Dis-
closure Avoidance System, a differentially private method
called the TopDown Algorithm, for the 2020 Census. In
preparation, they applied the TopDown Algorithm on the
1940 and 2010 Census data to allow data users to com-
pare against the unaltered 1940 Census data7 and the orig-
inal 2010 Census data release. For these demonstration
datasets, the Census Bureau set the privacy loss budget at
0.25, 0.5, 0.75, 1, 2, 4, 6, and 8. For another data demon-
stration release, the Census Bureau set the privacy loss bud-
get to 4.5.

After analyzing the data, many census data users and re-
searchers expressed concerns over the accuracy and useful-
ness of the altered data [RFMS19]. These concerns resulted
in the National Academies of Science, Engineering, and
Medicine hosting a workshop in December 2019, where
many of the speakers presented specific data quality is-
sues.8 Based on feedback from the scientific community,
the US Census Bureau set the privacy loss budget for the
next 2020 Decennial Census demonstration data to 10.3
for the persons file and 1.9 for the housing units data, with
𝛿 = 10−10 .9 On June 9, 2021, the Census Bureau commit-
ted to 17.14 for the persons file and 2.47 for the housing
units data.10

Although there are a growing number of differentially
private applications to provide further context on setting
an appropriate 𝜖, the scientific community needs more use
cases and participation from public policymakers to de-
cide what the right balance between privacy and utility is.

4.2.3. Machine resource limitations. Another prob-
lem is that many data practitioners or users have difficul-
ties implementing differentially private methods, because
of the insufficient computational resources. These limita-
tions hinder the accessibility for the average data user who
might not have the proper computing equipment to run
the methods or the background to hand-code them.

In the comparative study of the NIST PSCR Data Chal-
lenge, for instance, Bowen and Snoke evaluated the imple-
mentation ease and the computational feasibility of the

7The 1940 Census data are publicly available due to Title 44, where census
records that contained information about individuals could be released for pub-
lic use after 72 years.
8Details for the “Workshop on 2020 Census Data Products: Data
Needs and Privacy Considerations” can be found at https://
www.nationalacademies.org/event/12-11-2019/workshop
-on-2020-census-data-products-data-needs-and-privacy
-considerations.
9The US Census Bureau announced this privacy loss budget in their newslet-
ter on April 19, 2021. https://content.govdelivery.com/accounts
/USCENSUS/bulletins/2cdb999.
10The US Census Bureau set the privacy loss budget on June 9, 2021. https://
www.census.gov/newsroom/press-releases/2021/2020-census-key
-parameters.html.
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top competitors’ methods [BS21]. All but one competi-
tor provided open-source code via GitHub to earn addi-
tional prize money, lessening the burden on users to cre-
ate their own code. As for computational demand, some
of the differentially private synthetic data methods were
computationally complex, such as one approach that re-
quired significantmemory and high-performance graphics
processing units (GPUs) to run in a reasonable amount of
time. The other methods that were less computationally
demanding instead need additional hand-coding to prop-
erly pre-process the confidential data based on public data
(if available).

Realizing the lack of accessible differential privacy
code, a research group out of Harvard University started
OpenDP11 in 2019. OpenDP aims “...to build trustworthy,
open-source software tools for statistical analysis of sensi-
tive private data...[that] will offer the rigorous protections
of differential privacy for the individuals who may be rep-
resented in confidential data and statistically valid meth-
ods of analysis for researchers who study the data.” As of
the publication of this article, OpenDP has partnered with
Microsoft to create SmartNoise,12 but the platform is still
under development.

4.2.4. Accessing the confidential data. From expe-
rience and the privacy literature, we know that synthetic
data, including both traditional synthetic data and new
synthetic data created using differentially private methods,
often do not provide sufficient accuracy to create accu-
rate complex statistical models. To address this concern,
the US government created the Federal Statistical Research
Data Centers that allow appropriately vetted researchers to
access the confidential data and release results after those
results undergo an appropriate disclosure review process
at a federal statistical agency. This process is often slow,
laborious, and underutilized.

In an effort to alleviate some of the burdens on re-
searchers, the US Census Bureau provides researchers with
access to two experimental synthetic databases (which are
not differentially private) via the Synthetic Data Server
(SDS) at Cornell University: the Synthetic Longitudinal
Business Database and the SIPP Synthetic Beta Data Prod-
uct. The SDS provides a validation server that allows re-
searchers to submit their statistical programs to run on the
underlying administrative data after testing it on the syn-
thetic data. However, the SDS has two disadvantages. First,
because it is not automated, the process consumes limited
staff time. Also, the demand often exceeds available staff
time, causing long delays for approval. Second, reviews
may be inconsistent since they are manually evaluated by
humans, and they do not adhere to formal notions of pri-
vacy that constrain the allowable output.

11OpenDP’s website can be found at https://opendp.org/.
12To learn more about SmartNoise, check out their website at https://
smartnoise.org/.

To automate the process, the Urban Institute in collab-
oration with the Internal Revenue Service Statistics of In-
come Division is now developing an automated prototype
validation server using differentially private methods. The
proposed server will allow data users to submit queries
to gain differentially private summary statistics and regres-
sion models. This validation server will expand access to
administrative tax data, which is currently limited to those
with Internal Revenue Service clearance. However, the ef-
fort will take many years to perfect given many of the chal-
lenges we already discussed.
4.3. Social challenges. The adoption of differential pri-
vacy has encountered considerable resistance from various
groups. The pushback mostly stems from the lack of com-
munication and data users already having access to data
that is now being restricted.

4.3.1. Communicating privacy realities. One of the
greatest challenges in deploying differential privacy is com-
municating to policymakers and the public the underlying
mathematics of privacy itself from what we have learned
over the past two decades. Such communications are diffi-
cult because the protection of private facts behaves differ-
ently than our intuition has been trained to think. This
is perhaps similar to how the underlying physics of mass
and energy at the quantum level does not match the in-
tuitive understanding for most of us living in the macro-
scopic world.

Modern conceptions of privacy are overwhelmingly le-
gal and philosophical, rather than mathematical. For
much of the twentieth century, Western legal traditions
typically viewed information as either private or public.
Since the 1960s, there has been an increasing recognition
by policymakers that this is not the case. There is steady
effort to impose a variety of use-based controls to limit the
impact on individuals from various kinds of information.

In the US today, privacy is frequently viewed in terms of
the confidentiality of communications, transactions, med-
ical information, and other kinds of facts. Separately, an-
other branch of privacy law deals with intrusion into a
person’s seclusion.13 These conceptions drive the policy
discussion and the actions of consumers and businesses.
However, they are not rooted in mathematics. In other
words, these conceptions are based on how we imagine
and want personal information to behave and not how it
actually behaves. Just as a spendthrift might actually wish
to live on credit and never actually pay the bills when they
come due, so might organizations wish to make use of per-
sonal information while not paying the price of the inher-
ent privacy loss. The math of differential privacy tells us
there is a real cost to every data release. There is a running
bill, even if we do not choose to acknowledge it.

13Daniel Solove’s “A taxonomy of privacy” summarizes the range of privacy con-
cerns in the United States. https://www.jstor.org/stable/40041279.
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4.3.2. Changing data access. Many of those who
oppose differential privacy come from organizations that
have either enjoyed unfettered access to high-quality data
for decades or believed that past public data releases were
largely unaltered (but somehow protected). Data users
will have to adjust how they conduct their analyses when
given access to new source data that are intentionally noisy,
as a result of being protected.

Currently many data users do not know how to account
for the differentially private changes due to resource limita-
tions or because they have not yet engaged in the conversa-
tion. This problem comes hand in hand with the need for
better communication among the various groups to best
convey user needs to continue their analyses.

For example, while some data users need access to finer-
grained ethnic groups, such as Japanese American versus
Asian American, others might only need the general East
Asian American grouping. The former group could use the
SDS validation server to query the specific counts, whereas
the latter could use the official statistical tables.

While some users perceive differential privacy as remov-
ing access to data, differential privacy offers the opposite.
Several federal statistical agencies, such as the Internal Rev-
enue Service, the Bureau of Labor Statistics, and the Bureau
of Economic Analysis, are exploring differentially private
algorithms to release data that were previously not avail-
able due to privacy concerns.

In order to efficiently use the privacy loss budget to
expand data access, data custodians and data users must
cooperate and coordinate deploying differentially private
methods. No longer is it sufficient for data custodians to
perform some kind of “light touch” and provide “safe data”
to well-meaning academics or marketers, with the hope
that the data will be used for safe projects, by safe peo-
ple, in safe settings, and with safe outputs. That is, the
so-called “five safes” framework is fundamentally flawed
because mathematically there is no such thing as safe data
[Rit17]. This mathematical truth is the core justification
for the cost and difficulty associated with the adoption of
differential privacy.

5. Differential Privacy’s Future
Fifteen years of differential privacy have brought a genera-
tion of mathematicians difficult truths about the nature of
privacy. For businesses and statisticians, one of the most
troubling truths is that it is not possible to use personal in-
formation in a data product without leaking some of that
information. For policymakers, it means that there is no
magic set of data attributes or level of aggregation that al-
lows for data releases that have no privacy impact. In prac-
tice, this means that policymakers can no longer pass off
to technologists the requirement to balance the benefit of
public data with the cost to individual privacy.

What does thismean for the future? Similar to the emer-
gence of ssh and SSL to ensure a secure internet, we must
keep testing and using differential privacy to better under-
stand and tackle all the challenges and limitations we dis-
cussed earlier. If we do not, we risk losing access to invalu-
able data, asmore organizations realize that traditional sta-
tistical disclosure limitation methods do not address mod-
ern data privacy concerns.

However, the bulk of differential privacy research is still
theoretical. We need to encourage and value more usable
applications paired with educational materials on how to
explain and implement differentially private methods. By
doing so, we will have a more constructive conversation
with data users on adopting differential privacy for prac-
tical applications. We also need continuing education of
policymakers and journalists, who to date have portrayed
the fight between traditional disclosure avoidance systems
and differential privacy as a battle between old and new
systems, rather than as a battle between systems that use
ad hoc methods and have no formal proof of their validity,
and those based on principled mathematical proof.

As we have discussed throughout this article, differen-
tial privacy is not a “silver bullet” that makes data releases
safe, nor is it a one-size-fits-all method. Differential pri-
vacy instead accounts for the privacy loss that individuals
suffer when their private data are used in computations
that are later released to the public. Differential privacy
provides policymakers, data custodians, and data users a
powerful tool for balancing the competing concerns of
public benefit with individual privacy.
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