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I
n 2020 the U.S. Census Bureau will conduct the 
Constitutionally mandated decennial Census of 
Population and Housing. Because a census involves 
collecting large amounts of private data under the 
promise of confidentiality, traditionally statistics are 

published only at high levels of aggregation. Published 
statistical tables are vulnerable to DRAs (database 
reconstruction attacks), in which the underlying microdata 
is recovered merely by finding a set of microdata that is 
consistent with the published statistical tabulations. A 
DRA can be performed by using the tables to create a set 
of mathematical constraints and then solving the resulting 
set of simultaneous equations. This article shows how 
such an attack can be addressed by adding noise to the 
published tabulations, so that the reconstruction no longer 
results in the original data. This has implications for the 
2020 Census.

The goal of the census is to count every person once, 
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and only once, and in the correct place. The results are 
used to fulfill the Constitutional requirement to apportion 
the seats in the U.S. House of Representatives among the 
states according to their respective numbers.

In addition to this primary purpose of the decennial 
census, the U.S. Congress has mandated many other 
uses for the data. For example, the U.S. Department of 
Justice uses block-by-block counts by race for enforcing 
the Voting Rights Act. More generally, the results of the 
decennial census, combined with other data, are used to 
help distribute more than $675 billion in federal funds to 
states and local organizations.

Beyond collecting and distributing data on the American 
people, the Census Bureau is also charged with protecting 
the privacy and confidentiality of survey responses. All 
census publications must uphold the confidentiality 
standard specified by Title 13, Section 9 of the U.S. 
Code, which states that Census Bureau publications 
are prohibited from identifying “the data furnished by 
any particular establishment or individual.” This section 
prohibits the Census Bureau from publishing respondents’ 
names, addresses, or any other information that might 
identify a specific person or establishment.

Upholding this confidentiality requirement frequently 
poses a challenge, because many statistics can 
inadvertently provide information in a way that can 
be attributed to a particular entity. For example, if a 
statistical agency accurately reports that there are 
two persons living on a block and that the average age 
of the block’s residents is 35, that would constitute an 
improper disclosure of personal information, because 
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one of the residents could look up the data, subtract their 
contribution, and infer the age of the other. 

Of course, this is an extremely simple example. 
Statistical agencies have understood the risk of such 
unintended disclosure for decades and have developed a 
variety of techniques to protect data confidentiality while 
still publishing useful statistics. These techniques include 
cell suppression, which prohibits publishing statistical 
summaries from small groups of respondents; top-coding, 
in which ages higher than a certain limit are coded as 
that limit before statistics are computed; noise-injection, 
in which random values are added to some attributes; 
and swapping, in which some of the attributes of records 
representing different individuals or families are swapped. 
Together, these techniques are called SDL (statistical 
disclosure limitation).

Computer scientists started exploring the issue 
of statistical privacy in the 1970s with the increased 
availability of interactive query systems. The goal was to 
build a system that would allow users to make queries 
that would produce summary statistics without revealing 
information about individual records. Three approaches 
emerged: auditing database queries, so that users would 
be prevented from issuing queries that zeroed in on data 
from specific individuals; adding noise to the data stored 
within the database; and adding noise to query results.1 
Of these three, the approach of adding noise proved to be 
the easiest, because the complexity of auditing queries 
increased exponentially over time—and, in fact, was 
eventually shown to be NP (nondeterministic polynomial)-
hard.8 Although these results were all couched in the 
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language of interactive query systems, they apply equally 
well to the activities of statistical agencies, with the 
database being the set of confidential survey responses, 
and the queries being the schedule of statistical tables 
that the agency intends to publish.

In 2003, Irit Dinur and Kobbi Nissim showed that it isn’t 
even necessary for an attacker to construct queries on 
a database carefully to reveal its underlying confidential 
data.4 Even a surprisingly small number of random queries 
can reveal confidential data, because the results of the 
queries can be combined and then used to “reconstruct” 
the underlying confidential data. Adding noise to either 
the database or to the results of the queries decreases 
the accuracy of the reconstruction, but it also decreases 
the accuracy of the queries. The challenge is to add 
sufficient noise in such a way that each individual’s privacy 
is protected, but not so much noise that the utility of the 
database is ruined.

Subsequent publications3,6 refined the idea of adding 
noise to published tables to protect the privacy of the 
individuals in the data set. Then in 2006, Cynthia Dwork, 
Frank McSherry, Kobbi Nissim, and Adam Smith proposed 
a formal framework for understanding these results. Their 
paper, “Calibrating Noise to Sensitivity in Private Data 
Analysis,”5 introduced the concept of differential privacy. 
They provided a mathematical definition of the privacy loss 
that persons suffer as a result of a data publication, and 
they proposed a mechanism for determining how much 
noise needs to be added for any given level of privacy 
protection. (The authors were awarded the Test of Time 
award at the Theory of Cryptography Conference in 2016 
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and the Godel Prize in 2017.)
The 2020 census is expected to count roughly 330 

million people living on roughly 8.5 million blocks, with 
some inhabited blocks having as few as a single person 
and other blocks having thousands. With this level of scale 
and diversity, it is difficult to visualize how such a data 
release might be susceptible to database reconstruction. 
We now know, however, that reconstruction would in fact 
pose a significant threat to the confidentiality of the 2020 
microdata that underlies unprotected statistical tables 
if privacy-protecting measures are not implemented. 
To help understand the importance of adopting formal 
privacy methods, this article presents a database 
reconstruction of a much smaller statistical publication: 
a hypothetical block containing seven people distributed 
over two households. (The 2010 U.S. Census contained 
1,539,183 census blocks in the 50 states and the District 
of Columbia with between one and seven residents. The 
data can be downloaded from https://www2.census.gov/
census_2010/01-Redistricting_File--PL_94-171/.)

Even a relatively small number of constraints 
results in an exact solution for the blocks’ inhabitants. 
Differential privacy can protect the published data by 
creating uncertainty. Although readers may think that 
the reconstruction of a block with just seven people is an 
insignificant risk for the country as a whole, this attack 
can be performed for virtually every block in the United 
States using the data provided in the 2010 census. The final 
section of this article discusses the implications of this for 
the 2020 decennial census.
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AN EXAMPLE DATABASE RECONSTRUCTION ATTACK
To present the attack, let’s consider the census of a 
fictional geographic frame (for example, a suburban block), 
conducted by a fictional statistical agency. For every block, 
the agency collects each resident’s age, sex, and race, and 
publishes a variety of statistics. To simplify the example, 
this fictional world has only two races—black or African 
American, and white—and two sexes—female and male. 

The statistical agency is prohibited from publishing the 
raw microdata and instead publishes a tabular report. 
Table 1 shows fictional statistical data for a fictional block 
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TABLE 1: Fictional statistical data for a fictional block 

age

statistic group count median mean

1A total population 7 30 38

2A female 4 30 33.5

2B male 3 30 44

2C black or African American 4 51 48.5

2D white 3 24 24

3A single adults (D) (D) (D)
3B married adults 4 51 54

4A black or African American female 3 36 36.7

4B black or African American male (D) (D) (D)
4C white male (D) (D) (D)
4D white female (D) (D) (D)
5A persons under 5 years (D) (D) (D)
5B persons under 18 years (D) (D) (D)
5C persons 64 years or over (D) (D) (D)

           Note: Married persons must be 15 or over 
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published by the fictional statistics agency. The “statistic” 
column is for identification purposes only.

Notice that a substantial amount of information in table 
1 has been suppressed—marked with a (D). In this case, the 
statistical agency’s disclosure-avoidance rules prohibit it 
from publishing statistics based on one or two people. This 
suppression rule is sometimes called “the rule of three,” 
because cells in the report sourced from fewer than 
three people are suppressed. In addition, complementary 
suppression has been applied to prevent subtraction 
attacks on the small cells.

Encoding the constraints
The database can be reconstructed by treating the 
attributes of the persons living on the block as a collection 
of variables. A set of constraints is then extracted from the 
published table. The database reconstruction finds a set of 
attributes that are consistent with the constraints. If the 
statistics are highly constraining, then there will be a single 
possible reconstruction, and the reconstructed microdata 
will necessarily be the same as the underlying microdata 
used to create the original statistical publication. Note 
that there must be at least one solution because the table 
is known to be tabulated from a real database.

For example, statistic 2B states that three males live 
in the geography. This fictional statistical agency has 
previously published technical specifications that its 
computers internally represent each person’s age as 
an integer. The oldest verified age of any human being 
was 122.14 If we allow for unreported supercentenarians 
and consider 125 to the oldest possible age of a human 
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being, there are only a finite number of possible age 
combinations, specifically:

Within the 317,750 possible age combinations, 
however, there are only 30 combinations that satisfy the 
constraints of having a median of 30 and a mean of 44 
(see Table 1). (Notice that the table does not depend on the 
oldest possible age, so long as it is 101 or over.) Applying 
the constraints imposed by the published statistical tables, 
the possible combinations of ages for the three males 
can be reduced from 317,750 to 30. Table 2 shows the 30 
possible ages for which the median is 30 and the mean is 
44

8 of 26

a         b           c a          b         c a        b         c

1       30     101 11       30     91 21    30     81

2      30    100 12      30    90 22    30   80

3      30       99 13      30     89 23    30    79

4      30       98 14      30     88 24    30    78

5      30        97 15      30     87 25    30     77

6      30       96 16      30     86 26    30     76

7       30       95 17      30     85 27    30     75

8      30       94 18     30     84 28    30     74

9      30       93 19     30     83 29    30     73

10     30       92 20    30     82 30   30     72

TABLE 2: Possible ages for a median of 30 and mean of 44  

(!"#! ) =
!"#  ×  !"#  ×  !"#  

!  ×  !  ×  !
= 317,750 
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To mount a full reconstruction attack, an attacker 
extracts all of these constraints and then creates a 
single mathematical model embodying all constraints. 
An automated solver can then find an assignment of the 
variables that satisfies these constraints.

To continue with the example, statistic 1A establishes 
the universe of the constraint system. Because the block 
contains seven people, and each has four attributes (age, 
sex, race, and marital status), that creates 28 variables, 
representing those four attributes for each person. These 
variables are A1… A7 (age), S1… S7 (sex), R1… R7 (race), and 
M1… M7 (marital status), as shown in table 3. The table 
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Person Age Sex Race Marital Status

1 A1 S1 R1 M1

2 A2 S2 R2 M2

3 A3 S3 R3 M3

4 A4 S4 R4 M4

5 A5 S5 R5 M5

6 A6 S6 R6 M6

7 A7 S7 R7 M7

Key

female 0

male  1

black or African American 0

white  1

single 0

married  1

TABLE 3: Variables associated with the reconstruction attack.   
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shows the variables associated with the DRA. The coding 
for the categorical attributes is presented in the key.

Because the mean age is 38, we know that:

A1 + A2 + A3 + A4 + A5 + A6 + A7 = 7 × 38

The language Sugar13 is used to encode the constraints 
in a form that can be processed by a SAT (satisfiability) 
solver. Sugar represents constraints as s-expressions.11 For 
example, the age combination equation can be represented 
as:

; First define the integer variables,
; with the range 0..125
(int A1 0 125)
(int A2 0 125)
(int A3 0 125)
(int A4 0 125)
(int A5 0 125)
(int A6 0 125)
(int A7 0 125)

; Statistic 1A: Mean age is 38
(= (+ A1 A2 A3 A4 A5 A6 A7)
    (* 7 38)
)

Once the constraints in the statistical table are turned 
into s-expressions, Sugar solves them with a brute-force 
algorithm. Essentially, Sugar explores every possible 
combination of the variables, until a combination is 
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found that satisfies the constraints. Using a variety of 
heuristics, SAT solvers are able to rapidly eliminate many 
combinations of variable assignments.

Despite their heuristic complexity, SAT solvers can 
process only those systems that have Boolean variables, 
so Sugar transforms the s-expressions into a much larger 
set of Boolean constraints. For example, each age variable 
is encoded using unary notation as 126 Boolean variables. 
Using this notation, the decimal value 0 is encoded as 126 
false Boolean variables, the decimal value 1 is encoded 
as 1 true and 125 false values, and so on. Although this 
conversion is not space efficient, it is fast, provided that 
the integers have a limited range.

To encode the median age constraint, the median 
of a group of numbers is precisely defined as the value 
of the middle number when the numbers are arranged 
in sorted order (for the case in which there is an odd 
number of numbers). Until now, persons 1 through 7 have 
not been distinguished in any way: the number labels 
are purely arbitrary. To make it easier to describe the 
median constraints, we can assert that the labels must 
be assigned in order of age. This is done by introducing 
five constraints, which has the side effect of eliminating 
duplicate answers that have simply swapped records, an 
approach called breaking symmetry:12

(<= A1 A2)
(<= A2 A3)
(<= A3 A4)
(<= A4 A5)
(<= A6 A7)
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Having asserted that the labels are in chronological 
order, we can constrain the age of the person in the middle 
to be the median:

(= A4 30)

This code fragment assures that the output is sorted 
by age. This technique also does a good job of eliminating 
duplicate answers that have swapped records. 

Sugar has an “if” function that allows encoding 
constraints for a subset of the population. Recall that 
statistic 2B contains three constraints: there are three 
males, their median age is 30, and their average age is 44. 
The value 0 represents a female, and 1 represents a male:

#define FEMALE 0
#define MALE 1

Using the variable Sn to represent the sex of person n, 
we then have the constraint:

S1 + S2 + S3 + S4 + S5 + S6 + S7 = 3

This can be represented as:

(= (+ S1 S2 S3 S4 S5 S6 S7) 3)

Now, using the if function, it is straightforward to 
create a constraint for the mean age 44 of male persons:
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(= (+ (if (= S1 MALE) A1 0) ; average male age
      (if (= S2 MALE) A2 0)
      (if (= S3 MALE) A3 0)
      (if (= S4 MALE) A4 0)
      (if (= S5 MALE) A5 0)
      (if (= S6 MALE) A6 0)
      (if (= S7 MALE) A7 0)
      )
   (* 3 44))

Table 1 translates into 164 individual s-expressions 
extending over 457 lines. Sugar then translates this into 
a single Boolean formula consisting of 6,755 variables 
arranged in 252,575 clauses. This format is called the 
CNF (conjunctive normal form) because it consists of 
many clauses that are combined using the Boolean AND 
operation.

Interestingly, we can even create constraints for the 
suppressed data. Statistic 3A is suppressed, so we know 
that there are 0, 1, or 2 single adults, assuming that 
no complementary suppression was required. Let Mn 
represent the marital status of person n:

#define SINGLE 0
#define MARRIED 1

(int SINGLE_ADULT_COUNT 0 2)
(= (+ (if (and (= M1 SINGLE) (> A1 17)) 1 0)
      (if (and (= M2 SINGLE) (> A2 17)) 1 0) 
      (if (and (= M3 SINGLE) (> A3 17)) 1 0) 
      (if (and (= M4 SINGLE) (> A4 17)) 1 0) 
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      (if (and (= M5 SINGLE) (> A5 17)) 1 0) 
      (if (and (= M6 SINGLE) (> A6 17)) 1 0) 
      (if (and (= M7 SINGLE) (> A7 17)) 1 0))
 SINGLE_ADULT_COUNT)

(>= SINGLE_ADULT_COUNT 0)
(<= SINGLE_ADULT_COUNT 2)

Translating the constraints into CNF allows them to 
be solved using any solver that can solve NP-complete 
program, such as a SAT solver, an SMT (satisfiability module 
theories) solver, or MIP (mixed integer programming) 
solver. There are many such solvers, and most take input in 
the so-called DIMACS file format, which is a standardized 
form for representing CNF equations. The DIMACS format 
(named for the Center for Discrete Mathematics and 
Theoretical Computer Science) was popularized by a series 
of annual SAT solver competitions. One of the results of 
these competitions was a tremendous speed-up of SAT 
solvers over the past two decades. Many solvers can now 
solve CNF systems with millions of variables and clauses 
in just a few minutes, although some problems do take 
much longer. Marijn Heule and Oliver Kullmann discussed 
the rapid advancement and use of SAT solvers in their 2017 
article, “The Science of Brute Force.”7

The open-source PicoSAT2 solver is able to find a 
solution to the CNF problem detailed here in roughly two 
seconds on a 2013 MacBook Pro with a 2.8-GHz Intel i7 
processor and 16 GB of RAM (although the program is not 
limited by RAM), while the open-source Glucose SAT solver 
can solve the problem in under 0.1 seconds on the same 
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computer. The stark difference between the two solvers 
shows the speed-up possible with an improved solving 
algorithm.

Exploring the solution universe
PicoSAT creates a satisfying assignment for the 6,755 
Boolean variables. After the solver runs, Sugar can 
translate these assignments back into integer values 
of the constructed variables. (SMT and MIP solvers can 
represent the constraints at a higher level of abstraction, 
but for our purposes a SAT solver is sufficient.)

There exists a solution universe of all the possible 
solutions to this set of constraints. If the solution universe 
contains a single possible solution, then the published 
statistics completely reveal the underlying confidential 
data—provided that noise was not added to either the 
microdata or the tabulations as a disclosure-avoidance 
mechanism. If there are multiple satisfying solutions, 
then any element (person) in common among all of the 
solutions is revealed. If the equations have no solution, 
either the set of published statistics is inconsistent with 
the fictional statistical agency’s claim that it is tabulated 
from a real confidential database or an error was made 
in that tabulation. This doesn’t mean that a high-quality 
reconstruction is not possible. Instead of using the 
published statistics as a set of constraints, they can be 
used as inputs to a multidimensional objective function: 
the system can then be solved using another kind of solver 
called an optimizer.

Normally SAT, SMT, and MIP solvers will stop when they 
find a single satisfying solution. One of the advantages 
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of PicoSAT is that it can produce the solution universe of 
all possible solutions to the CNF problem. In this case, 
however, there is a single satisfying assignment that 
produces the statistics in table 1. That assignment is seen 
in Table 4.

Table 1 provides some redundant constraints on the 
solution universe: some of the constraints can be dropped 
while preserving a unique solution. For example, dropping 
statistic 2A, 2B, 2C, or 2D still yields a single solution, but 
dropping 2A and 2B increases the solution universe to 
eight satisfying solutions. All of these solutions contain the 
reconstructed microdata records 8FBS, 36FBM, 66FBM, 
and 84MBM. This means that even if statistics 2A and 2B 
are suppressed, we can still infer that these four microdata 
records must be present.

Statistical agencies have long used suppression in an 
attempt to provide privacy to those whose attributes are 
present in the microdata, although the statistics that they 
typically drop are those that are based on a small number 

Age Sex Race Marital Status

8 F B S

18 M W S

24 F W S

30 M W M

36 F B M

66 F B M

84 M B M

Solution #1

8FBS

18MWS

24FWS

30MWM

36FBM

66FBM

84MBM

=

TABLE 4: A single satisfying assignment   
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of persons. How effective is this approach?
In table 1, statistic 4A is an obvious candidate for 

suppression—especially given that statistics 4B, 4C, and 4D 
have already been suppressed to avoid an inappropriate 
statistical disclosure.

Removing the constraints for statistic 4A increases the 
number of solutions from one to two, shown in table 5.
 
DEFENDING AGAINST A DRA
There are three approaches for defending against a 
database reconstruction attack. The first is to publish 
less statistical data—this is the approach taken by legacy 
disclosure-avoidance techniques (cell suppression, 
top-coding, and generalization). The second and third 
approaches involve adding noise, or randomness. Noise can 
be added to the statistical data being tabulated or to the 
results after tabulation. Each approach is considered here.

Option 1: Publish less data
Although it might seem that publishing less statistical 
data is a reasonable defense against the DRA, this choice 

TABLE 5: Solutions without statistic 4A 

Solution #1 Solution #2

8FBS 2FBS

18MWS 12MWS

24FWS 24FWM

30MWM 30MBM

36FBM 36FWS

66FBM 72FBM

84MBM 90MBM
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may severely limit the number of tabulations that can 
be published. A related problem is that, with even a 
moderately small population, it may be computationally 
infeasible to determine when the published statistics still 
identify a sizable fraction of individuals in the population.

Option 2: Apply noise before tabulation
This approach is called input noise injection. For example, 
each respondent’s age might be randomly altered by a 
small amount. Input noise injection doesn’t prevent finding 
a set of microdata that is consistent with the published 
statistics, what we call database reconstruction, but it 
limits the value of the reconstructed microdata, since 
what is reconstructed is the microdata after the noise has 
been added.

Swapping, the disclosure-avoidance approach used 
in the 2010 census, is a kind of input noise injection. In 
swapping, some of the attributes are exchanged, or 
swapped, between records. The advantage of swapping is 
that it has no impact on some kinds of statistics: if people 
are swapped only within a county, then any tabulation 
at the county level will be unaffected by swapping. The 
disadvantage of swapping is that it can have significant 
impact on statistics at lower levels of geography, and 
values that are not swapped are unprotected.

Option 3: Apply noise to the published statistics
This approach is called output noise injection. Whereas 
input noise injection applies noise to the microdata directly, 
output noise injection applies output to the statistical 
publications. Output noise injection complicates database 
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reconstruction by eliminating naïve approaches based 
on the straightforward application of SAT solvers. Also, 
even if a set of microdata is constructed that is mostly 
consistent with the published statistics, this microdata 
will be somewhat different from the original microdata 
that was collected. The more noise that was added to the 
tabulation, the more the microdata will be different.

When noise is added to either the input data (option 
2) or the tabulation results (option 3), with all records 
having equal probability of being altered, it is possible to 
mathematically describe the resulting privacy protection. 
This is the basis of differential privacy.

Implications for the 2020 Census
The Census Bureau has announced that it is adopting a 
noise-injection mechanism based on differential privacy to 
provide privacy protection for the underlying microdata 
collected as part of the 2020 census. Following is the 
motivation for that decision.

The protection mechanism developed for the 2010 
census was based on a swapping.15 The swapping technique 
was not designed to protect the underlying data against a 
DRA. Indeed, it is the Census Bureau’s policy that both the 
swapped and the unswapped microdata are considered 
confidential.

The 2010 census found a total population of 
308,745,538. These people occupied 10,620,683 habitable 
blocks. Each person was located in a residential housing 
unit or institutional housing arrangement (what the Census 
Bureau calls “group quarters”). For each person, the 
Census Bureau tabulated the person’s location, as well as 
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sex, age, race, and ethnicity, and the person’s relationship 
to the head of the household—that is, six attributes 
per person, for a total of approximately 1.5 billion 
attributes. Using this data, the Census Bureau published 
approximately 7.7 billion linearly independent statistics, 
including 2.7 billion in the PL94-171 redistricting file, 2.8 
billion in the balance of summary file 1, 2 billion in summary 
file 2, and 31 million records in a public-use microdata 
sample. This results in approximately 25 statistics per 
person. Given these numbers and the example in this 
article, it is clear that there is a theoretical possibility that 
the national-level census could be reconstructed, although 
tools such as Sugar and PicoSAT are probably not powerful 
enough to do so.

To protect the privacy of census respondents, the 
Census Bureau is developing a privacy-protection system 
based on differential privacy. This system will ensure that 
every statistic and the corresponding microdata receive 
some amount of privacy protection, while providing that 
the resulting statistics are sufficiently accurate for their 
intended purpose.

This article has explained the motivation for the decision 
to use differential privacy. Without a privacy-protection 
system based on noise injection, it would be possible to 
reconstruct accurate microdata using only the published 
statistics. By using differential privacy, we can add the 
minimum amount of noise necessary to achieve the Census 
Bureau’s privacy requirements. A future article will explain 
how that system works.
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RELATED WORK
In 2003 Irit Dinur and Kobbi Nissim4 showed that the 
amount of noise that needs to be added to a database 
to prevent a reconstruction of the underlying data is on 
the order of 𝛺 (√n) where n is the number of bits in the 

database. In practice, 
many statistical agencies 
do not add this much 
noise when they release 
statistical tables. (In our 
example, each record 
contains 11 bits of data, so 
the confidential database 
has 77 bits of information. 
Each statistic in Table 3 
can be modeled as a four-
bit of count, a seven-bit of 
median, and a seven-bit of 
mean, for a total of 18 bits; 
Table 3 releases 126 bits 
of information.) Dinur and 
Nissim’s primary finding 
is that many statistical 
agencies leave themselves 
open to the risk of 
database reconstruction. 
This article demonstrates 
one way to conduct that 
attack.

Statistical tables 
create the possibility of 

SAT and SAT Solvers 
 The Boolean SAT problem was the 
 first to be proven NP-complete.9 
This problem asks, for a given Boolean formula, 
whether replacing each variable with either 
true or false can make the formula evaluate 
to true. Modern SAT solvers work well and 
reasonably quickly in a variety of SAT problem 
instances and up to reasonably large instance 
sizes.

Many modern SAT solvers use a heuristic 
technique called CDCL (conflict-driven clause 
learning).10 Briefly, a CDCL algorithm:

1. Assigns a value to a variable arbitrarily.
2. Uses this assignment to determine values 

for the other variables in the formula (a process 
known as unit propagation).

3. If a conflict is found, backtracks to the 
clause that made the conflict occur and undoes 
variable assignments made after that point.

4. Adds the negation of the conflict-causing 
clause as a new clause to the master formula 
and resumes from step 1.

This process is fast at solving SAT problems 
because adding conflicts as new clauses has 

3
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database reconstruction 
because they form a set 
of constraints for which 
there is ultimately only 
one exact solution when 
the published table is 
correctly tabulated 
from a real confidential 
database. Restricting the 
number or specific types 
of queries—for example, 
by suppressing results 
from a small number of 
respondents—is often 
insufficient to prevent 
access to indirectly 

identifying information, because the system’s refusal to 
answer a “dangerous” query itself provides the attacker 
with information.

CONCLUSION
With the dramatic improvement in both computer speeds 
and the efficiency of SAT and other NP-hard solvers in 
the last decade, DRAs on statistical databases are no 
longer just a theoretical danger. The vast quantity of data 
products published by statistical agencies each year may 
give a determined attacker more than enough information 
to reconstruct some or all of a target database and breach 
the privacy of millions of people. Traditional disclosure-
avoidance techniques are not designed to protect against 
this kind of attack.

3

the potential to avoid wasteful “repeated 
backtracks.” Additionally, CDCL and its 
predecessor algorithm, DPLL (Davis–Putnam–
Logemann–Loveland), are both provably 
complete algorithms: they will always return 
either a solution or “Unsatisfiable” if given 
enough time and memory. Another advantage 
is that CDCL solvers reuse past work when 
producing the universe of all possible solutions.

A wide variety of SAT solvers are available 
to the public for minimal or no cost. Although 
a SAT solver requires the user to translate the 
problem into Boolean formulae before use, 
programs such as Naoyuki Tamura’s Sugar 
facilitate this process by translating user-input 
mathematical and English constraints into 
Boolean formulae automatically.
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Faced with the threat of 
database reconstruction, 
statistical agencies have 
two choices: they can 
either publish dramatically 
less information or 
use some kind of noise 
injection. Agencies can 
use differential privacy to 
determine the minimum 
amount of noise necessary 
to add, and the most 
efficient way to add that 

noise, in order to achieve their privacy protection goals.
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