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a b s t r a c t

Memory analysis is slowly moving up the software stack. Early analysis efforts focused on core OS
structures and services. As this field evolves, more information becomes accessible because analysis tools
can build on foundational frameworks like Volatility and Rekall. This paper demonstrates and establishes
memory analysis techniques for managed runtimes, namely the HotSpot Java Virtual Machine (JVM). We
exploit the fact that residual artifacts remain in the JVM's heap to create basic timelines, reconstruct
objects, and extract contextual information. These artifacts exist because the JVM copies objects from one
place to another during garbage collection and fails to overwrite old data in a timely manner. This work
focuses on the Hotspot JVM, but it can be generalized to other managed run-times like Microsoft .Net or
Google's V8 JavaScript Engine.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Memory analysis can yield important information when per-
forming forensic analysis as a part of incident response, but it can
also be extremely tedious. Several factors hinder memory forensics.
First, an analyst requires tools or some understanding about how to
extract and interpret the data structures supporting the program.
Second, these data structures might be incomplete, overwritten or
missing. Finally, the amount of data extracted frommemory and its
creation order can be impossible know for certain.

Standard memory analysis frameworks like Rekall and Volatility
focus on recovering forensic information from OS structures and
services. Conversely, when dealing with a garbage-collected/
managed runtime memory system, the interpretation of recov-
ered memory objects depends not on the host machine's archi-
tecture or operating system, but on the particularities of the
managed runtime implementation. As more applications are writ-
ten in language like Java, Python, or Microsoft's .Net languages,
using garbage collection to manage their memory, threads, and
other system state, it becomes increasingly important for forensics
tools to address these systems.

Furthermore, attackers are increasingly crafting exploits for
code running within managed runtimes, delivering code-injection
attacks against a variety of services. Forensic tools must then
Ltd on behalf of DFRWS. This is an op
connect low-level kernel state with high-level object state to pre-
sent a coherent picture of the attacker at work.

This research builds on our previous work exploring JVM data
retention through the observation and measurement of latent ar-
tifacts in the heap (Pridgen et al., 2017). Here we present JVM tools
that we built to rapidly analyze an obfuscated malware. Next, we
demonstrate that evidence of sockets and other important artifacts
can be recovered from residual data in the Java heap, even if they
are not present in the operating system. We focus on the HotSpot
Java Virtual Machines because it has been widely adopted within
the enterprise and is a vector of current attacks against a number of
industries.

The remainder of this paper is organized as follows: “Prior
work” Section focuses on related work and past research, and
“HotSpot memory background” Section discusses how memory is
organized in the HotSpot JVM. “Approach” Section talks about the
process of recovering Java objects and low-level object pointers
(e.g. Original Object Pointers (OOPs)) from the HotSpot JVM.
“Evaluation” Section shows how this can be applied to memory
forensics and malware analysis. “Future work” Section expands on
future needs for this project. “Conclusions” Section concludes.

Prior work

A large body of work has established usable techniques for
copying memory, including Halderman et al. (2009)’s “cold-boot
attack,” direct memory access (DMA), FireWire, JTAG, and specially
constructed interface cards can perform DMA; V€oMel and Freiling
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Fig. 1. Heap memory layouts used by the HotSpot JVM.
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(2011) survey such techniques for acquiring main memory in
computers running Microsoft Windows.

The two most common forensic frameworks for decoding
memory dumps are the Volatility Memory Forensics Framework
(Walters, 2007) and Rekall Memory Forensics Framework (Cohen,
2014). These frameworks are written in Python and implement
plugins for specific functions such as listing valid processes and
open network connections. Separately, researchers have demon-
strated special-purpose memory analysis tools for rendering the
pieces of documents that remain in an application's memory
(Saltaformaggio et al., 2014), recovering Android GUIs from apps
(Saltaformaggio et al., 2015a), and recovering photographic images
that were shown in the view finder, even if they were never written
to storage (Saltaformaggio et al., 2015b).

Viega (2001) identified that memory is not securely deallocated
in not only C, Cþþ, but also in systems with managed runtimes,
such as Java, and Python, potentially allowing sensitive information
to be recovered. Chow et al. (2004, 2005) showed that Unix oper-
ating systems and standard libraries failed to sanitize deallocated
memory; attackers could exploit this issue to recover latent secrets
from common applications like Apache and OpenSSH.

Li (2015) shows that sensitive information from the Python
runtime is easily retrievable, and Java has similar issues. Forensic
analysts can potentially recover copies of Java objects long after the
active objects have been garbage collected and overwritten. Such
objects might contain sensitive data related to service and user ac-
counts, financial data, or network artifacts left behind by attackers.
Forensic analysts can use such objects for establishing an event
timeline, looking for evidence related to compromises, understand-
ing the behavior of malicious software, and enumerating compro-
mised data. Pridgen et al. (2017) showed that the JVM fails to
overwrite garbage-collected objects, potentially allowing the recov-
ery of TLS secrets long after the TLS connection has been terminated.

Many researchers have demonstrated techniques for recovering
usable latent secrets from dump files or system memory. For
example, Harrison and Xu (2007) identified RSA cryptosystem pa-
rameters in unallocated memory that had been inadvertently
written to untrusted external storage as the result of a Linux kernel
bug. Halderman et al. (2009) showed that AES encryption keys can
be readily detected in RAM from their key schedule. Case (2011)
presented an approach for analyzing the contents of the Dalvik
virtual machine. Similar attacks are possible against Android
smartphones, allowing for the recovery of disk encryption keys
(Müller and Spreitzenbarth, 2013) and Dalvik VM memory struc-
tures (Hilgers et al., 2014).

This article is predicated on the assumption that an attacker or
forensic examiner has somehow found a way to capture an unen-
crypted system memory image; based on our survey and direct
experience, we believe that this threat is credible.

HotSpot memory background

The HotSpot JVM implements several different garbage collec-
tors, but all use generational copying to improve memory man-
agement performance.

In generational copying, new objects are created in the Eden
space. The Eden space is further partitioned into thread local allo-
cation buffers (TLAB), allowing for low-cost memory allocationwith
minimal locking in multi-threaded applications. The generational
hypothesis states that most objects die young; indeed, most Java
objects die quickly, but some age and survive GC, and are migrated
from Eden to the survivor spaces, which together with the Eden
Space are called the young generation. Objects are eventually copied
from the young generation to the tenured generation. A typical Java
heap memory layout contains many such sections (Fig. 1a).
Because of its focus on performance, the JVM does not clear the
contents of memory when an object is moved from one space to
another (Sun Microsystems, 2006). Stale data will eventually be
overwritten as memory is reused, but these overwrites may also
never happen.

In newer HotSpot JVM's, an alternative Garbage First Garbage
Collector (G1GC) uses a partitioned heap space (Fig. 1b), allowing
parallel garbage collection during incremental collection. During an
incremental collection, G1GC identifies regions with the most
garbage and copies the objects into a new region, allowing it to
reclaim those regions (Detlefs et al., 2004).

Java runtime performance typically improves when the JVM is
given additional RAM, as less memory pressure results in more flex-
ibility for the garbage collector. This decreased pressure also results in
latent secrets remaining longer in RAM, improving the chances of
recovering sensitive informationda boon for forensic analysis.

Furthermore, the HotSpot JVM uses a region-based memory
allocator to manage the sharing of large blocks of memory between
the garbage collector and native C libraries. This creates the addi-
tional possibility that a garbage collector, finished with a region,
might release it to the region allocator, which could then reuse the
memory without first zeroing it.

Java objects are variably sized. The invariant part of the object
structure includes a mark header, object metadata, and class in-
formation. The variable portion contains object's non-static fields.
Raw pointers otherwise known as original object pointers (OOPs)
refer to the address of the Java object in process memory, which lies
in the heap.

The mark header usually starts the structure and includes the
hash identifier of the object, thread ownership information, and
metadata (e.g. age and liveness) used by the GC. This mark header is
typically followed by a pointer to a type definition (which HotSpot
calls a Klass). The type pointer defines each offset necessary to
access fields of the object in the heap. If the object fields are
primitive values, then these values are written directly into that
memory location. If the field is a reference, then the field value is an
OOP pointing to the object.



A. Pridgen et al. / Digital Investigation 20 (2017) S20eS28S22
Array objects have a slightly different structure. In addition to the
mark header and type information, the object also contains meta-
data defining dimensionality and the number of elements in the
array. The size of an array object also depends on the type (e.g. Byte
[] vs. char[] vs. int[]). The Byte[] is an array of OOPs, while the
char[] and int[] are arrays of 2- and 4-byte values, respectively.

Fig. 2 depicts the heap memory layout of a String[2], which is
actually an array of two Object references, each pointing to a
String. The first element contains a reference to a value of type
char[5]. The values for the char[] are inlined. Needless to say,
these basic object header structures are kept very simple, because
they will be widely repeated in memory.

Approach

Our memory analysis approach focuses on both the virtual
machine and the managed memory. Our analysis components rely
on a simple overlay system for data structure interpretation and a
simple system for accessing memory using the process's virtual
addressing scheme. Our analysis framework, RecOOP, is written in
Python and can be used with an interactive environment like IPy-
thon or as a library like Rekall.

Fig. 3 depicts the process we use to recover objects from
managed memory. Currently, our RecOOP analysis focuses on
recovering HotSpot JVM OOPs from �86 architectures. Adding
support for 64-bit machines would only require minor modifica-
tions to address the OOP encoding. We similarly expect that our
work would generalize to support other managed runtime envi-
ronments such as those used by Mono, .Net, or JavaScript.

We implemented our analysis for the Linux and the Windows
operating systems. We have successfully tested RecOOP against
Fig. 2. This diagram shows the Java heap memory layout when examining OOPs. Here
we show a java/lang/String referenced from java/lang/String[2].

Fig. 3. An overview of the steps that RecOOP takes to extract a
32-bit versions of Ubuntu, Windows XP SP3, Windows 7, and Win-
dows 8 with a Java heap size of 2GiB. Overlays are structural tem-
plates used to interpret raw memory as a program data structure.
Only 8 out of 150 Cþþ overlays require different padding to achieve
the correct memory layout on the different OSs. We believe these
differences are due to compilers, which tend to vary field padding in
the structures.

Process reconstruction

RecOOP analysis begins with process reconstruction. If the
process's memory has not already been extracted from a RAM
image, RecOOP will dump it using the Volatility Framework. Vola-
tility will identify the target process by name or PID and enumerate
all the physical memory page frames, which are then ordered ac-
cording to the process's virtual address space. Finally, the memory
is saved to file for future analysis or for use with other tools such as
Radare (Pancake, 2015).

Extract loaded classes

Program portability in managed runtimes is accomplished
through several key systems that resolve, link, and sometimes
compile the program being loaded and executed. Internally, there is
a loader and type system used to find and load specific classes or
types, and then store these types for future reference. The loader
will look inside the application or loading path to find the correct
library.

When the required types, classes, and code are loaded into the
virtual memory, symbols for each of these artifacts are created.
Once completed, the runtime then links together the code for each
of the classes for the given types. Linking ensures that all class
dependencies for inter-class method calls and field access are
loaded. Linking also optimizes method calls in classes that imple-
ment an interface. For example, if class Foo implements

Boingo, the links to the Boingo methods need to be created to
reduce any performance penalties when Foo is treated as a
Boingo. After linking and loading, the original class file defining
the Java types and code are transformed into machine optimized
structures. These transformations are with their symbolic refer-
ences in a central location.

The HotSpot JVM stores requisite information in three different
hash tables: a SystemDictionary, a SymbolTable, and a
StringTable. The SystemDictionary contains all the loaded
type information (e.g. Java classes). The SymbolTable contains all
the loaded symbols for classes, methods, fields, and enumerable
types. Finally, the StringTable contains all the constant strings or
strings that exist for long periods of time. Generally, only the types
required for linking are resolved and loaded into the runtime; this
proves useful when with dealing obfuscated JAR files, because
forensic or malware analysis need only focus on the loaded class
files and types.

Our JVM analysis engine first looks for the symbol table and
then the system dictionary. The symbol table is a good place to
nd recover managed memory objects for forensic analysis.
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begin, both because it's structurally simple and because those
strings will be helpful to us later.

These data structures are located by scanning for invariant
values (0x00004e2b or 0x000003f1) in the Cþþ _table_size

field of the structure. When these values are found, _entry_size
and _number_of_entries are used for an initial sanity check. The
_entry_size is the size in bytes for each value entry (e.g. 1
entry ¼ 0 � 000C bytes). We place an upper bound on _num-

ber_of_entries that starts at 100 K entries but can be adjusted if
necessary. Table 1 shows the memory layout of a system dictionary
that we want to apply these constraints to.

When these constraints are met, the engine attempts to parse a
subset of the hash table entries. The system dictionary has a pointer
to these entries (e.g. HashTableBuckets* _buckets): the inter-
nal array that forms the spine of the hashtable.

The engine iterates over this array and tries to follow the bucket
entries to the target value using amemory overlay. If the entries can
be interpreted as the expected values, we accept it as valid. For
example, the Cþþ type Symbol is a vtable, followed by some
metadata, size, and the symbol string. As a heuristic, if the length of
this string exceeds a manually-chosen threshhold, the entry is
considered invalid.

Table 2 shows some entries from a valid dictionary found by the
JVM analysis engine. Most Klass structures should have symbol
names appearing in the symbol table, so when we parse candidate
dictionaries, the dictionary entries (e.g. Klass *) names are
checked to see if they are known symbols. If a majority of these
symbols are found, we accept the candidate. The product of this
analysis yields the low-level memory layout of each Java class,
methods, and other meta-data like the Java constant pool. (Note:
since the JVM supports class unloading, unloaded Klass names
may not be present in the SymbolTable, even when dead objects
of those types are still in heap pages waiting to be reused.) This
Table 1
The memory layout of a JVM SystemDictionary captured from an embedded W

Memory

Address Values

0x00e5b928 0x00004e2b
0x00e5b92c 0x00e5cd50

0x00e5b930 0x00000000

0x00e5b934 0x14283408

0x00e5b938 0x14283be0

0x00e5b93c 0x0000000c
0x00e5b940 0x00002f4d

Table 2
A memory dump showing the offsets and values embedded Windows 7 OS instance.

Memory Data Structure Interpretatio

Offset Address Values Value information

0x00 0x142d61b4 0x0b32967d

0x142d61b8 0x00000000

0x142d61bc 0x13fdc908 Klass*: java/nio/channels/B
0x142d61c0 0x00000000

0x142d61c4 0x00e5cd18 [/ oop class_loader]
0x14 0x142d61c8 0x257f6796

0x142d61cc 0x00000000

0x142d61d0 0x13fdccb8 Klass*: java/nio/channels/S
0x142d61d4 0x00000000

0x142d61d8 0x00e5cd18 [/ oop class_loader]
0x142d61dc 0x55f713ed

0x28 0x142d61e0 0x00f357f8
0x142d61e4 0x13fdcf58 Klass*: java/nio/channels/G
0x142d61e8 0x00000000

0x142d61ec 0x00e5cd18 [/ oop class_loader]
extraction technique is OS agnostic and easily automated.
Alternative approach: the JVM tool interface. Prior to developing

these techniques, we attempted to use symbol structures intended
for the JVM tool interface (JVMTI). These structures were found
using string pointers to the symbol names, the structure size, static
values in the fields, and the location relative to the JVM library's
base offset. When the JVM is started, these structures are filled with
the appropriate runtime data structures (e.g. SystemDictionary,
SymbolTable). We also used an optimization technique to find the
best fit memory locations based on the locations of other recovered
structures, the order of the structures, and invariant values that
should be present in the structure.

Unfortunately, this approach has many obstacles. First, it was
overly complex; the identification of strings and reverse-mapping
them to pointers was time intensive, and the specific strings and
structures were not always present in memory. Second, every
version of Java requires a new set of constraints because the location
of the JVMTI symbols and data structures change. Thus, this
approach could not generalize across multiple platforms and JVM
versions. Finally, since these structures and JVMTI symbols were
not in use, the OS paged the sections of the process's virtual
memory out to make space for other relevant data. Most memory
analysis protocols do not consider the OS swap or page files; thus, if
RAM was dumped near the start time of the JVM process, recovery
of the dictionary, symbol table, and string table addresses were
likely, but after a few minutes the chance of success dissipated.

Identifying managed memory

Knowing the location of managed memory helps with object
enumeration and with sanity checking whether or not the results
are valid. However, automatically and correctly identifying
these segments is difficult. We err on the side of caution and
indows 7 OS instance.

Data Structure Interpretation of the SystemDictionary::_dictionary

[struct_field: int table_size]
[struct_field: SymbolTableBucket* buckets]
[struct_field: SymbolTableEntry* free_list]
[struct_field: char* first_free_entry]
[struct_field: char* end_block]
[struct_field: int entry_size]
[struct_field: int number_of_entries]

n

SystemDictionary::_dictionary entry values

[struct_field: int _hash]
[struct_field: DictionaryEntry* _next]

yteChannel [struct_field: Klass* _literal]

[struct_field: int _hash]
[struct_field: DictionaryEntry* _next]

eekableByteChannel [struct_field: Klass* _literal]

[struct_field: int _hash]
[struct_field: DictionaryEntry* _next]

atheringByteChannel [struct_field: Klass* _literal]



Table 4
Number of pointers found in address ranges with more than 10 unique “type-
pointer” occurences found on addressable word boundaries in a version of the
Adwind malware. The red, yellow, and black lines correspond to the eden, survivor,
and tenure space, respectively. Table 3 shows how these locations are found.

Adwind Obfuscated Java Malware on Linux Loaded Classes ¼ 1626

Address range Type
pointers

Unique
pointers

Pointer occurrences
per page (Y-axis: 0e64)

0xa32de000e0xa3355000 1353 265

0xa33ce000e0xa349d000 2735 331

0xa349e000e0xa34f5000 609 122

0xa3600000e0xa3692000 362 360

0xa40b0000e0xa4779000 11926 1229

0xa47ff000e0xa4c0f000 13261 266

0xa4c50000e0xa4c92000 129 28

0xa4cd0000e0xa4d50000 1121 79

0xa9d50000e0xaa000000 28810 661

0xb6936000e0xb6996000 427 413

0xc0001000e0xf7bfe000 11085 1211
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enumerate all possible locations. To prevent erroneous object
identification, we perform type checking on every object's non-
primitive field references.

Potential managed memory areas are found by looking for an
abundance of type-pointers (e.g. Klass*). Every object is required
to have a defined type. Consequently, areas with a large number of
type-pointers are likely to contain objects. The exceptions to this
rule are places where class metadata or compiler interface data
structures are located. Most of the class metadata is known, so
these addresses are filtered out. For other areas of memory, we rely
on our type checking to remove invalid entries.

We isolate managed memory boundaries by first ignoring all
memory regions less than 256 KiB, since this is less than the smallest
default heap space. Second, we only consider pages with more than
10 type-pointers, and then we smooth variations using a moving
average. We only consider areas with more then 10 type-pointers in
at least 32 consecutive pages (e.g. 32� 4096 B ¼ 64 KiB). This al-
gorithm might need adjustment for G1GC, because G1GC uses hu-
mongous memory regions (e.g. large allocations exceeding multiple
MiB) for large objects.

This analysis only establishes boundaries where objects might
be clustered. We avoid identifying memory regions as a particular
generational space (e.g. eden, tenured, etc.), as this could lead to
misclassifications. For example, the JVM may expand or contract a
heap space depending on application activity. Using our analysis,
we might misclassify two segments of memory as different spaces,
when they were part of the same region at some point in time. A
consequence of this misclassification might also lead us to miss
regions where Java objects are present.

The JVM is very good about measuring performance and logging
events, so if identifying generations is necessary, it still might be
possible to do so without using type-pointers. If at least one GC
event has occurred, the JVM logs information about all the heap
spaces internally. These log strings contain the named heap space,
start and end addresses, and other information. These messages
can be found by searching a strings dump using regular expressions
like “space.*usedjMetaspace.*used.” This expression will
reveal most, if not all, of the managed memory spaces used by the
Java heap.

To demonstrate these procedures, we analyze data from the
Adwind malware analysis case study in the next section. Table 3
shows the most relevant information with an emphasis on the
heap space and memory region. The color of the heap space is also
reflected in Table 4, which shows the results of the type-pointer
clustering. Using type-pointers narrows the number of memory
regions that need to be scanned from 431 to 11, and it isolates the
areas where objects might exist. The sparklines show several
memory chunks that contain some of these regions, most obviously
in the 0xa47ff000-0xa4c0f000, 0xa4cd0000-0xa4d50000,
and 0xa9d50000-0xaa000000 memory chunks. If we want more
granular heap information, additional memory analysis is required.
Table 3
The regular expression “space.*used” used in conjunction with ffastrings to deter-
mine the eden, survivor, and tenure generation spaces. Note […] signifies omitted
message content.

GC Log Message

Generational space Start and end of the space

[…] used [0xa4800000, […] 0xa4c50000)

[…] used [0xa4c50000, […] 0xa4cd0000)

[…] used [0xa4cd0000, […] 0xa4d50000)

[…] used [0xa9d50000, […] 0xaa800000)
Enumerate and extract objects

The location of type-pointers is used to help object enumeration
and extraction. Enumeration for objects like threads, sockets, and
files happens automatically, but RecOOP permits enumerating
specific types of objects any time after the managed memory is
identified. In the previous phase, all the addresses to type-pointers
were found and saved. These addresses are used to extract objects if
they fall in a managed memory boundary.

Object extraction happens in several phases. First, we check that
the address adheres to the basic object structure. Next, we use the
loaded type information to determine the size of the object and
locate its references. Then, each non-primitive field is parsed
recursively, repeating these steps. The field references are checked
to see whether the value is null or the given type of the field. Note,
we also track all the potential classes a reference could be due to
polymorphism. After the fields have all been parsed and extracted,
all the values in the fields are updated, and the process completes.
Values are set after all the referenced objects are enumerated to
avoid an uncontrolled recursion.

Java threads (e.g. java.lang.Thread) are enumerated and
extracted first. During this process, the native structures imple-
menting the thread are also identified and mined for information.
After the initial identification, each thread is checked for validity
and fields holding pertinent information are analyzed, most
importantly eetop, the thread's native address. We use this field to
find the linked list containing all the threads, and we iterate over it
to identify any missing threads from the Java heap. If any are found,
we repeat the object analysis for the missing thread.

Buffers and streams are investigated next because they are
typically used to manage IO between the program, the JVM, and the
operating system. Given the ubiquitous nature of these objects,
there are a number of base and abstract classes (e.g. jav-

a.io.InputStream) that are used to create the different IO
classes like java.io.BufferedReader. We were challenged by



Table 5
Thread information extracted from the HotSpot JVM executing the Adwind malware
on Linux.

Thread identifier Native address Heap address Thread name

1 0x00000000 0xa9e91020 Main
1 0xb6907000 0xa4d3d050 Main
2 0xb695f800 0xa4cd4e10 Reference Handler
2 0xb695f800 0xa9e90c58 Reference Handler
3 0xb6961000 0xa9e90ab0 Finalizer
3 0xb6961000 0xa4cd4c68 Finalizer
4 0xb697e000 0xa9e90938 Signal Dispatcher
4 0xb697e000 0xa4cd4af0 Signal Dispatcher
5 0xb697f800 0xa9e907c0 C1 CompilerThread0
5 0xb697f800 0xa4cd4978 C1 CompilerThread0
6 0xb6982c00 0xa4cd4800 Service Thread
6 0xb6982c00 0xa9e90648 Service Thread
7 0xa360ac00 0xa9e904a8 Java2D Disposer
7 0xa360ac00 0xa4cd4660 Java2D Disposer
8 0x00000000 0xa9e204f8 XToolkt-Shutdown-Thread
9 0xa361dc00 0xa4cd4318 AWT-XAWT
9 0xa361dc00 0xa9e90160 AWT-XAWT
10 0xa36f5800 0xa9e8fef8 Thread-0
10 0xa36f5800 0xa4cd15d8 Thread-0
11 0x09e24c00 0xa49f2720 Thread-1
13 0xb6907000 0xa49f9e58 DestroyJavaVM
14 0x09e35000 0xa49f5a78 pool-1-thread-1

Table 6
Compressed class (gray), password (red), and other files found in the Java heap.
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the polymorphism and the number of types an object might
implement. For example, determining if a SocketInputStream is
used by a java.io.BufferedInputStream requires identifying
the java.io.BufferedInputStream that wraps the Sock-

etInputStream. To deal with this issue, we perform multiple
scans for the different IO implementations and create a basic link
table. This link table helps cut through obscure object relationships
to map IO classes with buffers and other data. Generally, we found
that the only IO classes containing buffered data were either used
by a buffered IO class or the class maintained its own buffer, as was
the case with InflaterInputStream.

Native buffers are used tomarshal IO data in and out of the JVM.
Classes used for the functionality appear to implement the
DirectByteBuffer interface, which permits direct memory ac-
cess. We have only found the implementations MappedByte-

Buffer, NativeBuffer, and HeapByteBuffer in the source
code. Data in these buffers is captured, but it is volatile andmay not
be useful.

File information is collected from objects using the jav-

a.io.FileDescriptor or java.io.File type. For the most
part, the filename or path are the only useful information found in
this object type. If there is a reference from an IO object like a
FileChannelImpl or FileInputStream, we might be able to
determinewhether or not the file is open. If buffering is not used by
the IO stream, identifying any attributable data is difficult.

JAR files and entries contain information related to loaded files
and might reveal sensitive information by way of compressed
streams. JAR files typically hold all the program resources and class
files for a library or program. Class files are decompressed and
loaded from JAR files as a ZipEntry object. Usually, decompression
and loading happen in lockstep, so any data related to the process
may dissipate very quickly. When raw compressed data is present
in memory, a zlib library may be able to decompress it. We have
been able to successfully recover JAR filenames, named entries, and
decompressed entries. If parts of the JAR file are present inmemory,
we read the low-level zip file structure, dump the resident data, and
investigate the result as a zip file.

Socket objects can reveal connections well after the artifacts
disappear in the OS. In particular, the IP address along with the
remote and local port are extracted, if the object is still intact. We
also attempt to associate the socket with any identified streams and
data buffers.

Child process information is collected from the Proc-

essBuilder and OS Process implementation class. The Proc-

essBuilder class is the typical way to start a process. This class
takes a command string or an array of strings in addition to any
object for redirecting IO. Once the process is started, an OS-specific
implementation of a Process object is created. Unfortunately,
when GC happens, the string objects used for the command string
are likely to be overwritten. These overwrites can prevent identi-
fying the command by name.

The Process object remains in the heap for a significant period
of time. In our experiments, even though GC happened several
times, all Process objects were still recoverable. Additionally, the
IO buffers stdout, stdin, and stderr retained some data. Even
though the information used in the original instantiation of the
process dissipated, we could use the process output to identify
some of the processes.

One of the benefits of a managed runtime for forensic analysis is
event ordering. In the HotSpot JVM, memory is allocated from the
heap or TLABs directly after the last allocation; this sequential
allocation is a fundamental property of a wide variety of garbage
collection strategies. Because the TLABs are thread-local, then ob-
jects allocated sequentially by a thread will likely be adjacent in
memory, regardless of memory allocation activity by other threads.
This ordering lends itself well to timelining and trying to determine
the relationships between events.

Evaluation

Three case studies demonstrate RecOOPs ability to extract in-
formation from a Java runtime. In each case, only a memory image
is available for analysis. Traditionally, understanding Java malware
beyond sandboxing and behavioral analysis requires two things:
the JAR file and a decompilation tool such as CFR or JD-GUI. The
analyst decompiles the JAR file, modifies the code, recompiles, and
runs the code in an IDE such as Eclipse (Chen and Chen, 2006;
Proebsting and Watterson, 1997; Cimato et al., 2005). Obfuscation
tricks can be very effective at blocking these efforts (Chan and Yang,
2004; Low, 1998; Schlumberger et al., 2012), and if the malware
removes itself from the disk, extraordinary efforts are required to
recover the original file, which may not be feasible. In this section,
we show that Java processes contain copious amounts of infor-
mation which lends itself to static forensic analysis.



Table 7
Extracted class data for Adwind's plugin interface and survey functionality.

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF

0x00000000 caf�e babe 0000 0032 000d 0700 0b07 000c ……2……

0x00000010 0100 0a61 6464 4172 6368 6976 6f01 0011 …addArchivo…

0x00000020 284c 6a61 7661 2f69 6f2f 4669 6c65 3b29 (Ljava/io/File;)

0x00000030 5601 000d 6361 7267 6172 506c 7567 696e V…cargarPlugin

0x00000040 7301 0003 2829 5a01 000a 6765 7450 6c75 s…()Z…getPlu

0x00000050 6769 6e73 0100 1928 295b 4c70 6c75 6769 gins…()[Lplugi

0x00000060 6e73 2f41 6477 696e 6453 6572 7665 723b ns/AdwindServer;

0x00000070 0100 0a53 6f75 7263 6546 696c 6501 0015 …SourceFile…

0x00000080 496e 7465 7266 6163 6550 6c75 6769 6e73 InterfacePlugins

0x00000090 2e6a 6176 6101 0018 706c 7567 696e 732f .java…plugins/

0x000000a0 496e 7465 7266 6163 6550 6c75 6769 6e73 InterfacePlugins

0x00000000 caf�e babe 0000 0032 000a 0700 0807 0009 ……2……

0x00000010 0100 0e67 6574 496e 666f 726d 6163 696f …getInformacio

0x00000020 6e01 0014 2829 4c6a 6176 612f 6c61 6e67 n…()Ljava/lang

0x00000030 2f53 7472 696e 673b 0100 0d67 6574 4d61 /String;…getMa

0x00000040 6341 6464 7265 7373 0100 0a53 6f75 7263 cAddress…Sourc

0x00000050 6546 696c 6501 0012 696e 7465 7266 6163 eFile…interfac

0x00000060 6549 6e66 6f2e 6a61 7661 0100 166f 7063 eInfo.java…opc

0x00000070 696f 6e65 732f 696e 7465 7266 6163 6549 iones/interfaceI

0x00000080 6e66 6f01 0010 6a61 7661 2f6c 616e 672f nfo…java/lang/

Table 8
Recovered socket data (colored by the proxied connection) shows how the heap
address forms a communication timeline.
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Blackbox malware analysis and reverse engineering

We found an old version of the Adwind trojan on Malwr.org1

and performed a Java centric analysis. We ran the malware on
both Linux and Windows XP SP3 VMs and found that the malware
appears to behave a little differently on Linux. Both versions of Java
produce a similar thread listing (Table 5). However, the program
behaviors diverge because the backdoormust dump a native library
that is used by Java for snooping and keystroke logging.

Since this malware uses obfuscation, we explore the process for
any latent buffers containing compressed data. Table 6 shows that
files can either reveal information like passwords or contain
unobfuscated class files. Table 7 shows several recovered class in-
terfaces, and Listing 1 shows a high level prototype of a recovered
class file created by Radare, and Listing 1 shows a high level pro-
totype of a recovered class file created by Radare. The extra/

CLM.pass reveals a password field, so enumerating the object and
its field in the heap reveals the string value (vooXN3UW). Finding
this value in a strings dump would be difficult.

Malware proxy

To demonstrate the effectiveness of socket analysis, we wrote a
program that simulates the basic capabilities of Java malware. In
this case, an infection has been detected in the network, and an
investigation of the system reveals malware acting as a network
proxy. This proxy allows an external attacker to communicate with
hosts on the internal network. Normally, the investigator may not
be able to find out what information moved in and out of the
network. However, Java's memory model allows the socket con-
nections and buffered data to persist indefinitely.

We ran the simulation for five minutes, sending commands
instructing the agents to “do something evil.” Table 8 shows the
recovered socket data. Since the buffered stream and subordinate
objects were never collected or overwritten, most of the attackers
commands remained intact. However, we found that some of the
structural information of the messages was lost, because the proxy
used DataInputStream to read themessage length and command
Fig. 4. Number of recoverable process artifacts present in the heap throughout the
scripted attack.

1 Windows analysis from Malwr.org: https://malwr.com/analysis/
NGUwYjM1OGI4MGE4NDZkYjg5ZGVhMGU4YTMyN2RlMDU/.

http://Malwr.org
https://malwr.com/analysis/NGUwYjM1OGI4MGE4NDZkYjg5ZGVhMGU4YTMyN2RlMDU/
https://malwr.com/analysis/NGUwYjM1OGI4MGE4NDZkYjg5ZGVhMGU4YTMyN2RlMDU/


Listing 1. Radare2 java prototypes command reveals a custom loader in the
decompressed class data.

Table 9
At t ¼ 21, process artifacts are used to create an event log.

Table 10
Interesting process output recovered at t ¼ 35.

Address PID Buffered output

0x67020b20 1275 \nStarting Nmap 6.47 ( http://n
0x67020c10 1403 total 176584\ndrwxrwxrwt 9 roo
0x6702de70 1273 total 10312\ndrwxrwxr-x 6 java
0x6702eb78 1252 root:!:16678:0:99999:7:::\ndaem
0x67092350 1250 root:x:0:0:root:/root:/bin/bas
0x67092b88 1248 java adm cdrom sudo dip plugde
0x670c0720 1245 Linux java-workx32-00 3.19.0e1
0x670c0880 1242 #\n# This file MUST be edited w
0x670c0f18 1354 adding: var/log/ (stored 0%)
0x670c13d8 1338 -rw-rere 1 root root 1617 Au
0x670c15d0 1333 PK\x03\x04\n\xdbL\x1fG\x0f\x1c
0x6711d068 1328 total 44\ndrwxrwxrwt 9 root ro
0x6711d718 1322 adding: home/java/.ssh/ (sto
0x6714c8b0 1307 ifconfig\nsudo add-apt-reposito
0x6714cc10 1301 history j grep pg\nhistory j gr
0x6714ceb8 1298 sysfs on /sys type sysfs (rw,n

Table 11
Call metadata for a selection of the Loader's methods at t ¼ 35, revealing a large
number of IO operations.

Address Calls Method name

0x63fdb6f8 256 Loader getLoaderInstance(…)
0x63fdb908 73 byte[] b64Decode(…)
0x63fdce98 256 integer sendSocketData(…)
0x63fdd038 256 integer sendSocketData(…)
0x63fdd670 1 void addClientHandlerSocket(…)
0x63fdd718 256 void stdout(…)
0x63fdd850 256 void logEvent(…)
0x63fddbd8 73 integer getPid(…)
0x63fddd50 73 integer startProcess(…)
0x63fddf68 256 java.lang.String readProcessStdout(…)
0x63fdd9e8 1 void main(…)
0x63fde1d8 1 integer access$100(…)
0x63fde168 2 java.lang.String access$000(…)
0x63fdb670 1 void start(…);
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directly off the wire. While the message may not be intact, a
forensic analyst could examine the class and method metadata and
try to assemble a data flow graph, which could help recreate the
message structure.
Scripted intrusion

We created a script that models how a smash-and-grab attacker
would behave in a post-compromise setting. The scenario centers
around an attacker exploiting the fact that dynamic plugins can be
uploaded to a dotCMS server.2 In this case the attacker leverages
administrator credentials to upload and activate the plugin. When
the plugin activates, it uses wget to retrieve and start the attacker's
backdoor. The attacker uses a script to execute a series of steps
using the malware. After each step in this script, we take a memory
snapshot of the virtual machine and perform the JVM analysis. The
2 http://dotcms.com/.
implant relies on ProcessBuilder to execute system commands
outside of the Java environment and has functions that allow the
attacker to proxy and communicate with other systems, read and
write files, download files, and interact with the OS.

This evaluation concentrates on the created processes, and how
much information can gleaned from their Java artifacts. This script
starts 73 processes that execute OS commands (e.g. ls, ps, etc.)
Fig. 4 shows how much command history is retained in the heap
over time. Three garbage collection cycles are observable at t ¼ 25,
t ¼ 27, and t ¼ 30. Malware data exfiltration triggers the GC events.

The process objects accumulate and remain in memory even
after several garbage collections. These processes also retain buff-
ered data, which can be used to infer the commands executed on
the system. Table 10 shows a sample of these buffered processes at
the end of the experiment. We can see that an analyst could infer
what 11 out of the 16 listed processes were doing. To verify this
information, we refer back to t ¼ 24 before the garbage collection
wiped out most of the command history. Table 9 shows how the
ProcessBuilder objects and the Process data buffers can be
used to assemble an event log.

We also evaluate recovery of process artifacts fromVolatility. For
each memory image, the linux_psview and linux_psxview are
used to try and find artifacts. Only one process (sudo lsof) could
be accurately identified. This process runs from t ¼ 10 through the
end of the experiment. No other process artifacts could be recov-
ered. We believe they were unrecoverable due to OS activity and
memory volatility, because the relevant data structures were
overwritten at some point after process termination and memory

http://n
http://dotcms.com/
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deallocation. This shows the limits Volatility and other similar
frameworks, which do not currently account for runtime artifacts.

The HotSpot JVM produces telemetric data to help improve
performance. MethodCounters are initialized on a method's first
call, and it tracks the number of calls, which can be useful for
malware analysis (Table 11). For example, if malware uses a
HashMap to map specific commands to specific functions, under-
standing themalware's behavior is very challenging. The telemetric
information helps discern relevant functions from noise or poten-
tial obfuscation.

Future work

Future work should address several key challenges. First, our
analysis tools can use a significant amount of memory while pro-
cessing a malware memory image. Overhead results from creating
environmental objects and values in addition to annotations which
help support our analyses. The resulting memory consumption
becomes an issuewhenmemory image sizes are multiple gigabytes
or when there are 100,000 or more individual objects.

Furthermore there is a semantic gap between some objects that
prevents directly finding links between these objects without
deeper analysis. At runtime, relevant information about an object
can be determined with an API call. When the memory is analyzed
in a static manner, those API calls are not available (even though the
information that they use is typically in memory). This was the case
with JAR file entry names and the compressed data from the entry
in our experiment. A symbolic execution for VM bytecode (e.g. CLR,
HotSpot, etc.) would help to eliminate this problem.

Conclusions

RecOOP is a memory analysis framework that helps generalize
digital forensics of managed runtimes. We developed an imple-
mentation focused on the HotSpot JVM for Java 8. We also showed
that the framework is practical for digital forensics and malware
analysis, complementing other such tools.
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