
Chapter 13

ANALYSIS OF THE USE OF XOR AS
AN OBFUSCATION TECHNIQUE IN
A REAL DATA CORPUS

Carolina Zarate, Simson Garfinkel, Aubin Heffernan, Scott Horras and
Kyle Gorak

Abstract The only digital forensic tools known to provide an automated approach
for evaluating XOR obfuscated data are DCCI Carver and DC3 Carver,
two general-purpose carving tools developed by the Defense Cyber Crime
Center (DC3). In order to determine the use of XOR as an obfuscation
technique and the need to adapt additional tools, we analyzed 2,411
drive images from devices acquired from countries around the world.
Using a modified version of the open source tool bulk extractor, evi-
dence of XOR obfuscation was found on 698 drive images, with a max-
imum of 21,031 XOR-obfuscated features on a single drive. XOR usage
in the corpus was observed in files with timestamps between the years
1995 and 2009, but the majority of the usage was found in unallocated
space. XOR obfuscation was used in the corpus to circumvent mal-
ware detection and reverse engineering, to hide information that was
apparently being exfiltrated, and by malware detection tools for their
quarantine directories and to distribute malware signatures. The results
indicate that XOR obfuscation is important to consider when perform-
ing malware investigations. However, since the corpus does not contain
data sets that are known to have been used by malicious entities, it
is difficult to draw conclusions regarding the importance of extracting
and examining XOR obfuscated files in criminal, counterintelligence and
counterterrorism cases without further research.

Keywords: XOR, obfuscation, steganography, bulk extractor

1. Introduction

A variety of single-byte operators have been used for simple data
hiding or obfuscation. A classic technique involved the use of the ROT13



192 ADVANCES IN DIGITAL FORENSICS X

operator [34] to hide off-color jokes disseminated on the early Internet.
Common techniques used today include single-byte XOR and single-
byte rotate operators. These operators are essentially poor encryption
algorithms with 8-bit keys: they are trivial to decode, but to do so the
analyst or tool must specifically probe for evidence of their use. If no
detection algorithm is employed, even 8-bit encryption is sufficient to
hide data.

The only digital forensic tools known to the authors that provide
forensic investigators with an automated approach for finding XOR-
obfuscated data are DCCI Carver and DC3 Carver, two general-purpose
forensic carving tools developed by the Defense Cyber Crime Center
(DC3). Existing commercial and open source digital forensic tools largely
ignore single-byte obfuscation techniques. Although it is relatively easy
to modify forensic and anti-malware tools to scan for data that have
been obfuscated, most digital forensic tools and malware scanners eschew
steganography detection because it is computationally expensive and the
use of steganography is thought to be low. However, simple obfuscation
techniques are sufficient to bypass most commercial and open source
malware detection techniques, rendering the lack of de-obfuscation fea-
tures in tools a vulnerability.

This paper focuses on a specific obfuscation technique, which we call
XOR(255). XOR is the exclusive-or binary operation. XOR binary op-
erations are performed with “keys.” A key is a series of bytes with which
a source file is XORed. XOR(255) is a special case of a single-byte key
with the value 0xFF. Bytewise XOR(255) has the effect of inverting ev-
ery bit in a source file. XOR(255) has the advantages of being fast (it
typically executes in less than one clock cycle on modern architectures),
reversible and performed in-place. XOR(255) has the additional prop-
erty of leaving the file entropy unchanged, allowing processed data to
remain invisible to tools that search for encrypted data using entropy
techniques. We focused on XOR(255) because of its ease of use and
effectiveness at obscuring data.

We created a plug-in for the open source tool bulk extractor [18]
that processes data with XOR(255). The structure of bulk extractor

is such that each scanner is applied independently to each block of data
during processing. The modified tool was employed to scan a corpus of
several thousand drive images extracted from used storage devices that
had been purchased on the secondary market. The analysis was limited
to email addresses, URLs, JPEG photographs, Windows executables,
ZIP files and other kinds of easily recognizable data that had been ob-
fuscated by XOR(255). The tool optimistically applied XOR(255) before



Zarate, et al. 193

and after every decompression or decoding step in its search for recog-
nizable structured data.

The analysis revealed that simple obfuscation techniques were present
on the drives purchased on three continents over a ten-year period, with
some examples of obfuscation as recent as 2009. The use of XOR(255)
was limited to a small fraction of the corpus, but the applications of
obfuscation are very relevant to forensic investigations. In particular,
obfuscation was used to hide signatures in malware and user-generated
content that appeared to be targeted for exfiltration. Also, obfuscation
was used by legitimate programs to prevent reverse engineering.

2. Prior Work

Simple data obfuscation techniques predate the modern Internet. The
ROT13 operator was used in the 1980s to distribute off-color jokes and
the answers to riddles on Usenet.

2.1 Use of XOR

The academic literature on XOR obfuscation is relatively sparse. In-
deed, documented examples of XOR use are largely confined to online
blogs of malware investigators. Mueller [29] notes that Norton Antivirus
uses XOR to obfuscate its log files and Quarantine folder; we verify this
observation in this paper. Hussey [22] suggests that XOR is sometimes
used as an obfuscation technique to hide data as it is being exfiltrated;
we discovered evidence of XOR used for this purpose.

Several types of malware have been reported as using simple obfus-
cation techniques to hide data being exfiltrated from a victim machine.
Trojan.NTESSESS XORs the results of its commands, including up-
loaded files, with a changing nine-byte key [12]. Even advanced malware
such as Stuxnet, Duqu, Flame and Red October use XOR as the basis
of obfuscation algorithms to hide data [35]. Stuxnet uses a 31-byte key
with XOR [16]. Duqu XORs data from its keylogger, which it sends to
its server [35]. Like Duqu, Flame employs XOR obfuscation techniques
on captured keystrokes, screenshots, email messages and conversations
recorded via the computer microphone [35]. Red October also uses XOR
obfuscation techniques when exfiltrating information from Nokia phones,
iPhones and networks [35].

Simple obfuscation techniques have proven to be popular for protect-
ing malicious code and exfiltrated data from anti-virus software and
forensic investigators. The SymbOS/OpFake.A!tr.dial malware from
Opera Updater is one such example. Apvrille [2] found the Opera Up-
dater malware to contain a 91-byte XOR key as a more complicated



194 ADVANCES IN DIGITAL FORENSICS X

algorithm for hiding itself. Similarly, variations of Trojan.PingBed and
Trojan.NTESSESS employ XOR obfuscation and embedding techniques
in PNG files to evade anti-virus scanners [11, 12]. Cannell [6] suggests
that malware may contain XORed URLs as references to malicious files
and executables online, creating the appearance of benign files. An ex-
ample is Trojan.Win32.Patched.mc, which disguises itself as a harmless
Flash file. The Trojan file main.swf analyzed by StopMalvertising [25]
contains an XORed hexadecimal string, which allows an XORed mali-
cious executable to be downloaded. This poses a problem for anti-virus
scanners because the files appear harmless, but proceed to download files
from URLs that are known to be malicious. XOR has also been used
by advanced malware as a method for hiding their main code from anti-
virus software – Stuxnet, Duqu, Flame and Red October all obfuscate
their payloads and main executables with XOR [35]. In addition, the
Storm botnet and other advanced botnets have begun to take advantage
of the technique, obfuscating their traffic with XOR in order to avoid
identification [24].

Previous research has examined how well anti-virus systems deal with
simple obfuscation in malware. Common commercial anti-virus systems
tested by Christodorescu and Jha [8] frequently did not identify ob-
fuscated malware, demonstrating that simple obfuscation is an effective
technique to defeat anti-virus scanners. The Internot Security Team [23]
examined a similar case and found that simple obfuscation allowed mal-
ware to easily bypass many anti-virus scanners.

Other researchers have provided insight into techniques that could
help undermine XOR obfuscation. Cannell [5] suggests that patterns
inside XORed material can be used to find the XOR key. Malware
normalization has also been proposed by Christodorescu, et al. [9] as a
method for undermining obfuscation techniques by normalizing a file,
enabling anti-virus scanners to detect malicious content.

2.2 Manual Analysis Tools

Although numerous digital forensic tools can de-obfuscate a region of
bytes with an XOR mask or use XOR pre-processing in malware anal-
ysis, only one tool applies XOR as part of automated processing. The
other tools that de-obfuscate data require the techniques to be manually
invoked by the operator.

Some tools offer methods for de-obfuscating data, but leave the inter-
pretation up to the operator. Hex editors often implement such a feature,
enabling the user to view data in hex and offering de-obfuscation func-
tions. The open source Hexplorer [13] has the ability to XOR regions



Zarate, et al. 195

before they are displayed. The translate.py script [31] also allows
an investigator to XOR a file with a single-byte key. Other tools are
specifically tailored to de-obfuscating certain components of a forensic
investigation. The MemoryDump plugin [1], for instance, has an option
for XORing a memory dump before outputting the data to the user.

Other tools examine data to look for XOR keys, leaving it up to the
user to de-obfuscate and analyze the information. XORBruteForcer [15]
uses a brute-force algorithm to determine the keys that were most likely
to have been used in XORing the data. In contrast, NoMoreXOR [14]
attempts to guess an XOR key using frequency analysis.

String searching is also a frequently-used feature in obfuscation anal-
ysis tools. XORSearch [30] uses a brute-force approach to search for
specific strings that have been obfuscated using XOR, ROL and ROR.
Similarly, XORStrings [32], an extension of the XORSearch tool, scans
a given file for strings that have been XORed with a specific sequence.
The iheartxor tool [20] offers a similar function, using brute-force to
search for certain obfuscated regular expressions and plain strings.

2.3 Automated Analysis Tools

As mentioned above, DCCI Carver and DC3 Carver are the only digi-
tal forensic tools that provide investigators with an automated approach
for uncovering a wide variety of XOR obfuscated files in storage me-
dia. In addition to these tools, a literature search turned up tools that
provide automated assistance in identifying obfuscated malicious files.
Several programs can search for XORed executables embedded in files.
Hexacorn’s DeXRAY tool [21] acts as a file carver and can identify ob-
fuscated malicious files under a single XOR layer. OfficeMalScanner [3]
has a feature to scan for traces of XORed malicious data in Office doc-
uments using a brute-force method. Another document scanner tool,
Cryptam [26], uses cryptanalysis to identify obfuscated embedded exe-
cutable files and is effective at detecting XOR obfuscation [27].

3. Materials and Methods

We modified an open source tool to preprocess all the examined data
with XOR(255). We then processed data from 2,411 forensic images and
found 324,144 XOR artifacts on 698 of the images, with a maximum of
21,031 validated artifacts on a single forensic image.

The goal of the research was to identify the different ways that XOR
obfuscation is used in real data in order to determine if the quantity
and quality of obfuscation cases are sufficient to suggest implementing
XOR de-obfuscation functions as a standard step in automated forensic



196 ADVANCES IN DIGITAL FORENSICS X

processing. In particular, we analyzed a corpus of data seeking to deter-
mine the extent to which XOR(255) is implemented as an obfuscation
technique.

3.1 Real Data Corpus

The Real Data Corpus [17] is a collection of several thousand digi-
tized digital storage devices collected from countries around the world
between 1998 and 2013. The corpus contains data from computer hard
drives, cell phones, CD-ROMs, DVDs and thumb drives purchased from
secondhand computer stores and markets. The corpus thus permits the
sampling of XOR usage over a 15-year period in countries around the
world, essentially representing a real-world data set.

A limitation of the Real Data Corpus is that it does not include data
sets that are known to have been used by malicious entities. Thus,
it would be difficult to draw conclusions regarding the importance of
extracting and examining XOR obfuscated files in criminal, counterin-
telligence and counterterrorism investigations without further research.
In addition, since the analysis was limited to email addresses, URLs,
JPEG photographs, Windows executables, ZIP files and other kinds of
easily recognizable data, we did not search for all the types of files that
would be considered relevant to these types of investigations.

3.2 bulk extractor

The bulk extractor forensic tool can scan digital media for email
addresses, phone numbers, Internet domain names and other data of
interest to investigators. The tool is employed by triage and malware
investigators [18]. The tool employs compiled regular expressions and
hard-coded finite state machines to extract features from digital media.
Features are pieces of key information such as credit cards, emails and
URLs that are encountered in forensic investigations. For each feature,
bulk extractor determines the feature encoding and records the infor-
mation in its output. The program labels features found using XOR(255)
de-obfuscation with the string “XOR(255).”

The bulk extractor tool tracks the features that result from the
application of each scanner; this information is recorded in the program
output. By using the tool in this manner, it was possible to search the
entire corpus systematically for different uses of XOR obfuscation. For
example, we were able to detect and distinguish the case of a JPEG
photograph being XORed and then archived in a ZIP file from a series
of JPEGs that were archived in a ZIP file and then XORed.



Zarate, et al. 197

Table 1. bulk extractor features used in the study.

Feature

URLs
WINPE headers
Local file headers of ZIP archives
Exif headers (from JPEGs)

The identify filenames.py tool included in the bulk extractor

package was used to associate identified features with the files in which
they were located. For each feature, the tool indicated if the feature
occurred in an allocated file, a deleted file or disk sectors that could not
be associated with any file. This allowed the identification of the files
containing XORed information and also helped understand the purpose
and extent of the obfuscation.

3.3 Feature Selection

We examined the encodings of domains, URLs, email addresses, ZIP
file data structures and Windows Portable Executable (WINPE) headers
in order to find examples of XOR(255) usage. The problem with looking
for XORed features is to distinguish actual XORed features from “false
positives” or matching data that appear by chance, but that are not
actual features.

We observed a much greater percentage of false positives (i.e., sig-
nificantly lower precision) for the features that were found with XOR
encodings than is typical for bulk extractor output (which normally
has high precision). We assume that the error rate or the number of false
positives detected by bulk extractor is constant for random input and
a large set of data. When the input contains a substantial signal, such
as when running bulk extractor to find plaintext features, the preci-
sion is high. However, with an XOR filter, the signal is low because the
majority of the features in the data are not XORed. Since the signal is
lower, but the error rate remains constant, the precision is lower.

The higher incidence of false positives complicated the analysis. We
addressed the error incidence by restricting the analysis to features with
significant internal structure that are automatically checked for internal
consistency (Table 1). The features are, thus, self-validating; as a result,
they are extracted with an extremely low false positive error rate. Self-
validating features can also be easily confirmed to be legitimate at a
glance, such as opening a JPEG file or clicking a URL to visit a site.



198 ADVANCES IN DIGITAL FORENSICS X

Thus, we could safely assume that most of the identified features were
true positives.

Because our goal was to evaluate files containing certain XOR(255)-
encoded features, we ignored features that were not being evaluated in
order to restrict the data set. In particular, we removed features that
were not XORed, features that were not being considered and “false
positive” features that we did not recognize as legitimate features.

3.4 Analysis of Identified Files

After identifying the features that had been XOR-encoded, we pro-
ceeded to identify the files that contained them. The Sleuth Kit [7] was
used to extract the files that identify filenames.py associated with
intriguing XORed features. We analyzed the original files and the files
after decoding with XOR(255) to determine the purpose for which the
XOR obfuscation was used.

3.5 Evaluation of URLs

The vast majority of the XOR-encoded features discovered were URLs.
Malware files may contain some mechanisms to further infiltrate a vic-
tim, while appearing benign at the same time. For example, malware
often contained URLs of malicious sites for downloading additional mali-
cious executables and other files. We examined the XORed URL features
outputted by bulk extractor because it has been reported that some
malware samples use XOR to obscure embedded URLs. We evaluated
the XORed URLs using the Google Safe Browsing API [19] and the
McAfee TrustedSource Real-Time Threat Service [28].

4. Results and Discussion

This section presents the results and discusses their implications.

4.1 XOR Obfuscation as a Watermark

We found several cases in which an innocuous URL was XOR(255)-
encoded and embedded in a legitimate program. For example, drive im-
age AE10-1023 contained a copy of Nero 7 with the byte sequence 97 8b

8b 8f c5 d0 d0 88 88 88 d1 91 9a 8b 90 d1 9c 90 92 0a at dec-
imal offset 15,416,790,675. This maps to byte offset 112 of the file
Program Files/Nero/Nero7/Nero CoverDesigner/def.dat, a 13,630-
byte file with an MD5 value of 8f4b534ed6a82e1885e155541aab0940

that is reported to be part of the Nero Premium distribution [33]. The



Zarate, et al. 199

Table 2. Cross-tabulation of the classification of the 30,684 URLs.

McAfee Risk Google OK Google Malware Total

High Risk 1,938 143 2,081
Medium Risk 1,301 9 1,310
Minimal Risk 24,090 6 24,096
Unverified 2,216 5 2,221

Total 29,545 163 29,708

string was transformed to http://www.nero.com after being processed
by XOR(255).

4.2 XORed URL Analysis

A total of 281,712 XORed URLs were found in the drive images,
30,684 of them were distinct. Google’s Safe Browsing (GSB) database
only checks the domains of sites and is quite conservative. For each
XORed URL, GSB reports if the URL’s domain is “OK” or “Malware.”
McAfee’s Real-Time Threat Service considers the entire URL and pro-
vides better discrimination. For each URL, we recorded if McAfee con-
sidered it to be “High Risk,” “Medium Risk,” “Minimal Risk” or “Un-
verified.”

Table 2 shows how the URLs were evaluated by Google’s Safe Brows-
ing API and McAfee’s Real-Time Threat Service. Overall, roughly 10%
of the distinct URLs found in the XORed data were tied to malware.

4.3 XOR Obfuscation in Anti-Virus Software

Confirming Mueller’s observatin [29], we found many XOR-obfuscated
URLs in Norton Anti-Virus log files and virus definitions. We also dis-
covered some files in the Quarantine directory that had been obfus-
cated with XOR(255). The drive image il3-0161 contained one such
collection of XORed quarantined malware. bulk extractor determined
that the file 05FB1F54.exe contained an XORed WINPE header. The
file was also indicated to be located under Program Files/Norton An-
tivirus/Quarantine/ with an MD5 value of a96ae9519ea968ac0089-

d6b53cef9b2b. Examination of the hex dump of the original file re-
vealed that it had no executable code or strings. However, after the file
was XORed, the entire file appeared to be malware, containing strings
such as “RegDeleteKeyA,” “DownloadFile” and “Download.Trojan.”



200 ADVANCES IN DIGITAL FORENSICS X

Malware is often distributed via “drive-by downloads” from compro-
mised web servers and, thus, the presence of a malicious URL is a key
indicator of malware. Norton and other anti-virus scanners use this
approach to identify malware. By obfuscating malware signatures and
log files, anti-virus scanners avoid accidentally identifying themselves as
malware.

4.4 Obfuscated URLs in Malware

We found a significant number of XORed domains and URLs in pro-
grams that were clearly associated with malware. In many cases, the
URLs were verified as malicious by Google’s Safe Browing API or had
names that were clearly malicious. One example is the file SENDFILE.EXE
in the drive image IN10-0145, which has an MD5 value of 3d419f96-

355b93e641ba097c08121937. The unobfuscated version of the file con-
tained several malicious strings, including URLs linked to malware and
instances that modify the registry and processes. For example, the 47-
byte sequence b7 ab ab af c5 d0 d0 ac bc be b1 b1 ba ad d1 a9

d2 a7 d2 ac bc be b1 b1 ba ad d1 bc b0 b2 d0 ac ba ab aa af

d0 b9 b6 b3 ba d1 af b7 af appears at the decimal offset 4426 in
SENDFILE.EXE. After it was processed by XOR(255), the string became
HTTP://SCANNER.VAV-X-SCANNER.COM/SETUP/FILE.PHP. Based on this
analysis, it is clear that some examples of malware use XOR(255) ob-
fuscation in their normal operations.

The use of XOR(255) by anti-virus scanners and malware is problem-
atic. In our testing, many program samples containing malicious XORed
URLs were not identified as malicious by any of the 46 anti-virus engines
at VirusTotal.com. However, after the files were de-obfuscated, many
of the engines were able to identify the malware. Clearly, the engines
simply look for the malicious URLs (because applying XOR(255) to the
entire executable would also corrupt the Windows PE header and dam-
age the executable code). It is troubling that common anti-virus engines
and professional forensic tools do not even offer this simple technique for
finding obfuscated malicious data, especially given the widespread use
of XOR(255) in malware that we encountered in the Real Data Corpus
and in our literature search.

4.5 Anti-Reverse Engineering

In many of the drive images, we observed XOR-obfuscated variations
of an email address belonging to Reznik (co-developer of the RealAudio
and RealVideo algorithms [10]) in DLLs associated with software from
his company. The email address and its variations appeared to have been



Zarate, et al. 201

repeated several times in blocks throughout the Real codecs. One exam-
ple was found in the drive image AE10-1029 in the file Program Files/

Real/RealPlayer/converter/Codecs/erv4.dll. The erv4.dll file is
483,328 bytes in size and has an MD5 value of e8b759859b53e19c261162
783dae9869. The byte sequence a6 8a 8d 96 86 df ad 9a 85 91 96

94 df c3 86 8d 9a 85 91 96 94 bf 8d 9a 9e 93 d1 9c 90 92 c1

ff, which appeared at offset 61,120, was de-obfuscated to Yuriy Reznik

<yreznik@real.com>. We contacted Dr. Reznik and learned that his
obfuscated email address was embedded in the binary as a key for de-
crypting code tables used by the RealVideo 8 codec.

We also found several instances of XOR(255)-encoded JPEG digital
photographs that appeared to be from Adobe Flash video games. Drive
image IN10-0060 contained the Battle Rush Adobe Flash game menu
screen background, drive image SG1-1062 had an XORed menu screen
of Gutterball 2 and drive image TH0001-0010 had many Beach Party
Craze backgrounds. We believe that the JPEG pictures were encoded
as an anti-reverse engineering measure.

4.6 XOR(255)-Encoded ZIP File

On one drive image, we observed remnants of multiple ZIP files in
unallocated space that contained confidential information that had been
archived and XOR-encoded. The disk was from a computer running
Windows 95 that had been purchased on the secondary market and
imaged in 2007. The most recent use of the drive was in 2006.

On the drive image, we found a total of 802 documents with time-
stamps in the ZIP archive ranging from 1991 through 1999, with the ma-
jority of the files from 1998 (112 files) and 1999 (623 files). No archived
files were found with timestamps after 1999.

After finding these files, we proceeded to modify the ZIP scanner of
bulk extractor to carve the remnants into files that could be trans-
ferred to another system and analyzed. Upon reviewing the extracted
files, we found spreadsheets, personal emails and other sensitive docu-
ments containing employee names, home addresses and government iden-
tification numbers. We located a batch file, EMPACA2.BAT, that zipped
the documents to create the archive on the drive image. We were un-
able to find evidence of the tools that had been used to obfuscated the
archive and, thus, could not prove that the obfuscation was the result
of an exfiltration attempt.

There are several possible explanations for the obfuscation. The data
could have belonged to the individual who was obfuscating the data; this
individual could have been developing an application to protect a set of



202 ADVANCES IN DIGITAL FORENSICS X

Table 3. Processing times for bulk extractor with and without the XOR scanner.

Test Image Size Without XOR With XOR ∆

nps-2009-domexusers 40 GB 522 sec 799 sec +53%
nps-2011-2tb 2 TB 34,140 sec 58,147 sec +70%

data or to protect his/her own data. Alternatively, the obfuscated ZIP
file could be the result of software processing the data. On the other
hand, the data could have been obfuscated by a rogue employee to hide
the data or in an attempt to exfiltrate the data.

4.7 Performance Impact

We saw a significant increase in the processing time after adding the
XOR scanner. One standard test drive image required 53% additional
processing time, while another required 70% additional time (Table 3).
Timing was performed on a 12-core HP Z800 with dual Intel Xenon
E5645 CPUs running at 2.4 GHz with 24 GiB of RAM. The operation
system was Fedora 19 Linux.

Because bulk extractor recursively processes decompresseddata and
the XOR scanner attempts to de-obfuscate the data at each step of the
pipeline, the actual increase in time is dependent on the data in a disk
image. The increase in time is also proportional to the amount of data
that is compressed and have to be re-processed, but it is not proportional
to the amount of XOR-obfuscated data. For example, the NPS Realistic
drive image nps-2011-2tb contains a large number of Adobe PDF files,
each of which has multiple zlib-compressed regions. Applying XOR
deobfuscation to these bytes quadruples the processing time required
by other bulk extractor scanners: the bytes were processed with the
scanners as they sat in the disk image, after XOR de-obfuscation, after
decompression, and after decompression and XOR de-obfuscation.

4.8 Accuracy of bulk extractor

We were interested in substantiating the accuracy of bulk extractor

in detecting features obfuscated with XOR(255). Two standard forensic
drive images, nps-2009-domexusers (40 GB) and nps-2011-2tb (2 TB),
were used to study the accuracy of bulk extractor’s XOR scanner. We
took a random sample of 500 features from each type of feature from
each drive image. Each feature was determined to be a true positive
or false positive by hand. We found that, for each type of feature,



Zarate, et al. 203

bulk extractor had almost all the features as true positives or all the
features as false positives. There was a higher incidence of features on
the 2 TB drive image that were almost completely false positives than
on the 40 GB drive image.

4.9 XOR(255)-UNZIP-XOR(255) Property

We were surprised to discover several instances in which the sequence
XOR(255)-UNZIP-XOR(255) applied to a fragment of a ZIP-encoded
file yielded the same result that would be produced by the straightfor-
ward application of UNZIP. We hypothesize that is the result of zlib’s
use of an adaptive decompression algorithm. We subsequently sup-
pressed XOR(255)-UNZIP-XOR(255) processing with a modification to
the bulk extractor XOR scanner.

5. Conclusions

The analysis of the Real Data Corpus revealed multiple cases of
XOR(255) obfuscation. XOR(255) was used to encode URLs in anti-
virus scanner files and malware in order to avoid detection. XOR(255)
obfuscation was also used to hinder the reverse engineering of RealVideo
8 codecs and several Adobe Flash video games. In one case, XOR(255)
was likely used in a successful attempt to exfiltrate sensitive data.

The study of XOR obfuscation in the Real Data Corpus revealed sev-
eral instances where XOR obfuscation is relevant to digital forensic inves-
tigations. However, the increase in processing time by bulk extractor

and other forensic tools may be problematic when large data sets have
to be examined in a limited amount of time. Therefore, while forensic
tools should implement features that would allow investigators to per-
form simple de-obfuscation, the de-obfuscation should be adjustable by
the investigator to run in a manual or automatic mode (similar to the
XOR feature in DCCI Carver and DC3 Carver). Additionally, because
the analysis has demonstrated a need for de-obfuscating malware and ex-
filtrated data, a forensic tool should be operated with the de-obfuscation
function enabled in order to capture all the information. Likewise, XOR
de-obfuscation should be enabled in child exploitation and objectionable
content cases to address the so-called “botnet” or “SODDI” defense [4].
Our XOR scanner is included in the bulk extractor 1.4 release and is
enabled using the flag -e xor.

Our future research will focus on enhancing bulk extractor’s XOR
scanner to run with little noticeable performance impact. Another line
of research is to conduct a thorough survey of the prevalence and pur-
pose of other simple obfuscation and steganography techniques such as



204 ADVANCES IN DIGITAL FORENSICS X

rotate and the ROT13 algorithm, as well as, XORing with different keys.
Finally, efforts should focus on enhancing anti-virus systems to detect
malware that has been obfuscated; the fact that simple XOR obfuscation
can successfully evade today’s anti-virus systems is troubling indeed.

The opinions and views expressed in this paper are those of the au-
thors and do not reflect the views of the Naval Postgraduate School, the
U.S. Military Academy, the Department of the Navy, the Department
of the Army or the U.S. Department of Defense.

Acknowledgements

We wish to thank Robert Beverly, Michael Shick and Yuriy Reznik
for their help with this research. We also wish to thank Dave Ferguson
from DC3, and Colonel Greg Conti, Lieutenant Colonel Matt Burrow
and Lieutenant Michael Nowatkowski from the U.S. Military Academy.

References

[1] aeon, MemoryDump (www.woodmann.com/collaborative/tools/
index.php/MemoryDump), 2009.

[2] A. Apvrille, Symbian malware uses a 91-byte XOR key, Fortinet,
Sunnyvale, California (blog.fortinet.com/symbian-malware-us
es-a-91-byte-xor-key), 2012.

[3] F. Boldewin, Frank Boldewin’s www.reconstructer.org (www.
reconstructer.org/code.html), 2009.

[4] S. Brenner, B. Carrier and J. Henninger, The Trojan horse defense
in cybercrime cases, Santa Clara High Technology Law Journal, vol.
21(1), pp. 1–53, 2004.

[5] J. Cannell, Nowhere to hide: Three methods of XOR obfusca-
tion, Malwarebytes, San Jose, California (blog.malwarebytes.
org/intelligence/2013/05/nowhere-to-hide-three-methods-

of-xor-obfuscation), 2013.

[6] J. Cannell, Obfuscation: Malware’s best friend, Malwarebytes, San
Jose, California (blog.malwarebytes.org/intelligence/2013/
03/obfuscation-malwares-best-friend), 2013.

[7] B. Carrier, The Sleuth Kit (www.sleuthkit.org/sleuthkit), 2013.

[8] M. Christodorescu and S. Jha, Testing malware detectors, ACM
SIGSOFT Software Engineering Notes, vol. 29(4), pp. 34–44, 2004.

[9] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser and H. Veith,
Malware Normalization, Technical Report #1539, Deparment of
Computer Sciences, University of Wisconsin, Madison, Wisconsin
(ftp.cs.wisc.edu/pub/techreports/2005/TR1539.pdf), 2005.



Zarate, et al. 205

[10] G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman and Y.
Reznik, Video coding for streaming media delivery on the Internet,
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 11(3), pp. 269–281, 2001.

[11] CyberEngineering Services, Malware obfuscated within PNG files,
Columbia, Maryland (www.cyberengineeringservices.com/mal
ware-obfuscated-within-png-files), 2011.

[12] CyberEngineering Services, Malware obfuscated within PNG files
> Sample 2, Columbia, Maryland (www.cyberengineeringserv
ices.com/malware-obfuscated-within-png-files-sample-2-

2), 2011.

[13] M. Dudek, Hexplorer (sourceforge.net/projects/hexplorer),
2013.

[14] G. Edwards, NoMoreXOR (github.com/hiddenillusion/NoMore
XOR), 2013.

[15] J. Esparza, XORBruteForcer (eternal-todo.com/var/scripts/
xorbruteforcer), 2008.

[16] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier,
Symantec, Mountain View, California, 2011.

[17] S. Garfinkel, P. Farrell, V. Roussev and G. Dinolt, Bringing sci-
ence to digital forensics with standardized forensic corpora, Digital
Investigation, vol. 6(S), pp. S2–S11, 2009.

[18] S. Garfinkel, Digital media triage with bulk data analysis and
bulk extractor, Computers and Security, vol. 32, pp. 56–72, 2013.

[19] Google, Safe Browsing API, Mountain View, California (develop
ers.google.com/safe-browsing), 2013.

[20] A. Hanel, iheartxor (hooked-on-mnemonics.blogspot.com/p/
iheartxor.html), 2012.

[21] Hexacorn, DeXRAY, Hong Kong, China (www.hexacorn.com/bl
og/category/software-releases/dexray), 2012.

[22] B. Hussey, Decoding data exfiltration – Reversing XOR encryp-
tion, Crucial Security Forensics Blog (crucialsecurityblog.
harris.com/2011/07/06/decoding-data-exfiltration-%E2%80

%93-reversing-xor-encryption), 2011.

[23] Internot Security Team, Bypassing anti-virus scanners (dl.
packetstormsecurity.net/papers/bypass/bypassing-av.pdf),
2011.



206 ADVANCES IN DIGITAL FORENSICS X

[24] B. Kang, E. Chan-Tin, C. Lee, J. Tyra, H. Kang, C. Nunnery, Z.
Wadler, G. Sinclair, N. Hopper, D. Dagon and Y. Kim, Towards
complete node enumeration in a peer-to-peer botnet, Proceedings
of the Fourth International Symposium on Information, Computer
and Communications Security, pp. 23–34, 2009.

[25] Kimberly, Analysis of imm32.dll – Trojan.Win32.Patched.mc,
StopMalvertising (stopmalvertising.com/malware-reports/ana
lysis-of-imm32.dll-trojan.win32.patched.mc.html), 2011.

[26] Malware Tracker, Cryptam document scanner, North Grenville,
Canada (malwaretracker.com/doc.php), 2012.

[27] Malware Tracker, New malware document scanner tool released,
North Grenville, Canada (blog.malwaretracker.com/2012/02/
new-malware-document-scanner-tool.html), 2012.

[28] McAfee, TrustedSource – Check Single URL, Santa Clara,
California (www.trustedsource.org/en/feedback/url?action=
checksingle), 2011.

[29] L. Mueller, XOR entire file or selected text, ForensicKB (www.for
ensickb.com/2008/03/xor-entire-file-or-selected-text.ht

ml), 2008.

[30] D. Stevens, XORSearch and XORStrings (blog.didierstevens.
com/programs/xorsearch), 2007.

[31] D. Stevens, Translate (blog.didierstevens.com/programs/trans
late), 2008.

[32] D. Stevens, New tool: XORStrings (blog.didierstevens.com/?s=
xorstrings), 2013.

[33] Systweak CheckFileName, View Nero Premium Details (www.check
filename.com/view-details/Nero-Premium), 2013.

[34] I. Venkata Sai Manoj, Cryptography and steganography, Internal
Journal of Computer Applications, vol. 1(12), pp. 61–65, 2010.

[35] N. Virvilis and D. Gritzalis, The big four – What we did wrong
in advanced persistent threat detection? Proceedings of the Eighth
International Conference on Availability, Reliability and Security,
pp. 248–254, 2013.


