
A general strategy for differential forensic analysis

Simson Garfinkel a,, Alex J. Nelson b, Joel Young a

aComputer Science, Naval Postgraduate School, 900 N Glebe St., Arlington, VA 2203, USA
bComputer Science, University of California, Santa Cruz, 1156 High St, Santz Cruz, CA 95064, USA

Keywords:
Forensics
Differencing
Forensic strategies
Feature extraction
Temporal analysis

a b s t r a c t

The dramatic growth of storage capacity and network bandwidth is making it increasingly
difficult for forensic examiners to report what is present on a piece of subject media.
Instead, analysts are focusing on what characteristics of the media have changed between
two snapshots in time. To date different algorithms have been implemented for per-
forming differential analysis of computer media, memory, digital documents, network
traces, and other kinds of digital evidence. This paper presents an abstract differencing
strategy and applies it to all of these problem domains. Use of an abstract strategy allows
the lessons gleaned in one problem domain to be directly applied to others.

Published by Elsevier Ltd.

1. Introduction

This paper describes differential forensic analysis,
a practice that is increasingly used by digital forensic
examiners but has not been formalized until now.

Differential forensic analysis compares two different
digital forensic images (or, more generally, any pair of
digital artifacts) and reports the differences between them.
Focusing on the changes allows the examiner to reduce the
amount of information that needs to be examined (by
eliminating that which does not change), while simulta-
neously focusing on the changes that are thought to be the
result of a subject’s activities (for presumably, it was the
activity of the subject that somehow transformed the first
digital image into the second).

Differential analysis is widely practiced today. Reverse
engineers attempt to infer the behavior of malware by
comparing the contents of a hard drive before the malware
is introduced with the hard drive captured after the mal-
ware infection. Sex offenders on many controlled release
programsmust submit their computers for regular analysis,
so that an examiner can determine if the offender has
visited a banned website. Network engineers compare

month-to-month traffic summaries in an attempt to learn
how demands on their networks evolve, as well as to
identify the presence of malware.

No matter what specific modality is being examined, all
of these use cases involve the collection of at least two
digital objectsda baseline and a final image. Differential
analysis reports the differences between the twodthat is,
what has changed. But despite the similarity of purpose, to
date each differential analysis use case has been developed
in isolation, with different procedures, tools and reporting
standards.

We show that these scenarios can all be implemented
using the same strategy. Furthermore, the strategy can
cover scenarios apparently unrelated to computer foren-
sics, such as reporting on the changes within a document or
even file synchronization. The key to this strategy is the
extraction of features from the digital artifacts in which
each feature has a separately describable name, location,
content, and possibly other metadata.

1.1. Contributions

This paper presents a principled study of differential
analysis and then applies that work to multiple contexts,
including the analysis of files on a computer’s disk drive,
the pattern of data sent across a network, and even reports

Corresponding author. Tel.: þ1 617 876 6111.
E-mail address: simsong@acm.org (S. Garfinkel).

Contents lists available at SciVerse ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

1742-2876/$ – see front matter Published by Elsevier Ltd.
doi:10.1016/j.diin.2012.05.003

Digital Investigation 9 (2012) S50–S59

from other forensic tools. We show that a small set of well-
chosen abstractions allows the same differential analysis
strategy to be applied to all of these cases.

It is important to note that the tools we have written
were created beforewe formalized our general strategy, not
after. Although it would be quite elegant to have a single
implementation of differential analysis and then to
specialize that implementation for each modality, what
actually happened is that we unwittingly wrote multiple
implementations of the same abstract strategy each time
we wrote another differential analysis program. Only after
writing several different differential analysis tools were we
able to appreciate the commonalities between the imple-
mentations and to realize that the strategy could be made
general by an appropriate choice of abstraction.

2. Definitions, terminology and notation

In this sectionwe introduce a consistent terminology for
discussing differential analysis. We apply this terminology
to prior work as well as to our own contributions.

Differential analysis. An analytical process that compares
two objects (images) A and B and reports the differences
between them. Although at first it might seem most
sensible to report the differences as (B" A), experience has
shown that it is frequently more useful to report the
differences as the series of operations R necessary to
transform A into B:

A/
R
B (1)

Typically A and B represent snapshots in timedA might
be an image of a hard drive recorded before a computer is
deployed, and B might be an image of the same drive after
it has been compromised by an attacker. However both A
and B might be two different systems that are based on
a common object a:

(2)

Typically the operations R that are reported are a func-
tion of both the data formats and the needs of the exam-
iner. If A and B are disk images and the examiner is
evaluating the installation footprint of a new application,
then R might be a list of files and registry entries that are
created or changed. But if the examiner is looking for
evidence of a malware infection, R might be a list of op-
codes that are changed in existing executables.

Image. A byte stream from any data-carrying device
representing the object under analysis. Practitioners will be
familiar with disk images, memory images and cell phone
images. Images may be physical, which can be thought of as
a collection of sectors, or logical, which can be thought of as
a collection of files.

Note that for the purposes of this abstract strategy the
only real difference between a sector and a file is that
sectors are constant-length collections of bytes and are
identified by a number (which can be referred to either as
a name or a location, depending on the context), while files

are collections of bytes of variable length that are identified
by strings (typically a path name consisting of one or more
directory names and a final file name).

We use the term image to refer to any kind of digital
artifact. In this article we occasionally use the word object
as a synonym for image when warranted by context.

Baseline image (A). The image first acquired at time TA.
Final image (B). The last acquired image, taken at time TB.
Intermediary images (In). Zero or more images recorded

between the baseline and final images. Image In is the nth
image acquired.

Common baseline. A single image that is a common
ancestor to multiple final images. For example, a in Equa-
tion (2) is a common baseline for A and B.

Image delta (B" A). The differences between two
images, typically between the baseline image and the final
image.

Differencing strategy. A strategy for reporting the
differences between two or more images.

Differencing strategies and algorithms that implement
those strategies have long been applied to programs, text,
and word processing files (Horwitz, 1990), and are widely
available in tools such as Unix diff and Microsoft Word.
Traditionally there has been little distinction between the
tool that implements the algorithm and the algorithm
itself, and both have been developed for specific differ-
encing tasks.

This paper presents a general strategy for differential
analysis. By general we mean that the strategy can be
equally applied to other articles of forensic interest, such as
memory images and network packet dumps. For example,
if A and B are collections of packets sent over a network on
two successive days, the examiner might be interested in
an R that describes changes to metadata describing
network flowsdfor example, that a web server that was
previously listening on one IP address and port was moved
to another location, or that a protocol that was previously
protected with SSL is no longer using encryption. On the
other hand, a differential analysis of a Microsoft Word
document at two points in time might report that some
paragraphs have been changed while others have been
moveddan analysis performed by Word’s “Compare
Documents” feature, or the Unix command-line diff utility
on text files.

Feature (f). A piece of data or information that is either
explicitly extracted from the image or otherwise dependent
upon data within the image. For example, an email address
from an address book, a URL from a browser cache, the hash
value of a sector, and a histogram of port frequency use
within a set of packets are all examples of features.

Feature in image ((A, f)). Features typically are found in
images. In this case, feature f is found in image A.

Feature name (NAME (A, f)). Every featuremay have zero,
one or multiple names. For example, if a feature is the
contents of a file, the feature name might be the file name.

Feature location (LOC (f)). The location in the image in
which the feature is found. If the feature is the contents of
a file, the address might be the sectors where the file
resides. Some features can have both logical and physical
addresses. For example, a file’s location may be either its
file name (which is the file’s logical address in the file

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59 S51

system), its inode number, or a set of sector numbers
(which are the file’s physical address on the media). A
feature might thus have multiple locations.

Feature extraction (F()). The process of deriving one or
more features from bulk data. Differential analysis is rarely
applied on a byte-for-byte basis to bulk data. While it is
certainly possible to compare two objects byte-for-byte and
report where the bytes differ, it is more useful to transform
the data through some kind of grouping, data reduction, or
feature identification step.

In order to manage complexity, differencing algorithms
extract features as atomic units of one or more bytes, and
report differences between A and B as differences in their
extracted features. For example, the Unix diff program first
extracts lines from the files being compared. Many systems
that perform differencing on files in a forensic context use
the cryptographic hash of a long sequence of bytes as
a feature.

Extract feature set F(A). The set of features extracted from
an image. For example, the Unix diff program treats each
file as an ordered set of extracted lines.

Feature set delta (F(B) " F(A)). The differences between
the feature sets extracted from two images. The delta is not
necessarily symmetric.

Transformation set (R). The specific set of operations that
are applied to A to produce B. For example, the Unix diff
program can generate a “patch file” that is a set of changes
which, when applied to the first file, will produce the
second. This can be indicated with the notation shown in
Equation (2).

2.1. Processing multiple images

Clearly, any sequence of differential analyses performed
on a baseline image, one or more intermediary images, and
a final image can be reduced to a set of pairwise compari-
sons between an image In and image Inþ1. For this article we
shall therefore only consider differences between pairs of
images.

3. Prior work

Although differential analysis is practiced by a growing
number of forensic examiners, there is very little that has
been published on the subject in the forensic context. For
this reason we expand the prior work section to include
related concepts from version control systems and file
synchronization systems.

3.1. Differential analysis with diff

Differential analysis of text and binary objects has a long
history in computer science dating back to the original Unix
diff command (Thompson and Ritchie, 1975), the algorithm
for which was described by Hunt and McIlroy (1976). Of
particular note for this article, the original diff command
could generate an edit script that will transform the first file
being compared into the second using the Unix ed editor.

Modern versions of the diff command implement vari-
ants of the Myers Difference Algorithm (frequently called
simply the diff algorithm) which operates by finding the

longest common substrings in a set of symbols, where each
symbol is typically taken to be a line of text (Myers, 1986).

It is possible to use the diff command for forensic
differential analysis. The examiner must first prepare for
each snapshot a text file containing the name of each
allocated file, that file’s time stamp, size and hash value.
The two files are then compared with diff. This is the
essence of Tripwire (Kim and Spafford, 1994). Today this
operation can be performed simply using diff with the
output of md5deep (Kornblum, 2011) or SleuthKit’s fls
command (Carrier, 2005). The main limitation of this
approach is that it tends to over-report differences. For
example, a file that is renamed will be reported as one file
being deleted and a new file with the old file’s modification
date, size and hash value being created elsewhere in the file
system.

3.2. Manual forensic differencing

Examiners can use existing forensic tools such as EnCase
(Guidance Software, Inc., 2011) and FTK (Access Data, 2011)
to perform forensic differencing, but as these tools have no
support for automated differencing, the differencing must
be manually performed, or automated with macros.

For example, using EnCase it is possible to compare the
file systems on two drives by computing the hash values for
the files of one drive and then using this as a filter to view
the files on the second drive. New files can be found by
filtering for files on the second drive that do not have
hashes in the file set from the first drive; files that have
been renamed are those for which the hash value is the
same but the file name has been changed.

Levy (2012) has developed an EnScript that analyzes
two disk drives and reports files on the second that are not
on the first. This is done using file hash values as an
EnScript filter.

3.3. Automated forensic differencing

White (2008) presented a system at AAFS2008 for
identifying the changes to a Windows registry resulting
from the installation of a program. The system consists of
a program to ingest two Microsoft RegEdit-generated
Registry patch files and produce an XML file containing
the differences between the two files, and a second
program using that XML file to create a Windows Registry
Dataset (WiReD) file containing “changes to the Registry
caused by application installation, de-installation, execu-
tion or other modifying operations.” The NIST (2009)
follow-up publication indicated that the WiReD dataset is
“based on an FBI database schema.”

Watkins et al. (2009) described a system using
a combination of differencing and similarity matching to
determine the minimal change set necessary to transport
a copy of a disk image from one location to another. The
Teleporter uses a shared database of files and disk sectors at
both the sending and receiving location as a code book and,
when possible, sends these codes rather than the entire
disk sectors. Using our notation, Teleporter treats the disk
sent as B, assumes that A is null, and creates R with refer-
ence to the code book.

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59S52

3.4. Differencing outside of forensics

Others have applied differential analysis to a variety of
circumstances. Apiwattanapong et al. (2004) describe an
algorithm for differencing object-oriented programs;
Lindholm et al. (2006) present a simple XML tree differ-
encing algorithm, while Duley et al. (2010) provide an
algorithm for differencing Verilog HDL. More recently, Loh
and Kim (2010) introduce LSdiff, “a program differencing
tool to identify systematic structural differences.”

Many file formats, including network configuration files,
are not readily parsed with regular expression based tools
such as diff. Weaver and Smith (2011) are building
a context-free analog to the classic grep and hierarchical
differencing tools able to better search structured docu-
ments. Weaver et al. (2011) focused on IGTF PKI and Cisco
IOS policies. Their strategy was to parse the files into policy
trees, develop change tables summarizing the trees, and
then mine the tables for reporting.

3.5. Data synchronization

Data synchronizers are programs that manage pairs of
datasets such that changes to a master file system are
reflected in the replica. In practice there are two approaches
to implementing data synchronization. The first approach
is to employ differencing: deltas between the master and
replica are computed, such that the differences contain
sufficient detail to modify the replica to make it a copy of
the master. The second approach is to start with two
identical databases, track changes to the master, and replay
those changes to the replica.

The popular rsync (Tridgell and Mackerras, 1996) file
system replication tool implements differencing-based
synchronization, while MySQL database replication
implements change-tracking synchronization. (In the case
of MySQL synchronization, the changes are data-modifying
SQL statements that are sent from the master database to
the replicants.) Unison (Pierce and Vouillon, 2004) uses
differential analysis to create both the initial sync and
a snapshot of each system’s metadata. The file system and
snapshot are then compared to create a list of change deltas
that are used to accelerate its change-based synchroniza-
tion scheme.

3.6. Revision control systems

Closely related to the problem of data synchronization is
the problem of keeping multiple copies of source code
repositories consistent. Two broad strategies have emerged
for revision control. These are centralized (e.g., RCS (Tichy,
1982), Subversion (Pilato et al., 2008)) and decentralized
(e.g., git (Grosenbach, 2007) and Darcs (Roundy, 2005)). In
centralized systems, a master repository maintains a full
history of all changes and folds in changes on command
from subordinate (users’) copies. In decentralized systems,
there is no master repository. Instead each user keeps their
own copy of the repository and changes are merged as
needed from other repositories. Jacobson (2009) has
partially formalized the merging process for one of these
systems (darcs) using group theory over compositions of

invertible functions. Each function represents a particular
change needed for the merge.

3.7. Timeline analysis

In a forensic context, differential analysis often implic-
itly involves the analysis of timestamps as well.

Marrington et al. (2011) developed a system called CAT
Detect that used a rule-based system to detect events in the
computer activity timelinedfor example, a user that
deletes a file before it is created. Although the system does
not use differential analysis, it could be readily extended to
do so.

Olsson and Boldt (2009) presented a tool for the visual
display of timelines. Such a tool could be combined with
a differential analysis tool to display only changes between
twosnapshots, rather thanall timeelementswithin an image.
By displaying the results of differential analysis, temporal
inconsistencies (Section 5.3) would be readily apparent as
activity outside the region between the two snapshots.

Schatz et al. (2006) discussed an approach for corre-
lating multiple timestamps on a computer for the purpose
of validating timestamps.

4. Differencing in digital forensics

Unlike synchronization and revision control uses,
forensic analysts frequently do not use differential report-
ing to create byte identical replicas of forensic case mate-
rials. Instead, analysts use differencing to understand the
processes that resulted in the changes. For example, when
analyzing a baseline network flow with one captured
during an intrusion, the analyst may not care about the
actual content. Indeed, if the actual content is encrypted,
the analyst may not even be able to view it! Instead the
analyst may look for differences between the destinations,
ports, or average packet size of the connections. A carefully
designed system that extracts and processes the specific
features of interest can dramatically reduce the amount of
data that needs to be processed, reducing processing and
storage costs. Intelligent feature extraction also makes it
easier for the developer to create reports that focus on
features of interest to the analyst, rather than reports that
are optimized for ease of data processing.

Existing differential analysis and synchronization
systems carefully select the features that they extract and
compare. The key insight in describing those systems with
our strategy was the realization that decisions regarding
which features to consider are frequently inherent in the
implementations that we have created. For example:

Unison does not synchronize deleted files or file frag-
mentation patterns as such “features” are invisible to
the POSIX file API. Instead, it obtains a list of features by
walking the file system and consulting a local database.

Subversion does not (by default) synchronize file
modification dates, because keeping such dates
synchronized is not relevant to the system’s original
purpose of source code control. Subversion does
synchronize file names, content, MIME type, and

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59 S53

whether or not files are executable; all of which are
relevant to source code control.

Clearly, even existing systems distinguish changes that
matter from those that do not. This is done through feature
selection and extraction.

4.1. Use cases

This section presents three cases in which a forensic
analyst might wish to determine the difference between
disks in time or space: malware discovery and analysis;
insider threat identification; and pattern of life analysis.

4.1.1. Malware discovery and analysis
Malware discovery and identification is the process of

examining the contents of memory to determine if mali-
cious code or files exist on the device. Disk differencing in
time and space can quickly identify malicious files by
analyzing registry hives, file additions and deletions, and
abnormal file size growth. This process will not identify the
most advanced or targeted malware, but it will uncover
many instances.

4.1.2. Insider threat identification
Employee malpractice and espionage is a growing

concern among corporations as well as governmental
agencies. Automated techniques in disk differencing on
forensic images can identify and verify harassment cases,
policy-use violations, theft (intellectual property, money,
identities), and a variety of other malpractices. Several
issues exist in identifying or gathering evidence in insider
threat cases. One problem is that forensic images are
typically gathered only after misuse has already occurred,
making it difficult to establish the baseline. Additionally,
forensic images are usually not gathered right after the
event immediately occurs. Instead, the disk images are
produced days or months after the malicious activity has
already taken place. This can make finding the evidence
difficult or impossible.

By using disk differencing techniques one can identify
the evidence quicker by identifying abnormalities in time
and space. These automated techniques can correlate
information from the case to the base image and final
image to reduce the final image’s size to only the pertinent
information.

4.1.3. Pattern of life
To analyze an individual’s “pattern of life” is to learn the

individual’s habits regarding work, play, meals, sleep, and
other regular activity. Understanding routine behaviors can
be useful for a variety of activities involving data collection
or intervention.

Differential analysis can be a powerful tool for deter-
mining an individual’s pattern of life for the simple reason
that computer systems are intimately involved in so many
habitual activities. Differential analysis can also identify if
a computer is used by one ormore people, if a single person
is using multiple accounts, or even if an account has been
hijacked. Differential analysis is useful in all of these cases

because it can be used to create a set of deltas that occur
over time. Such deltas can be readily assembled into
profiles using appropriate statistical techniques.

4.2. Summarized reporting

Although it is relatively easy to simply calculate and
report F(B)" F(A) (that is, the list of all features that are
different between the two images), such lists tend to be
extraordinarily long and relatively difficult to interpret.

Based on our analysis of above use cases, combined with
interviews conducted with users of differential reports, we
have concluded that there is a need for a range of higher-
level differential reports. These include:

The introduction of new features. This might be the
creation of new files or the appearance of a new email
addresses in a document.

The increase in count of an existing feature.
The decrease in count of an existing feature.
The removal of a feature from the image.
A feature that is relocated from one location to another.

Frequently it is possible to suppress information in
a report that is not of interest to an analyst. For example,
analysts that are interested in finding a subject’s email
correspondents are frequently interested in new email
addresses but not in the disappearance of email addresses:
a new email address indicates a new connection, but the
disappearance of an email address may simply indicate that
afilewasdeletedand the sectorsoverwrittenbyanotherfile.

5. A general strategy for differential analysis

This section presents our strategy. The algorithm oper-
ates by augmenting each feature with metadata and then
determining the set of operations necessary to transform
one set of extracted features into another.

5.1. Feature metadata

In addition to a sequence of bytes, each feature has the
following associated metadata:

Location (mandatory): Each feature must have at least
one location. There are few restrictions on the nature or
form of the location. Features and locations have a one-to-
many relationship, such that different features necessarily
have different locations, but a single feature might have
multiple locations if copies of it are present at multiple
locations. Differential analysis algorithms can be dramati-
cally more efficient if locations are sorted and then
searched using a binary search algorithm. LOC(A, f) is
a conceptual function that returns all of the locations of
feature f in object A. In practice this function is imple-
mented by searching A for all features and arranging them
in a reverse index.

Name (optional): In many cases, it is useful for features
to have names so that they can be referred to in the human-
readable difference report. NAME (A, f) is a conceptual
function that returns all of thenames for feature f in objectA.

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59S54

Timestamp(s) and other metadata (optional):
Features can also have one or more timestamps. Typically
timestamps are extracted from the features themselves,
although they may be extracted from elsewhere in the
target media. Most obviously timestamps are useful for
constructing timelines, but they can also be used to find
temporal inconsistencies (Section 5.3). Beyond timestamps,
features could have additional metadata as well.

5.2. Change primitives

Images A and B can be viewed as sets of features, F(A)
and F(B). Differential analysis can then be reduced to
identifying the specific operations for converting feature
set F(A) into F(B). These operations are called change
primitives. Change primitives operate on features, not
images, and as such, do not explain image deltas but rather
feature set deltas.

Unlike for revision control systems like Darcs that need
to be able to revert changes, for forensic differencing the
change primitives do not need to be invertible.

With respect to any feature f, the change primitive
needed to transform ðA; f Þ/ðB; f Þ can be identified using
the rules described in text in Table 1 and in set notation in
Table 2. The full set of primitives can be efficiently calcu-
lated by enumerating all features, feature names, and
feature locations in both objects, removing the features
that are unchanged between A and B, identifying the
features created and deleted, and finally identifying
features that have moved, been renamed, had names
added, and had names deleted.

5.3. Temporal inconsistencies

If A and B are from the same system and TB> TA, one
would expect all new features in the feature set delta
F(B)" F(A) to be timestamped after TA. If B contains features
that predate TA or postdate TB, then there is an inconsis-
tency. It is useful for analysts to identify and explain
temporal inconsistencies when performing differential
analysis:

1. Inconsistencies most obviously arise from tampering of
some typedeither evidence tampering (for example, the
planting of new files with old file stamps), or system
tampering (for example, changing the system’s clock to
a previous time) (Marrington et al., 2011).

2. Inconsistencies can be a result of unexpected system
operation (for example, the Unix cp command will
preserve the mtime (modification date) of a file that is
copied, but the file’s ctime (inode change time) will

necessarily reflect the time that the copy is made
(Garfinkel et al., 2010).

3. Inconsistencies may be in inherent in the manner that
systems track time. For example, Nelson (in press) found
that for Microsoft Windows Registry hives, the last-
updated key, the hive header, and the hive file could
have inconsistent mtimes, while Garfinkel and Rowe
(2010) found Windows rounds many times to the hour.

4. Finally, inconsistencies can result from tool error.

5.4. Reporting

Once the features have been extracted, the change
primitives enumerated, and temporal inconsistencies
evaluated, the strategy enters the reporting stage. This stage
has two primary missions: First to suppress irrelevant
information and second, to emphasize the important
differences.

As discussed above, source code control systems detect
differences and propagate them to all clients so that all
have identical copies of the same source code once local
modifications are taken into account. That is, it requires
that R be sufficiently rich to allow B to be generated from A.

Forensic examiners rarely have such a stringent
requirement for differential analysis. Being already in
possession of both A and B, their goal, instead, is to deter-
mine what has changed at the appropriate level of detail to
enable their objectives (Section 4.1). Thus forensic differ-
ential analysis frequently requires that extraneous infor-
mation be suppressed.

As previously noted (Section 4.2), the most straightfor-
ward way to suppress extraneous information is by simply
not extracting unwanted features. But some kinds of

Table 1
Change detection rules in English.

If something did not exist and now it does, it was created
If it did exist before and now it does not, it was deleted
If it is in a new location, it was moved
If more copies of it exist, it was copied
If less copies of it exist, something got deleted
Aliasing means names can be added or deleted

Table 2
Abstract Rules for transforming A/ B (A into B) based on observed
changes to features (f), feature locations (LOC (A, f)), and feature names
(NAME (A, f)). Although the RENAME primitive is not strictly needed (it can
be implemented with a ADDNAME and a DELNAME), it is useful to
distinguish the two operations.

Rule Change primitive for A/
R
B

f˛ F(A) and f˛ F(B) (No change)
f˛ F(A) and f; F(B) DELETE f
f; F(A) and f˛ F(B) CREATE f

jLOC(A, f)j¼ 1 and
jLOC(B, f)j¼ 1 and

LOC(A, f)s LOC (B, f)

MOVE LOC(A, f)/ LOC (B, f)

jLOC(A, f)j< jLOC(B, f)j COPY LOC(A, f)/ (LOC(B, f)\LOC(A, f))

jLOC(A, f)j> jLOC(B, f)j DELETE (LOC(A, f)\LOC(B, f))

jNAME(A, f)j¼ 1 and
jNAME(B, f)j¼ 1 and

NAME(A, f)sNAME(B, f)

RENAME NAME(A, f)/NAME(B, f)

(jNAME(A, f)js 1 or
jNAME(B, f)js 1) and

n;NAME(A, f) and
n˛NAME(B, f)

ADDNAME f, n

(jNAME(A, f)js 1 or
jNAME(B, f)js 1) and

n˛NAME(A, f) and
n;NAME(B, f)

DELNAME f, n

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59 S55

suppression (such as reporting increases in feature counts
but not decreases) can only be done in the reporting stage.
Some techniques are:

1. Present count statistics rather than the actual features.
For example, a report differencing two network streams
may only present the number of common IP address/
port pairs rather than enumerating all of them.

2. Organize the features in hierarchies and allow the
viewer to drill-down into the level of detail needed

3. Organize the features into timelines.

6. Tools we have written

In this section we present tools that implement variants
of the general algorithm.

6.1. idifferenceddifferences between two different disk
images

One of the most basic differential analysis tasks is to
compare two disk images and report the files that have
been added, deleted, renamed, and altered. This is the basic
functionality that Garfinkel (2009) introduced in the idif-
ference.py program. However the program’s initial imple-
mentation had subtle bugs that only became evident when
we attempted to explain its behavior using the algorithm
described in this article.

Our current idifference.pyprogram is baseduponGarfinkel
(2012)’s DFXML toolset. The program reads a DFXML file
associated foreachdisk image. (If aDFXMLfile is not available,
the fiwalkprogram is run as a subprocess to produce aDFXML
streamwhich is processed instead.) EachDFXML file contains
a <fileobject> XML block for each allocated, deleted or
orphaned file. These XML blocks are used to create Python
fileobject objects. Each object can be queried for the corre-
sponding file’s length, contents, the hash of the contents, and
metadata such as file modification time. A SAX-based frame-
work makes it relatively easy to write Python programs that
ingest and process XML files that are gigabytes in size.

This basic disk differencing implementation maintains
two data structures for each disk image:

fnames[], a Python dictionary that maps complete path
names to file objects.

inodes[], a Python dictionary that maps the (partition,
inode #) pair to a unique file object.

These dictionaries reside in an instance of the DiskState
class. When a disk image B is processed, the DiskState
instance has the fnames[], and inodes[] dictionaries associ-
ated with image A. Then for each file object fi, the following
operations are performed:

1. If fi is not allocated, it is ignored. (This program only
reports differences of allocated files.)

2. The program retrieves the file object associated with fi’s
file name from A. This can be calculated with: ofi¼ f-
names[fi.filename()]

3. If there is no entry in the fnames[] array for the name
fi.filename(), the file is new.

4. If ofi.sha1()!¼ fi.sha1(), then the file’s contents have
changed.

5. if ofi.mtime()!¼ fi.mtime(), the file’s modification time
has changed.

6. The fi file object is removed from fnames[].
7. Finally, the file object is added to the new_sha1s[],

new_fnames[], and new_inodes[] dictionaries, which
will represent the version of the disk image at time Tn
when the disk image associated with time Tnþ1 is
processed.

After all of the files in B are processed:

1. The fnames[] array contains a list of the file names that
were present in A but not in B. These file names are
reported as a list of files that were deleted.

2. inodes[] is set to new_inodes[]
3. fnames[] is set to new_fnames[]

This program views inodes as the features that are
extracted from the disk image. Here the “name” of the
feature is the path name. A change of the feature’s name is
a rename event, which strictly corresponds to a file that has
been renamed.

6.2. rdifferenceddifferences between two registry hives

We have also tailored a version of idifference.py, to
describe the difference between two Windows Registry
hive files. The new tool is called rdifference.py. This is
possible because the Registry behaves much like a simple
file system. The Registry as a whole exposes a hierarchical
namespace, and each hive is “mounted” like a child file
system at fixed points. For example, the system hive file
mounts at HKEY_LOCAL_MACHINE\SYSTEM. Nelson (in
press) designed an XML format, RegXML, to represent
hives, and implemented a RegXML processing interface in
the DFXML toolset. The same SAX model that supports
idifference.py has an interface for hive cells similar to file-
system inodes.

Several distinctions relevant to differencing exist
between hives and more-complete file systems. File-
system “Directories” and “Files” have analogous structures
in hives, “Key” and “Value” cells respectively. Values have
one feature file metadata lack: Content is explicitly typed,
for instance as UTF-16 characters or binary. However, most
file system metadata does not exist in hives:

There are only mtimes; there are no access, creation, or
change times.

Keys and the hive header have mtimes, but values do
not.

There is no notion of an “inode” as a data structure
always separate from cell content.

The general algorithm of rdifference.py is a subset of idif-
ference.py.We presently omit renamedetection, as cells have
only their paths as unique identifiers. (It may be possible to
measure subtree similarity to infer renames, but we leave
that to future work.) The program presently reports:

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59S56

New and deleted hive cells, including cells that have
precisely matching full paths (i.e., a cell being fully
duplicated, including name).

Deleted cells.
Values with modified content or type.
Keys with changed mtimes (from which one can infer

a changed value’s mtime).

It is important for tools to be cautious about assuming
a unique path for each object in a file system analysis:
Nelson (in press) observed hives that contained cells with
non-unique paths. That is, some key in the hive had at least
two children with completely matching names. This may
cause a tool that walks a file system to fail in some manner,
as path names are normally unambiguous. Hence, it is
important to identify path components during processing
by a characteristic that must be unique, such as a byte
offset. These corner-case hives came from a research corpus
of drives (Garfinkel et al., 2009) used and discarded by
people around the world.

6.3. bulk_diff.py

The bulk_diff program compares histograms from two
runs of the bulk_extractor program (Beverly et al., 2011) and
reports on the differences between them. Written to
address the real-world needs of forensic analysts, this
program reports email addresses, URLs, IP addresses,
domain names, and other information that are present in B
that are not present in A.

The bulk_diff programwaswritten to detect newactivity
on the part of a computer system subject to monitoring. For
example, in the M57-Patents scenario (Garfinkel et al.,
2009), five computers belonging to a simulated small
company had their hard drives imaged every day for three
weeks. The bulk_diff program makes it possible to rapidly
infer what happened on any day n by running bulk_ex-
tractor on In and on Inþ1 and comparing the results. URLs,
email addresses, and other features found on Inþ1 that are
not on In necessarily correspond to activity that took place
on day n. Features present on In that are not present on Inþ1
have little to no probative value, as they merely correspond
to files that were overwritten during the course of opera-
tion on day n. (While onemight argue that the sudden drop
of many features may correspond to activities on day n
intended to remove evidence, a drop might just as easily
correspond to an increase in legitimate activity.)

6.4. corpus_sync.py

Previously we noted that the problem of synchronizing
two file systems is a special case of the differential analysis
problem. This was an important realization in our group
that has allowed us to work with our multi-terabyte
forensic corpora in a more efficient manner.

Most file synchronization programs in use today (rsync
and Unison), are designed for synchronization over
a network and assume IP connectivity during the
synchronization process. We are not aware of an offline file
synchronization systemdfor example, a system that would

allow synchronization using data carried on terabyte hard
drives.

We therefore created a program called corpus_sync that
synchronizes two file systems using a DFXML file that
describes B, the master file system, a second DFXML file
that describes A, the file system to be brought into agree-
ment with B, and DB, a database of additional materials that
can be retrieved by hash value (this database would
presumably be placed on removable media and hand
carried or shipped from B to A).

The corpus_sync program implements the abstract rules
in Table 2 but it orders them and adds an additional step to
handle the case where file1 is renamed to be file2while file2
is renamed to be file1. The algorithm is thus:

1. Read the DFXML files for A and B into memory.
2. Every file afi whose hash value is not in B is removed

from the file system and from A.
3. For every file bfi in B:

(a) If bfi’s filename is in A and bfi’s hash value is the
same as the file in Awith the same name, ignore bfi.

(b) If bfi’s hash value is not in A, get bfi from DB.
(c) Let afi be a file in A that has the same hash value as

bfi
(d) Add the name bfi.filename()þ ‘.new’ to afi.

4. For every file filenameþ.new that was created, rename
the file to filename, erasing filename first if it already
exists.

The DFXML files used with this program are generated
by the md5deep program, allowing corpus_sync itself to be
quite small. In practice, the get operation in step 3b can
either create a list of files that need to be transferred, or can
copy the file from the transfer media. On a modern 64-bit
system we are able to process the DFXML file for a corpus
of more than amillion objects in under 300 s (not including
the time necessary to make the file system alterations).

6.5. flowdiffddifference between two pcap files

We are developing a tool that uses the strategy
described in this document to determine the differences
between two sets of network packet capture flows. Each
flow is processed with the tcpflow (Elson and Garfinkel,
2011) TCP session reconstruction tool. This tool was
recently modified to output a DFXML file with
a <fileobject> section for each flow. The feature extracted
for each flow will consist of a signature for the protocol in
questiondfor example, HTTP or POP. The addresses of each
flow will be IP addresses and port number of the flow’s
origin. We expect that flowdiff will be available for down-
load by April 2012.

7. Case study: file system differencing

In the M57-Patents scenario (Woods et al., 2011), one of
the personas is a suspect for possessing (simulated)
contraband imagery. In the scenario, benign cat pictures are
proxies for illicit materials. Suspicions arose when
a computer the persona was using was sold on Craigslist

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59 S57

without erasing the contents. There is a warrant to search
that persona’s electronic possessions for the contraband
imagery. We show how, with a baseline image available, we
can identify content created, removed, updated, modified,
or viewed since deployment. This can greatly reduce the
search scope for an investigator.

The scenario data include one or more images per
computer for each day of operation for the (fictional)
company, and baseline images for the initial four
computers. It may be that administrators have a subset of
these data, particularly a deployment image and an image
at time of collection, so they could perform differential
analysis. We used idifference.py to produce differences
between several of the “Jo” images. Table 3 summarizes the
change counts and describes the selected times. Table 3
also shows the count of inodes within the disk images, to
show the reduction in files one would need to analyze by
only looking at changed files. Rename operations make it
difficult to get a precise match between the difference in
file counts and the difference in new and deleted files. We
include differences from disk images that would not
commonly be collected, to show normal activity amounts.

Many of the differences appear to come from non-
interactive processes. Software updates and Windows
background activity dominate the output. However, since
in this case the police know they are looking for illicit
images, filtering the difference reports for the “.jpg”
extension should trim down the results to what they need
to show pictures placed on the drive. Indeed, the difference
report of T11"12 start/T11"20 reports on a little over three
hundred files ending with “.jpg” that changed. Many of
those JPEGs turn out to be significant in the scenario. With
full file paths provided in the difference report, investiga-
tors can quickly find files of interest.

8. Future research

As noted in Section 4.2, to facilitate interpretation for
forensic purposes, high-level differential reports are
needed. Research and tool building is needed for automatic
generation of these differential reports emphasizing
occurrence of new features, changes in counts, and disap-
pearance of features. The idifference.py and bulk_diff tools
discussed in Section 6 could be generalized to report
changes in any features present in the DFXML regardless of
if the DFXML images come from fiwalk, bulk_extractor, or
some other tool. With an appropriate front end, the user

could drill-in and select which feature types are of interest
to build tailored reports.

By taking the union of extract feature sets produced by
different feature extraction tools and performing differencing
onthe resulting feature sets, onecanbuild anaturalhierarchy
of more powerful tools. For example, one could union the
fiwalk and RegXML feature sets yielding a fusion betweenfile
system and Windows Registry features. A differencing tool
could then identify co-occurrences in the differences. As
discussed in Section 3, differential analysis often involves
timeline analysis. Existing timeline approaches can be
viewed as very high-level feature extractorsdthe timeline is
the feature. Research is needed on differencing the timelines
extracted from pairs (or series) of images.

Further research will always be needed in developing
new features, ways of integrating features into metadata,
and techniques for extracting features from images. When
evaluating the digital evidence (cellphones, computers,
etc.) for a newly captured criminal, at first glance there are
not pairs of images to delta, just the current images.
However, one can always perform differencing against
stock images extracted from virgin equipment and OS
installs. Changes in firmware and OS updates can help
timeline the captive’s behavior and location. Modulo legal
issues, if the captive is subsequently released and re-
caught, differencing can be performed between previous
and new images. Research is needed on what features are
relevant for deciding on holding or releasing.

9. Conclusion

All differencing tasks are fundamentally identical
whether operating directly at the content level such as diff
or with higher features such as the bulk_diff tool we
introduce above. In this paper we introduce a common
vernacular for discussing differencing and outline the
state-of-the-art for both forensic and traditional applica-
tions. From this foundation we note the universal similar-
ities and elicit a general strategy hidden in all extant
differencing systems.

By explicitly leveraging this strategy, we propose that
development of future differencing tools will be stream-
lined. To demonstrate, we outline the functionality of our
new tools within the lens of our terminology and strategy.
Furthermore, we expect that educating forensic analysts to
use new differencing techniques will be easier if cached
within the context of our strategy.

Table 3
Summary statistics for changes in “Jo” computers from the M57-Patents scenario (Woods et al., 2011). Counts are based on inodes. The chosen times
represent the base image (Nov. 12, 2009, start of day), the first work day (Nov. 16), next to last day of work for the machine (Nov. 19), and the last day of work
for the machine due to software failures. All images were taken at the end of the day except for the Nov. 12 starting image.

T11"12 start/ T11"20 T11"12 start/ T11"16 T11"16/ T11"19 T11"19/ T11"20

Files in former image 24,131 24,131 28,735 29,678
Files in latter image 30,497 28,735 29,678 30,497
New files 8546 5140 1157 2773
Deleted files 1900 200 98 1814
Renamed files 463 449 566 703
Files with modified content 1011 687 981 568
Files with changed file properties 3581 1906 4275 1784

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59S58

Acknowledgments

Portions of this work were funded by NSF Award DUE-
0919593. We wish to thank Adam Russell for his useful
inputs.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the U.S. Government. The U.S.
Government is authorized to reproduce, distribute, or
authorize reprints for any reason notwithstanding any
copyright annotations thereon.

References

Access Data. Forensic toolkit (FTK); 2011.
Apiwattanapong T, Orso A, Harrold MJ. A differencing algorithm for

object-oriented programs. In: Proceedings of the 19th IEEE interna-
tional conference on automated software engineering. Washington,
DC, USA: IEEE Computer Society; 2004. p. 2–13.

Beverly R, Garfinkel S, Cardwell G. Forensic carving of network packets
and associated data structures. In: Proceedings of the 2011 DFRWS
conference; 2011. p. S78–89.

Carrier B. The Sleuth Kit and Kutopsy: forensics tools for Linux and other
Unixes; 2005.

Duley A, Spandikow C, Kim M. A program differencing algorithm for
Verilog HDL. In: Proceedings of the IEEE/ACM international confer-
ence on automated software engineering. New York, NY, USA: ACM;
2010. p. 477–86. ASE ’10.

Elson J, Garfinkel S. tcpflow; 2011.
Garfinkel S. Digital Forensics XML. Digital Investigation 2012;8:161–74.
Garfinkel S, Parker-Wood A, Huynh D, Migletz J. A solution to the multi-

user carved data ascription problem. IEEE Transactions on Informa-
tion Forensics and Security 2010;5(4):868–82.

Garfinkel S, Rowe N. Global analysis of drive file times. In: Fifth inter-
national workshop on systematic approaches to digital forensic
engineering. Oakland, CA: IEEE; 2010. p. 97–108.

Garfinkel SL. Automating disk forensic processing with SleuthKit, XML
and Python. In: Proceedings of the fourth international IEEE work-
shop on systematic approaches to digital forensic engineering. Oak-
land, CA: IEEE; 2009. p. 73–84.

Garfinkel SL, Farrell P, Roussev V, Dinolt G. Bringing science to digital
forensics with standardized forensic corpora. In: Proceedings of the
9th annual digital forensic research workshop (DFRWS). Quebec, CA:
Elsevier; 2009.

Grosenbach G. Git source code control. 1st ed. PeepCode; 2007.
Guidance Software, Inc. EnCase Forensic; 2011.
Horwitz S. Identifying the semantic and textual differences between two

versions of a program. In: Proceedings of the ACM SIGPLAN 1990
conference on programming language design and implementation.
New York, NY, USA: ACM; 1990. p. 234–45. PLDI ’90.

Hunt JW, McIlroy MD. An algorithm for differential file comparison.
Technical report 41. Bell Laboratories; 1976.

Jacobson J. A formalization of Darcs patch theory using inverse semi-
groups. Technical report CAM09-83. UCLA; 2009.

Kim GH, Spafford EH. The design and implementation of tripwire: a file
system integrity checker. In: Proceedings of the 2nd ACM conference

on computer and communications security. New York, NY, USA: ACM;
1994. p. 18–29. CCS ’94.

Kornblum J. md5deep and hashdeepdlatest version; 4.1.2011. http://
md5deep.sourceforge.net/ [last accessed 18.02.12].

Levy J. Differential EnScript v1; 2012.
Lindholm T, Kangasharju J, Tarkoma S. Fast and simple XML tree differ-

encing by sequence alignment. In: Proceedings of the 2006 ACM
symposium on document engineering. New York, NY, USA: ACM;
2006. p. 75–84. DocEng ’06.

Loh A, Kim M. LSdiff: a program differencing tool to identify systematic
structural differences. In: Proceedings of the 32nd ACM/IEEE inter-
national conference on software engineering, vol. 2. New York, NY,
USA: ACM; 2010. p. 263–6. ICSE ’10.

Marrington A, Baggili I, Mohay G, Clark A. CAT Detect (computer activity
timeline detection): a tool for detecting inconsistency in computer
activity timelines. In: Proceedings of the 2011 DFRWS conference;
2011. p. S52–61.

Myers E. An O(ND) difference algorithm and its variations. Algorithmica
1986;1:251–66.

Nelson AJ. RegXML: XML conversion of the Windows registry for forensic
processing and distribution. In: Chow KP, Shenoi S, editors. Advances
in digital forensics VIII. Springer; IFIP Advances in Information and
Communication Technology, in press.

NIST. National Software Reference Library; 2009. http://www.nsrl.nist.
gov/Documents/NSRL-CFS-April-2009.pdf.

Olsson J, Boldt M. Computer forensic timeline visualization tool. In:
Proceedings of the 2009 DFRWS conference; 2009. p. S78–87.

Pierce BC, Vouillon J. What’s in Unison? A formal specification and refer-
ence implementation of a file synchronizer. Technical report; 2004.

Pilato C, Collins-Sussman B, Fitzpatrick B. Version Control with Subver-
sion. 2nd ed. O’Reilly Media, Inc.; 2008.

Roundy D. Darcs: distributed version management in Haskell. In:
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell. New
York, NY, USA: ACM; 2005. p. 1–4. Haskell ’05.

Schatz B, Mohay G, Clark A. A correlation method for establishing prov-
enance of timestamps in digital evidence. In: Proceedings of the 2006
DFRWS conference; 2006. p. S98–107.

Thompson K, Ritchie DM. diff – differential file comparator. UNIX
programmer’s manual. 6th ed.; 1975.

Tichy WF. Design, implementation, and evaluation of a revision control
system. In: Proceedings of the 6th international conference on soft-
ware engineering. Los Alamitos, CA, USA: IEEE Computer Society
Press; 1982. p. 58–67. ICSE ’82.

Tridgell A, Mackerras P. The rsync algorithm. Technical report TR-CS-96-
05; ANU computer science technical reports; 1996.

Watkins K, McWhorter M, Long J, Hill W. Teleporter: an analytically and
forensically sound duplicate transfer system. In: Proceedings of the
2009 DFRWS conference; 2009.

Weaver GA, Foti N, Bratus S, Rockmore D, Smith SW. Using hierarchal
change mining to manage network security policy evolution. In:
Proceedings of the 11th USENIX conference on hot topics in
management of internet, cloud, and enterprise networks and
services. Berkeley, CA, USA: USENIX Association; 2011. p. 8. Hot-
ICE’11.

Weaver GA, Smith SW. Context-free grep and hierarchical diff. In: LISA
’11: 25th large installation system administration conference. USE-
NIX; 2011.

White D. Tracking computer use with the windows registry dataset; 2008.
Woods K, Lee C, Garfinkel S, Dittrich D, Russell A, Kearton K. Creating

realistic corpora for forensic and security education. In: 2011 ADFSL
conference on digital forensics, security and law. Richmond, VA:
Elsevier; 2011.

S. Garfinkel et al. / Digital Investigation 9 (2012) S50–S59 S59

