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Location: Monterey, CA

1500 Students:
US Military (All 5 services)

US Civilian (SFS & SMART)

Foreign Military (30 countries)

Campus Size:  627 acres

4 Schools:
Business & Public Policy

Engineering & Applied Sciences

Operational & Information Sciences

International Graduate Studies

This presentation is about research being
performed at the Naval Postgraduate School
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Seagate Barracuda 7200.11 SATA 3Gb/s 1.5-TB Hard Drive
7200 rpm

120 MB/s sustained data rate

32-MB cache

$125.90 (including shipping)

1,500,301,910,016 bytes 
-------------------------------    =  12,502 seconds = 3 hours, 28 min
         120,000,000 bytes/s
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Hard drive forensics is facing the I/O Barrier.



Disk performance is determined by data transfer rate 
and by seek time.

The Seagate Barracuda has a "random read seek time" of <8.5 msec.
Seek time = travel time + stabilization time.

1 sec ÷ 8.5 msec/seek ≈ 1200 seeks/sec
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Reading all of the data in 3.5 hours requires minimizing 
seeks.

Start at sector #0
End at sector #2,930,277,167
208 minutes x 7200 RPM = 1,500,300 revolutions

Unfortunately, data on hard drives is not laid out in consecutive sectors.
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Most forensic programs read file-by-file:

Guidance Software's EnCase is designed to:
Recover deleted photos & documents.

Recover email messages
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Information is stored in different areas of the disk
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Documents of interest 
are stored in many 
areas. 

Some documents are 
"fragmented" into 
multiple locations
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Directories are 
stored in many 
locations.

Because data is stored in different locations, it can 
take 10-30 hours to ingest a large disk.



This talk presents two approaches for speeding disk 
forensics. 

How is data arranged on a hard disk?

Approach #1: Speeding traditional forensics by considering disk order.

Approach #2: "Instant disk forensics" with drive sampling.
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Speeding traditional disk 
forensics.



Modern disk drives address sectors by
logical block number.

Bad sectors are transparently remapped.
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Different parts of the file system are stored at 
different blocks.
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Most forensic programs image the disk, 
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:
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There is room for improvement!

1 - Find all of the directories
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2 - Locate all the files
3 - Sort the files by disk sector
4 - Read in disk order.



Question: how much time can we save in forensic 
analysis by processing files in sector order?

Currently, forensic programs process in directory order.
for (dirpath,dirnames,filenames) in os.walk(“/mnt”):

    for filename in filenames:

        process(dirpath+”/”+filename)

Advantages of processing by sector order:
Minimizes head seeks.

Disadvantages:
Overhead to obtain file system metadata (but you only need to do it once).

File fragmentation means you can’t do a perfect job:
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file 1 part file 1 part 2file 2 file 3 file 4 



These tools are great for:
FIle recovery

Search 

These tools were not created for research or automation.

Unfortunately, today's forensic tools are designed for 
performing forensic investigations.
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Encase:
- GUI Closed Source

SleuthKit:
- Command-line Open Source



Students (and researchers) need an easy-to-program 
environment for conducting forensic experiments.

It's hard to work with forensic data — All the details matter
Many different file systems.

Many different file types.

Good research requires working with large data sets.
Even small "pilot studies" should be tested on multiple data sources.

Otherwise, you aren't doing research on forensics — you are researching a particular 
object.
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Several of today's tools allow some degree of programmability:
EnCase — EScript

PyFlag — Flash Script & Python

Sleuth Kit — C/C++

But writing programs for these systems is hard:
Many of the forensic tools are not designed for easy automation. 

Programming languages are procedural and mechanism-oriented

Data is separated from actions on the data.

Faced with this, a standard approach is to leverage the database:
Extract everything into an SQL database.

Use multiple SELECT statements to generate reports.
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But there is no good match between forensic tools and 
the needs of researchers.



The approach breaks forensic processing into three key parts:
1.Extraction of forensic metadata.

2.Representation of the extracted metadata.

3.Processing.

You can start using this framework today.
You can easily expand it.

We have developed a new approach for automated 
forensic analysis and research
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The framework is based on fiwalk, a too that
extracts metadata from disk images.

fiwalk is a C++ program built on top of SleuthKit

$ fiwalk [options] -X file.xml imagefile

Features:
Finds all partitions & automatically processes each.

Handles file systems on raw device (partition-less).

Creates a single output file with forensic data data from all.

Single program has multiple output formats:
XML (for automated processing)

ARFF (for data mining with Weka)

"walk" format (easy debugging)

SleuthKit Body File (for legacy timeline tools)

CSV (for spreadsheets)*
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fiwalk provides limited control over extraction.

Include/Exclude criteria:
Presence/Absence of file SHA1 in a Bloom Filter

File name matching. 
fiwalk -n .jpeg /dev/sda         # just extract the .jpeg files

File System Metdata:
-g — Report position of all file fragments 

-O — Do not report orphan or unallocated files

Full Content Options:
-m  — Report the MD5 of every file

-1   — Report the SHA1 of every file

-s dir — Save files to dir

20

<XML> Output

1 32



XML is ideally suited for representing forensic data.

Forensic data is tree-structured.
Case > Devices > Partitions > Directories > Files

Files

—file system metadata

—file meta data 

—file content

Container Files (ZIP, tar, CAB)

—We can exactly represent the container structure

—PyFlag does this with “virtual files”

—No easy way to do this with the current TSK/EnCase/FTK structure

—(Note: Container files not currently implemented.)
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fiwalk produces three kinds of XML tags.

Per-Image tags 
<fiwalk> — outer tag
<fiwalk_version>0.4</fiwalk_version>
<Start_time>Mon Oct 13 19:12:09 2008</Start_time>
<Imagefile>dosfs.dmg</Imagefile>
<volume startsector=”512”>

Per <volume> tags:
<Partition_Offset>512</Partition_Offset>
<block_size>512</block_size>
<ftype>4</ftype>
<ftype_str>fat16</ftype_str>
<block_count>81982</block_count>

Per <fileobject> tags:
<filesize>4096</filesize>
<partition>1</partition>
<filename>linedash.gif</filename>
<libmagic>GIF image data, version 89a, 410 x 143</libmagic>
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fiwalk XML example

<fileobject>
<filename>WINDOWS/system32/config/systemprofile/「开始」菜单/程序/附件/_rf55.tmp</
filename>
<filesize>1391</filesize>
<unalloc>1</unalloc>
<used>1</used>
<mtime>1150873922</mtime>
<ctime>1160927826</ctime>
<atime>1160884800</atime>
<fragments>0</fragments>
<md5>d41d8cd98f00b204e9800998ecf8427e</md5>
<sha1>da39a3ee5e6b4b0d3255bfef95601890afd80709</sha1>
<partition>1</partition>
<byte_runs type=’resident’>
  <run file_offset='0' len='65536' 
       fs_offset='871588864' img_offset='871621120'/>
  <run file_offset='65536' len='25920'
       fs_offset='871748608' img_offset='871780864'/>
</byte_runs>
</fileobject>
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<byte_runs> specifies data's physical location.

One or more <run> elements may be present:

<byte_runs type=’resident’>

  <run file_offset='0' len='65536' 
       fs_offset='871588864' img_offset='871621120'/>

  <run file_offset='65536' len='25920'
       fs_offset='871748608' img_offset='871780864'/>

</byte_runs>

This file has two fragments:
64K starting at sector 1702385 (871621120 ÷ 512)

25,920 bytes starting at sector 1702697 (871780864 ÷ 512)

Additional XML attributes may specify compression or encryption.
Note: Currently <byte_runs> not provided for compressed or MFT-resident files.
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fiwalk.py: a Python module for automated forensics.

Key Features:
Automatically runs fiwalk with correct options if given a disk image

Reads XML file if present (faster than regenerating)

Creates fileobject objects.

Multiple interfaces:
SAX callback interface

fiwalk_using_sax(imagefile, xmlfile, flags, callback)

—Very fast and minimal memory footprint

SAX procedural interface
objs = fileobjects_using_sax(imagefile, xmlfile, flags)

—Reasonably fast; returns a list of all file objects with XML in dictionary

DOM procedural interface
(doc,objs) = fileobjects_using_dom(imagefile, xmlfile, flags)

—Allows modification of XML that’s returned.
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The SAX and DOM interfaces both return fileobjects!

The Python fileobject class is an easy-to-use 
abstract class for working with file system data.

Objects belong to one of two subclasses:
fileobject_sax(fileobject)
 — for the SAX interface
fileobject_dom(fileobject)
 – for the DOM interface

Both classes support the same interface:
—fi.partition()

—fi.filename(), fi.ext()

—fi.filesize()

—fi.ctime(), fi.atime(), fi.crtime(), fi.mtime()

—fi.sha1(), fi.md5()

—fi.byteruns(), fi.fragments()

—fi.content()*
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Using the framework, we performed the experiment.

Here’s most of the program:

    t0 = time.time()
    fis = fiwalk.fileobjects_using_sax(imagefile)
    t1 = time.time()
    print "Time to get metadata: %g seconds" % (t1-t0)

    print "Native order: "
    calc_jumps(fis,"Native Order")
    fis.sort(key=lambda(a):a.byteruns()[0].img_offset)
    calc_jumps(fis,"Sorted Order")

With this framework, it took less than 10 minutes to write the program 
that conducted the experiment.
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Answer: Processing files in sector order can improve 
performance dramatically.
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Unsorted Sorted

Files processed: 23,222 23,222

backwards seeks 12,700 4,817

Time to extract 
metadata: 19 seconds 19 seconds

Time to read files: 441 seconds 38 seconds

Total time: 460 seconds 57 seconds

disk image: nps-2009-domexusers1
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Instant Drive Forensics with 
Statistical Sampling



What if US agents encounter a hard drive at a border crossing?

Or if a room filled with computers turns up on a search?
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Research Question:
Is it possible to analyze a hard drive in a minute?



If it takes 3.5 hours to read a 1TB hard drive, 
what can you learn in 1 minute?
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7.2 GB is a lot of data!    
≈ 0.48% of the disk

But it can be a statistically significant sample.

Minutes 208 1

Max Data 1.5 TB 7.2 GB

Max Seeks 15 million 72,000



We can predict the statistics of a population by 
sampling a randomly chosen sample.

US elections can be accurately 
predicted by sampling a few 
thousand households:
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Hard drive contents can be predicted 
by sampling a few thousand sectors:

The challenge is identifying the 
sectors that are sampled.

The challenge is making sure that 
sample matches likely voters.



The accuracy of a random sample can be computed 
from p (accuracy) and n (sample size), if n< 5% 

Example:
Sample 10,000 sectors and find 30% blank, standard error ≈ 4.5%

Sample 100,000 sectors and find 15% are video, standard error ≈ 1.1%

Sample 1,000,000 sectors and find 5% encrypted, standard error ≈  .02%

Caveats:
The statistics are for the disk as a whole, not for the files.

We must be able to identify the content of sectors.
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Standard error =
√

p(1−p)
n

1



Sectors on hard drives can be divided into three 
categories:

Resident Data

Deleted Data

Uninteresting Data blank sectors [OS files]

}user files
email messages
[temporary files]

34



Data on a hard drive is arranged in sectors

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

=  data visible to the userResident Data
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usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Data on a hard drive is arranged in sectors

=  files that were deleted.Deleted Data
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usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Data on a hard drive is arranged in sectors

= never written (or wiped clean)Uninteresting Data
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Files

Deleted Files

Zero Blocks

Statistical can distinguish between "zero" and data.
It's can't distinguish between resident and deleted. 

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8
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Can we classify files based on a sector?

A file 30K consists of 60 sectors:

Many file types have characteristics headers and footer:

But what about the file in the middle?
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newpage.html
<html>... ...</html>

header footer

HTML <html> </html>

JPEG <FF><D8><FF><E0>
<00><10>JFIF<00> <FF><D9>

ZIP PK<03><0D> <00><00><00><00>



Many files are "container" files.
Classifying sectors from these files will classify 

The PDF file format consists of:
PDF header

PDF xref table (a directory of objects in the PDF file)

PDF objects (T/F; Numbers; Strings; Names; Arrays; Dicts; Streams; Null)

PDF header:    PDF xref:
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Individual "objects" in a PDF file may hold JPEGs, Text, 
FAX pages, JavaScript, and other content.

PDF JPEG:    PDF Text:
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This 74166-byte PDF file has 144 sectors and 20 
objects.

Compressed Text 

Numbers (4)

Media Box (margins)

ColorSpace

ColorSpace

JPEG

Compressed Text

Array [ /ICCBased 12 0 R]

Text

Array [ /ICCBased 14 0 R]

Media Box

Page Count

Compressed Text

Font Table

Font Descriptor

Metadata
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Some sectors are characteristically PDF data, others 
are just JPEGs or compressed text.
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In previous research, we found that only 15% of forensically interesting 
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.
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Sectors can also be identified from statistical 
properties.

45

File type Identified By

NULL direct examination.

HTML n-gram analysis

JPEG High-entropy with markers

ZIP High-entropy that's not 
encrypted

Encrypted High-entropy that passes 
encryption tests



Time to read 10,000 randomly chosen 64K runs: 4.4 seconds

Identifiable:
Blank sectors

JPEGs

Encrypted data

HTML

Standard error:  
0.1% for 10% determination

5% for 50% determination (max error)

Sample report:
10% encrypted; 30% JPEG; 50% MP3
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Using sector identification, we can identify the content 
of a hard drive within 10 seconds (after it spins up).



Conclusion:
We can dramatically speed traditional forensics.

Traditional forensics:
Speed processing by sorting files by sector order.

Irrelevant for flash storage.

Works today.

Statistical Sampling:
Determine the content of a disk in 10 seconds.

Full content, not file content.

Research today.

For further information, see http://simson.net/ 
Question?
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Seek

Transfer

http://simson.net
http://simson.net

