
UNCLASSIFIED 1

Drive Analysis in a Flash

Simson L. Garfinkel, Ph.D.
Associate Professor

Naval Postgraduate School

http://simson.net/

slgarfin@nps.edu

http://simson.net
http://simson.net
mailto:slgarfin@nps.edu
mailto:slgarfin@nps.edu

Location: Monterey, CA

1500 Students:
US Military (All 5 services)

US Civilian (SFS & SMART)

Foreign Military (30 countries)

Campus Size: 627 acres

4 Schools:
Business & Public Policy

Engineering & Applied Sciences

Operational & Information Sciences

International Graduate Studies

This presentation is about research being
performed at the Naval Postgraduate School

2

Seagate Barracuda 7200.11 SATA 3Gb/s 1.5-TB Hard Drive
7200 rpm

120 MB/s sustained data rate

32-MB cache

$125.90 (including shipping)

1,500,301,910,016 bytes
------------------------------- = 12,502 seconds = 3 hours, 28 min
 120,000,000 bytes/s

3

Hard drive forensics is facing the I/O Barrier.

Disk performance is determined by data transfer rate
and by seek time.

The Seagate Barracuda has a "random read seek time" of <8.5 msec.
Seek time = travel time + stabilization time.

1 sec ÷ 8.5 msec/seek ≈ 1200 seeks/sec

4

Seek

Transfer

Reading all of the data in 3.5 hours requires minimizing
seeks.

Start at sector #0
End at sector #2,930,277,167
208 minutes x 7200 RPM = 1,500,300 revolutions

Unfortunately, data on hard drives is not laid out in consecutive sectors.

5

Most forensic programs read file-by-file:

Guidance Software's EnCase is designed to:
Recover deleted photos & documents.

Recover email messages

6

Information is stored in different areas of the disk

7

.

.

Information is stored in different areas of the disk

7

.

.

.

.

Documents of interest
are stored in many
areas.

Some documents are
"fragmented" into
multiple locations

Information is stored in different areas of the disk

7

.

.

.

.

.

.

Directories are
stored in many
locations.

Information is stored in different areas of the disk

7

.

.

.

.

.

.

Directories are
stored in many
locations.

Because data is stored in different locations, it can
take 10-30 hours to ingest a large disk.

This talk presents two approaches for speeding disk
forensics.

How is data arranged on a hard disk?

Approach #1: Speeding traditional forensics by considering disk order.

Approach #2: "Instant disk forensics" with drive sampling.

8

.

.

UNCLASSIFIED 9

Speeding traditional disk
forensics.

Modern disk drives address sectors by
logical block number.

Bad sectors are transparently remapped.

10

1
2

3

99

100

101

102
103

104

102

1

2

3

...

99

100

101

103

104

102

...

Different parts of the file system are stored at
different blocks.

11

1

2

3

...

64

65

900

602

600

...

...

601

Master Boot Record

Start of File System

File Allocation Table

Documents and Settings dir

1500

...

...

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

Most forensic programs image the disk,
then ingest the image directory-by-directory.

Imaging is done at maximum disk transfer rate:

12

But ingesting is done directory-by-directory.

There is room for improvement!

1 - Find all of the directories

13

There is room for improvement!

1 - Find all of the directories

13

There is room for improvement!

1 - Find all of the directories

13

2 - Locate all the files

There is room for improvement!

1 - Find all of the directories

13

2 - Locate all the files

There is room for improvement!

1 - Find all of the directories

13

2 - Locate all the files
3 - Sort the files by disk sector

There is room for improvement!

1 - Find all of the directories

13

2 - Locate all the files
3 - Sort the files by disk sector
4 - Read in disk order.

There is room for improvement!

1 - Find all of the directories

13

2 - Locate all the files
3 - Sort the files by disk sector
4 - Read in disk order.

Question: how much time can we save in forensic
analysis by processing files in sector order?

Currently, forensic programs process in directory order.
for (dirpath,dirnames,filenames) in os.walk(“/mnt”):

 for filename in filenames:

 process(dirpath+”/”+filename)

Advantages of processing by sector order:
Minimizes head seeks.

Disadvantages:
Overhead to obtain file system metadata (but you only need to do it once).

File fragmentation means you can’t do a perfect job:

14

file 1 part file 1 part 2file 2 file 3 file 4

These tools are great for:
FIle recovery

Search

These tools were not created for research or automation.

Unfortunately, today's forensic tools are designed for
performing forensic investigations.

15

Encase:
- GUI Closed Source

SleuthKit:
- Command-line Open Source

Students (and researchers) need an easy-to-program
environment for conducting forensic experiments.

It's hard to work with forensic data — All the details matter
Many different file systems.

Many different file types.

Good research requires working with large data sets.
Even small "pilot studies" should be tested on multiple data sources.

Otherwise, you aren't doing research on forensics — you are researching a particular
object.

16

Several of today's tools allow some degree of programmability:
EnCase — EScript

PyFlag — Flash Script & Python

Sleuth Kit — C/C++

But writing programs for these systems is hard:
Many of the forensic tools are not designed for easy automation.

Programming languages are procedural and mechanism-oriented

Data is separated from actions on the data.

Faced with this, a standard approach is to leverage the database:
Extract everything into an SQL database.

Use multiple SELECT statements to generate reports.

17

But there is no good match between forensic tools and
the needs of researchers.

The approach breaks forensic processing into three key parts:
1.Extraction of forensic metadata.

2.Representation of the extracted metadata.

3.Processing.

You can start using this framework today.
You can easily expand it.

We have developed a new approach for automated
forensic analysis and research

18

<XML> Output

1 32

The framework is based on fiwalk, a too that
extracts metadata from disk images.

fiwalk is a C++ program built on top of SleuthKit

$ fiwalk [options] -X file.xml imagefile

Features:
Finds all partitions & automatically processes each.

Handles file systems on raw device (partition-less).

Creates a single output file with forensic data data from all.

Single program has multiple output formats:
XML (for automated processing)

ARFF (for data mining with Weka)

"walk" format (easy debugging)

SleuthKit Body File (for legacy timeline tools)

CSV (for spreadsheets)*

19

XML ARFF Body

<XML> Output

1 32

fiwalk provides limited control over extraction.

Include/Exclude criteria:
Presence/Absence of file SHA1 in a Bloom Filter

File name matching.
fiwalk -n .jpeg /dev/sda # just extract the .jpeg files

File System Metdata:
-g — Report position of all file fragments

-O — Do not report orphan or unallocated files

Full Content Options:
-m — Report the MD5 of every file

-1 — Report the SHA1 of every file

-s dir — Save files to dir

20

<XML> Output

1 32

XML is ideally suited for representing forensic data.

Forensic data is tree-structured.
Case > Devices > Partitions > Directories > Files

Files

—file system metadata

—file meta data

—file content

Container Files (ZIP, tar, CAB)

—We can exactly represent the container structure

—PyFlag does this with “virtual files”

—No easy way to do this with the current TSK/EnCase/FTK structure

—(Note: Container files not currently implemented.)

21

<XML> Output

1 32

fiwalk produces three kinds of XML tags.

Per-Image tags
<fiwalk> — outer tag
<fiwalk_version>0.4</fiwalk_version>
<Start_time>Mon Oct 13 19:12:09 2008</Start_time>
<Imagefile>dosfs.dmg</Imagefile>
<volume startsector=”512”>

Per <volume> tags:
<Partition_Offset>512</Partition_Offset>
<block_size>512</block_size>
<ftype>4</ftype>
<ftype_str>fat16</ftype_str>
<block_count>81982</block_count>

Per <fileobject> tags:
<filesize>4096</filesize>
<partition>1</partition>
<filename>linedash.gif</filename>
<libmagic>GIF image data, version 89a, 410 x 143</libmagic>

22

<XML> Output

1 32

fiwalk XML example

<fileobject>
<filename>WINDOWS/system32/config/systemprofile/「开始」菜单/程序/附件/_rf55.tmp</
filename>
<filesize>1391</filesize>
<unalloc>1</unalloc>
<used>1</used>
<mtime>1150873922</mtime>
<ctime>1160927826</ctime>
<atime>1160884800</atime>
<fragments>0</fragments>
<md5>d41d8cd98f00b204e9800998ecf8427e</md5>
<sha1>da39a3ee5e6b4b0d3255bfef95601890afd80709</sha1>
<partition>1</partition>
<byte_runs type=’resident’>
 <run file_offset='0' len='65536'
 fs_offset='871588864' img_offset='871621120'/>
 <run file_offset='65536' len='25920'
 fs_offset='871748608' img_offset='871780864'/>
</byte_runs>
</fileobject>

23

<XML> Output

1 32

<byte_runs> specifies data's physical location.

One or more <run> elements may be present:

<byte_runs type=’resident’>

 <run file_offset='0' len='65536'
 fs_offset='871588864' img_offset='871621120'/>

 <run file_offset='65536' len='25920'
 fs_offset='871748608' img_offset='871780864'/>

</byte_runs>

This file has two fragments:
64K starting at sector 1702385 (871621120 ÷ 512)

25,920 bytes starting at sector 1702697 (871780864 ÷ 512)

Additional XML attributes may specify compression or encryption.
Note: Currently <byte_runs> not provided for compressed or MFT-resident files.

24

<XML> Output

1 32

fiwalk.py: a Python module for automated forensics.

Key Features:
Automatically runs fiwalk with correct options if given a disk image

Reads XML file if present (faster than regenerating)

Creates fileobject objects.

Multiple interfaces:
SAX callback interface

fiwalk_using_sax(imagefile, xmlfile, flags, callback)

—Very fast and minimal memory footprint

SAX procedural interface
objs = fileobjects_using_sax(imagefile, xmlfile, flags)

—Reasonably fast; returns a list of all file objects with XML in dictionary

DOM procedural interface
(doc,objs) = fileobjects_using_dom(imagefile, xmlfile, flags)

—Allows modification of XML that’s returned.

25

<XML> Output

1 32

The SAX and DOM interfaces both return fileobjects!

The Python fileobject class is an easy-to-use
abstract class for working with file system data.

Objects belong to one of two subclasses:
fileobject_sax(fileobject)
 — for the SAX interface
fileobject_dom(fileobject)
 – for the DOM interface

Both classes support the same interface:
—fi.partition()

—fi.filename(), fi.ext()

—fi.filesize()

—fi.ctime(), fi.atime(), fi.crtime(), fi.mtime()

—fi.sha1(), fi.md5()

—fi.byteruns(), fi.fragments()

—fi.content()*

26

<XML> Output

1 32

Using the framework, we performed the experiment.

Here’s most of the program:

 t0 = time.time()
 fis = fiwalk.fileobjects_using_sax(imagefile)
 t1 = time.time()
 print "Time to get metadata: %g seconds" % (t1-t0)

 print "Native order: "
 calc_jumps(fis,"Native Order")
 fis.sort(key=lambda(a):a.byteruns()[0].img_offset)
 calc_jumps(fis,"Sorted Order")

With this framework, it took less than 10 minutes to write the program
that conducted the experiment.

27

Answer: Processing files in sector order can improve
performance dramatically.

28

Unsorted Sorted

Files processed: 23,222 23,222

backwards seeks 12,700 4,817

Time to extract
metadata: 19 seconds 19 seconds

Time to read files: 441 seconds 38 seconds

Total time: 460 seconds 57 seconds

disk image: nps-2009-domexusers1

UNCLASSIFIED 29

Instant Drive Forensics with
Statistical Sampling

What if US agents encounter a hard drive at a border crossing?

Or if a room filled with computers turns up on a search?

30

Research Question:
Is it possible to analyze a hard drive in a minute?

If it takes 3.5 hours to read a 1TB hard drive,
what can you learn in 1 minute?

31

7.2 GB is a lot of data!
≈ 0.48% of the disk

But it can be a statistically significant sample.

Minutes 208 1

Max Data 1.5 TB 7.2 GB

Max Seeks 15 million 72,000

We can predict the statistics of a population by
sampling a randomly chosen sample.

US elections can be accurately
predicted by sampling a few
thousand households:

32

Hard drive contents can be predicted
by sampling a few thousand sectors:

The challenge is identifying the
sectors that are sampled.

The challenge is making sure that
sample matches likely voters.

The accuracy of a random sample can be computed
from p (accuracy) and n (sample size), if n< 5%

Example:
Sample 10,000 sectors and find 30% blank, standard error ≈ 4.5%

Sample 100,000 sectors and find 15% are video, standard error ≈ 1.1%

Sample 1,000,000 sectors and find 5% encrypted, standard error ≈ .02%

Caveats:
The statistics are for the disk as a whole, not for the files.

We must be able to identify the content of sectors.

33

Standard error =
√

p(1−p)
n

1

Sectors on hard drives can be divided into three
categories:

Resident Data

Deleted Data

Uninteresting Data blank sectors [OS files]

}user files
email messages
[temporary files]

34

Data on a hard drive is arranged in sectors

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

= data visible to the userResident Data

35

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Data on a hard drive is arranged in sectors

= files that were deleted.Deleted Data

36

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Data on a hard drive is arranged in sectors

= never written (or wiped clean)Uninteresting Data

37

.

.

Files

Deleted Files

Zero Blocks

Statistical can distinguish between "zero" and data.
It's can't distinguish between resident and deleted.

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

38

Can we classify files based on a sector?

A file 30K consists of 60 sectors:

Many file types have characteristics headers and footer:

But what about the file in the middle?

39

newpage.html
<html>... ...</html>

header footer

HTML <html> </html>

JPEG <FF><D8><FF><E0>
<00><10>JFIF<00> <FF><D9>

ZIP PK<03><0D> <00><00><00><00>

Many files are "container" files.
Classifying sectors from these files will classify

The PDF file format consists of:
PDF header

PDF xref table (a directory of objects in the PDF file)

PDF objects (T/F; Numbers; Strings; Names; Arrays; Dicts; Streams; Null)

PDF header: PDF xref:

40

Individual "objects" in a PDF file may hold JPEGs, Text,
FAX pages, JavaScript, and other content.

PDF JPEG: PDF Text:

41

This 74166-byte PDF file has 144 sectors and 20
objects.

Compressed Text

Numbers (4)

Media Box (margins)

ColorSpace

ColorSpace

JPEG

Compressed Text

Array [/ICCBased 12 0 R]

Text

Array [/ICCBased 14 0 R]

Media Box

Page Count

Compressed Text

Font Table

Font Descriptor

Metadata

42

This is some text This is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some text

This is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some text

This is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some text

This is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some text

This is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is

some textThis is some textThis is some textThis is some textThis is some textThis is some textThis is some

textThis is some textThis is some textThis is some textThis is some text

Some sectors are characteristically PDF data, others
are just JPEGs or compressed text.

43

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

In previous research, we found that only 15% of forensically interesting
files are fragmented [Garfinkel 2007].
Therefore, we can use a sector's context to assist in identification:

Most files on the hard drive are not fragmented.
JPEGs in PDFs can be identified by scanning backwards.

44

Sectors can also be identified from statistical
properties.

45

File type Identified By

NULL direct examination.

HTML n-gram analysis

JPEG High-entropy with markers

ZIP High-entropy that's not
encrypted

Encrypted High-entropy that passes
encryption tests

Time to read 10,000 randomly chosen 64K runs: 4.4 seconds

Identifiable:
Blank sectors

JPEGs

Encrypted data

HTML

Standard error:
0.1% for 10% determination

5% for 50% determination (max error)

Sample report:
10% encrypted; 30% JPEG; 50% MP3

46

Using sector identification, we can identify the content
of a hard drive within 10 seconds (after it spins up).

Conclusion:
We can dramatically speed traditional forensics.

Traditional forensics:
Speed processing by sorting files by sector order.

Irrelevant for flash storage.

Works today.

Statistical Sampling:
Determine the content of a disk in 10 seconds.

Full content, not file content.

Research today.

For further information, see http://simson.net/
Question?

47

Seek

Transfer

http://simson.net
http://simson.net

