
NPS-CS-08-014

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

PROVIDING CRYPTOGRAPHIC SECURITY AND
EVIDENTIARY CHAIN-OF-CUSTODY WITH THE
ADVANCED FORENSIC FORMAT, LIBRARY, AND

TOOLS

by

Simson L. Garfinkel

August 19, 2008

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and Provost

Reproduction of all or part of this report is authorized

This report was prepared by:

Simson L. Garfinkel
Associate Professor

X-

Reviewed by: Released by:

Peter Denning Dan C. Boger
Department of Computer Science Interim Vice President and

Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18i

19–8–2008 Technical Report 2007-09-01—2008-07-31

Providing Cryptographic Security and Evidentiary Chain-of-Custody with the
Advanced Forensic Format, Library, and Tools

Simson L. Garfinkel

Naval Postgraduate School
NPS-CS-08-014

Approved for public release; distribution is unlimited

The views expressed in this report are those of the author and do not necessarily reflect the official policy or position of the
Department of Defense or the U.S. Government.

This paper presents improvements in the Advanced Forensics Format Library version 3 that provide for digital signatures and other
cryptographic protections for digital evidence, allowing an investigator to establish a reliable chain-of-custody for electronic evidence
from the crime scene to the court room. No other system for handling and storing electronic evidence currently provides such
capabilities. This paper discusses implementation details, user level commands, and the AFFLIB programmer’s API.

AFF, AFFLIB, AImage, Advanced Disk Imager, disk imaging, EnCase

Unclassified Unclassified Unclassified UU 46

THIS PAGE INTENTIONALLY LEFT BLANK

1 Introduction
Chain-of-custody for evidence from the crime scene to the court room is a bedrock principle of
both civil and criminal law. Without a clear and unambiguous chain-of-custody there is no way
to be sure that an object presented to the court is the same object that was collected at the scene
of the crime. Even evidence presented to technical experts needs to have chain-of-custody:
without it, there is no way to assure that the expert’s testimony pertains to evidence from the
actual case that is under consideration.

A paper notebook found at a crime scene can be put into an evidence bag, tagged, and locked
away in an evidence locker. Each time the evidence is accessed or moved to another location
this fact will be noted. In this manner the prosecution can show that the evidence has not been
tampered; in the rare cases where tampering takes place, it can be detected.

But unlike records written with pen and paper, digital files can be modified without leaving
a trace of the original message. This is one of the great challenges of digital forensics—
establishing that a particular arrangement of bits on a digital storage medium is the result of
on specific computational history (e.g., deleting a file) and not of another (e.g., using a hex edi-
tor to write raw sectors onto the disk drive that are indicative of a deleted file) [Carrier, 2006].

Of course, hard drives, USB memory sticks, and cell phones are tagged and bagged. But at
some point, the information on these devices needs to be copied onto another computer system
for analysis. In a modern forensic laboratory these files might be placed on a high-capacity
server or a Storage Area Network (SAN) to allow for flexible use and simultaneous access by
multiple examiners. Such environments require highly reliable technical measures to provide
assurances that evidence is kept intact and unmodified.

Although computer forensics practitioners understand the importance of chain-of-custody, to-
day’s tools for preserving this chain are poor. Programs such as EnCase [Keightley, 2003] and
dcfldd [Harbour, 2006] will compute an MD5 or SHA-1 cryptographic hash of a disk when it is
copied by an investigator into an image file. Later, when the image file is provided to a forensic
analyst, the analyst can compare the hash of the image received with the hash of the original to
determine if the file has been modified. If the hashes match, the assumption is that the file is
unchanged from the original.

This paper introduces an improved method for assuring the integrity of digital evidence that
is based on public key cryptography. In addition to providing improved integrity, the method
presented also allows for:

• digital documentation of evidentiary transfer from one agent to another;

• reconstruction of evidence that has been inadvertently damaged during transfer;

• forensically sound methods for recovering partial evidence in cases where so much digital
evidence has been damaged that reconstruction is no longer possible;

1

• encryption with both symmetric and public key cryptography, so that evidence that is
acquired in a hostile environment can be safely transferred back to a secure facility.

These new methods have been implemented in the Advanced Forensic Format Library (AF-
FLIB) Version 3 [Garfinkel, 2008]. AFFLIB is an open source software package written in
the C/C++ programming language that allows for the imaging, manipulation, storage and use
of digital evidence. The software is available free of charge for incorporation into both open
source and proprietary forensic applications.

2 Background and Prior Work
2.1 Disks and Disk Images

Computer hard drives, optical drives, and solid state drives are mass storage devices that orga-
nize the information they store as a series of numbered, fix-sized sectors. Traditionally hard
drives employ a sector size of 512 bytes and CDROM drives used 2048-byte sectors, although
a standard for 4096-byte sectors is currently under development [Fonseca, 2007].

A disk image file, or more generally an image file, is a file that contains a sector-for-sector copy
of the contents of a mass storage device. Image files are intended to be perfect copies of the
disk’s contents. Image files are produced with programs called imagers.1

Although the discussion to this point has focused on disk image files, in practice any data
carrying device can be imaged. Once a device is imaged, the forensic investigator works with
the image, rather than the original device, in order to preserve the device’s integrity: most
computer forensic tools can directly read and process disk image files.

Image files are particularly important when it is necessary to record the state of a device that
must then be returned to service—for example, in the event of a network attack. In these cases,
the image file may be the only tangible evidence of the crime that has taken place after the
system has been restored to operation.

Imaging also provides a simple and operating system independent means for backing up a hard
drive: the drive is simply imaged into a file or onto another drive. To restore the backup, the
image is restored on the original drive. The image can also be restored on another drive of
similar size, a process sometimes called cloning.

Disk image files can be stored in different formats. The most basic format is the raw format in
which the bytes in the image file have a one-for-one correspondence to the bytes on the physical
device (e.g., bytes 0–511 in the file represent the first 512-byte sector, bytes 512–1023 represent
the second 512-byte sector, and so on). The advantage of the raw format is that it is easy to
understand and easy to implement; the disadvantage is that raw files consume as much storage

1A comprehensive list of disk imagers can be found on the Forensics Wiki at http://www.
forensicswiki.org/index.php?title=Category:Disk_imaging.

2

space as the device being imaged: imaging a newly purchased 80GB hard drive will produce an
80GB raw file, even though each one of the drive’s 160 million 512-byte disk sectors is filled
with ASCII NULLs.

2.2 Disk Image Formats

There are two important shortcomings that forensic examiners experience when working with
raw disk images: the images are unwieldy, and they do not capture important information such
as the time that the disk was imaged, who performed the imaging, or even the device sector size.
Because of these shortcomings, developers have created a number of disk image formats, each
with its own intended purpose.

One of the most widely used file formats today is the EnCase Evidence File Format. This format
is based on the ASR Data Expert Witness Compression Format [ASR, 2002]. Disk images are
stored as a series of files, each file not exceeding 2GB (231 − 1 = 2, 147, 483, 647 bytes). The
first file contains a “Case Info” header, a table containing a 32-bit CRC and the offset of each
“blocks” in the disk image (the default block size is 64 sectors), and a footer containing an
MD5 hash for the entire physical disk. Also contained in the header are the date and time
of acquisition, an examiner’s name, notes on the acquisition, and an optional password; the
header concludes with its own CRC. Images that require more than 2GB of storage are split
into multiple files and given file names such as FILE.E01, FILE.E02, etc. Disk images
can be split into files smaller than 2GB for storage to archival CDROM. The EnCase/Expert
Witness file format can be read by a number of commercial programs and by the Open Source
Libewf [Kloet et al., 2008].

Other forensic file formats include a proprietary format used by AccessData’s Forensic Toolkit
(FTK), the file format used by Safeback [NTI Forensics Source, 2008], and the file format used
by ILook Investigator [US Treasury, 2008]. A detailed survey of forensic file formats appears
in [Garfinkel et al., 2006].

In almost all cases it is faster to perform a forensic investigation with a an uncompressed raw
file than it is to work with a compressed file. This is because modern forensic programs fre-
quently need to skip from one part of a disk image to another: when a compressed format is
used, parts of the disk image are constantly being read off the disk, decompressed, and then
discarded. Using an uncompressed format avoids the decompression step, which is computa-
tionally intensive.

2.3 Assuring Integrity with Hash Functions

Forensic practitioners today largely rely on the MD5 [Rivest, 1992] and SHA-1 [Computer
Systems Laboratory and Technology, 1993] cryptographic hash functions to assure the integrity
of images that they acquire.

A cryptographic hash is a one-way function which takes an arbitrary amount of input and pro-

3

duces an output of a fixed size. (Cryptographers will sometimes call the input a pre-image and
refer to the hash value as the residue.) To be considered strong, a cryptographic hash function
should have these properties:

• Preimage resistance: Given any hash, it should be computationally infeasible to find a
specific preimage that produces the residue.

• Second preimage resistance: Given a message m1, it should be computationally infea-
sible to find a message m2 that has the same hash.

• Collision resistance: It should be computationally infeasible to find any two messages
m1 and m2 that have the same hash. [Friedl, 2005, Boneh, 2001]

The MD5 algorithm produces a 128-bit cryptographic hash; this hash is typically written as 32
hexadecimal digits. The SHA-1 algorithm produces a 160-bit hash which is typically written as
40 digits.

Today it is common practice for computer forensic investigators to record the MD5 or SHA-1
of a disk when it is imaged. The hash is computed by the acquisition tool as the data is read
from disk being imaged and displayed on the computer’s screen; the investigator records this
number in the investigative report.

For example, in the case of US v. Zacarias Moussaoui, when the contents of Moussaoui’s laptop
were duplicated by the FBI with Safeback, a program was used to compute the MD5 of both
the laptop’s drive and the copy made by the FBI. A copy of the laptop’s drive was then provided
to Mr. Moussaoui’s defense team. The MD5 of this copy was computed and compared with the
MD5 of the original laptop’s drive. According to court filings:

“The significance of this point is two-fold. First, there can be no question that
the defense has the exact same copy of the original that the Government has, so
they can conduct any further investigation on their copy that they wish. Second,
the results of the MD5 program as to these two laptops further demonstrate the
reliability of the Safeback program.” [Novak, 2002]

There are several advantages to the current practice of manually recording hash codes and in-
corporating them into investigative reports:

• The practice is easy to understand.

• The practice is in general use.

• The practice is easy to explain in court.

4

• The hash codes are easily recorded in an investigative report which the investigator is
presumably already keeping for other purposes.

• The same procedures which assure for integrity of the investigative report will similarly
assure for the integrity of the hash codes.

But today’s practice has potential problems as well:

• Because the hash codes are recorded in what is essentially a free-format report narrative,
it is difficult to apply automated processing and validation.

• If the disk image becomes corrupted, the hash code will only report that it no longer
matches: it does not allow the error to be isolated or corrected.

2.4 MD5 Vulnerabilities

In recent years a number of vulnerabilities have been found in the MD5 hashing algorithm,
culminating with the discovery of MD5 collisions [Wang et al., 2004]. For this reason MD5
is no longer considered by computer scientists to be a good choice for security-critical appli-
cations. Although as of this writing no SHA-1 collisions have been publicly announced, many
researchers feel that it is only a matter of time [Schneier, 2004]. Increasingly security software
uses the SHA-256 algorithm, which produces a 256-bit hash, and NIST has started an effort to
develop a new hash standard [NIST, 2007].

There are at least two reasons that the discovery of MD5 collisions was not as catastrophic for
computer security in practice as they might otherwise have been:

• First, although it is possible to generate MD5 collisions, it still takes a considerable
amount of computer power and expertise to do so.

• A second and perhaps more important reason is that modern security engineering practice
is to use a plug-in architecture for cryptographic algorithms. To be “pluggable” formats
must store version numbers, algorithm names and key lengths in data that transmitted
or stored. The practical result of this engineering practice is that most programs that
employ hash functions can work with a wide range of algorithm. Software that relies on
cryptographic hashes can then validate using any or all of these algorithms, dramatically
reducing the chances that an attack will be successful.

2.5 Piecewise Hashing

In addition to computing a hash of the entire disk image, some tools will compute a hash for
individual sections or “pieces” of the image. For example, dcfldd [Harbour, 2006] can com-
pute a hash for each block and store the hashes in a separate file. This approach of separately
hashing each piece of the file is called piecewise hashing.

5

Piecewise hashing is an important advance for digital forensics. Whereas a single hash code for
an image can establish that an image has not been modified, if the file is modified the piecewise
hashes can be used to help determine the location and extent of the alternation. Changing a
single bit from a 0 to a 1 will change the hash for the entire image, but it will only change
one of the piecewise hashes. In such a case, the remaining pieces would still have evidentiary
value. Even if a file is truncated—for example, an 80GB file cut into a 20GB file—the piecewise
hashes will allow the remaining evidence to be used, as long as it is otherwise unaltered.

2.6 Digital Signatures for Data Integrity

Digital signatures were invented by Diffie and Hellman for the purpose of securing mail sent
over digital networks such as the Internet [Diffie and Hellman, 1976]. Digital signatures in
the form of digital certificates have been applied for the purpose of certifying cryptographic
keys [Kohnfelder, 1978], and now provide authentication for the vast majority of encrypted
communications on the Internet through their incorporation into the SSL and TLS protocols
[Dierks and Allen, 1999]. Digital signatures have also been widely applied to code signing in
the Windows and Macintosh operating systems, as well as signing Linux software updates. But
prior to the work presented in this paper, digital signatures have not been applied to imaging of
digital media for forensic purposes.

Modern digital signatures are implemented as functional compositions of cryptographic hash
functions and public key cryptography. In practice a document that is to be signed is hashed
with a function such as SHA-1. The hash is then encrypted using an asymmetric encryption
algorithm such as RSA [Rivest et al., 1977].

Asymmetric encryption algorithms have the property that data encrypted with an encryption key
can only be decrypted with a matching decryption key. In practice one key is kept confidential
(the private key) while the other key is disclosed (the public key). When used for digital sig-
natures, the private key is used to sign the signature while the public key is used to validate to
signature.

Verifying a digital signature accomplishes two purposes: it verifies that the digital document
has not been modified, and it verifies that a particular private key was used to create the sig-
nature. Verification is typically performed in three steps. First, the document’s hash function
is computed for a second time. Next, the signature is decrypted with the signer’s public key.
Finally, the computed hash is compared with the decrypted hash: if they match, the signature
verifies.

2.7 Hash Functions Alone are not Digital Signatures

It is important for forensic practitioners to understand that what gives the digital signature its se-
curity is the use of a private key to mathematically sign the cryptographic hash: a cryptographic
hash by itself is not a digital signature.

6

This is an important distinction, because the terms “digital signature” and “forensic signature”
are frequently—and incorrectly—used by forensics practitioners in reference to a simple cryp-
tographic hash (see [Haggerty and Taylor, 2007, ICS, 2008]). A hash value by itself is not a
signature, because it is not based on any secret information: anyone in possession of the data
can generate the hash; thus, having the hash is not proof that a specific person or system had
posession of the data.

True digital signatures are important for establishing chain-of-custody because of their non-
repudiability properties. If the signer’s private key has not been compromised and if the signa-
ture is valid, then the private key was used to create the signature2. One can easily imagine a
future in which digital evidence is routinely signed using trusted hardware such as a US Depart-
ment of Defense Common Access Card [US Department of Defense, 2008]. Such a signature
provides not such an assurance that the evidence has not been tampered—it provides an elec-
tronic proof that a specific person (or, at least, a specific CAC) was used to sign the evidence
when it was acquired. Other information such as GPS coordinates or a secure timestamp [Adams
et al., 2001] could be included in the signature as well.

3 AFF and AFFLIB 3
The Advanced Forensic Format (AFF) is a format for storing digital evidence and associated
metadata. Similar to the Expert Witness Format, AFF stores digital information as a series of
blocks, range in size from 512 bytes to 4GB, which can be optionally compressed and stored in
one or more disk files. Unlike Expert Witness, AFF is an extensible format which can store any
kind of arbitrary data or metadata. To this end, AFF can be thought of as two parts: a container
file format, similar to the ZIP file format, and a schema for mapping digital evidence to specific
name/value pairs. A detailed description of the disk representation for the AFF format has been
previously published [Garfinkel et al., 2006].

AFFLIBTM is an implementation of AFF written in a portable C++ that can be called from
either C or C++. Rather than forcing the programmer to understand segments, data segments,
compression and so on, AFFLIB implements a simple abstraction that makes the AFF image
file appear as two resources: a simple name/value database that can be accessed with traditional
put and get semantics; and a stream that can be accessed using af open(), af read(),
and af seek() function calls. If af open() is used to open a non-AFF file, the library
defaults to a pass-through mode of operation, allowing AFF-aware programs to work equally
well with raw files. In this manner, it is easy to modify existing forensics software to work with
AFF yet retain compatibility with raw files.

3.1 AFF Design

Specific goals for AFF are presented in [Garfinkel et al., 2006] and repeated in Figure 1. AFF
accomplishes these goals by partitioning the format into two layers: a data storage layer, which

2Assuming that the signature algorithm itself has not been compromised, of course

7

• Ability to store:

– disk images with or without compression.

– disk images of any size.

– metadata within disk images or separately.

– images in a single file of any size or split among multiple files.

– Arbitrary metadata in the form of user-defined name/value pairs.

• Extensibility.

• Simple design.

• Multi-platform, open source implementation.

• Freedom from any intellectual property restrictions.

• Provisions for internal self-consistency checking, so that part of an image could be recov-
ered even if other parts of the image were rendered corrupt or otherwise lost.

• Provisions for certifying the authenticity of evidence files both with traditional hash func-
tions like MD5 and SHA-1 and with advanced digital signatures based on X.509(v)3
certificates.

Figure 1: AFF Design Goals, from [Garfinkel et al., 2006]

specifies how the named AFF segments are stored in an actual file, and a data schema layer,
which defines how the information stored in the named segments is to be interpreted.

3.2 AFF Data Storage Layer

The AFF data storage layer stores any number of name/value pairs within a single AFF object.
AFF calls these name/value pairs segments. The segment name consists of a Unicode string
between 1 and 64 characters long; the value consists of a 32-bit unsigned integer and a sequence
of between 0 and 232 − 1 bytes. As discussed below in Section 3.3, different names are used to
store different kinds of data and metadata.

When AFF is used to store disk images, the pagesize segment stores the size of each section
of the disk image, the name page0 is used to store the first section, page1 is used to store the
second, and so on. As the name implies, these sections of the disk image are called pages. By
default AFF uses pages that are 16MB (224) bytes in length, although this can be changed on a
file-by-file basis when the image file is created.

AFFLIB Version 3 was released in the fall of 2007 and has been steadily improved since. AF-
FLIB 3 includes supports for five different data storage layers:

8

AFF: A disk image in a single file. The AFF file format stores AFF segments in a single file
that consists of a file header, one or more AFF segments, and a file footer. The format is
designed to allow easy parsing and validation of AFF files and easy data recovery in the
event of media failure.
Unlike the Expert Witness format, the AFF format store an entire disk image and asso-
ciated metadata in a single file. This is designed to aid processing and ease-of-use in
environments that work with dozens or even thousands of drives simultaneously. As a
result, we could not use an existing archive format such as ZIP or JAR because neither
supported files larger than 4GB due to the use of 32-bit offsets within the file directory.
Likewise, we couldn’t use compressed tar files because they do not provide for random
access. In retrospect we could have used the ZIP64 format, but at the time we did not
have an implementation of ZIP64 that was both clean and Open Source.
When an application asks AFFLIB to open an AFF file with the af_open() call, AF-
FLIB scans the entire file, noting the offset of each segment, and builds an in-memory
table of contents with this information. Offsets stored within each segment allows the file
to be read quickly, without necessitating the reading of each byte in the file. Although it
would be possible to store the table of contents at the end of the file, the way the ZIP file
format does, we decided to force a trip through the segment headers within the file as a
way of quickly verifying the file’s integrity. Offsets stored within the file allow reading
only the segment headers, rather than forcing a read of the entire file contents. In practice
this process takes between 10 and 30 seconds on a modern desktop system for image files
of devices ranging from 10GB to 200GB. Modern operating systems cache disk sectors,
so once a file is opened, subsequent file openings are nearly instantaneous as long as these
sectors remain in the host operating system’s cache.

AFD: Multiple AFF files in a single directory. Despite the fact that the AFF file format sup-
ports files larger than 4GB, some file systems (e.g., MSDOS) do not support files larger
than 2GB. On these systems AFFLIB supports an alternative storage mode called AFD, in
which multiple AFF files are stored in a single directory. When a directory ending in the
extension .afd is passed to AFFLIB’s af_open() routine, AFFLIB scans the direc-
tory for .aff files and builds a single table of contents for all of the files. The maximum
size of each AFF file within the AFD directory can be specified as an option.

AFM: Raw files with AFF annotations. A single AFF file can be used to store metadata or
other annotations (for example, digital signatures) for a disk image that is stored in one
or more raw files. In this case the file is given an AFM extension.
For example, if a disk image is stored in three files, file.000, file.001 and file.002,
annotations can be stored in a file called file.afm. Opening the file.afm file with
AFFLIB causes the library to automatically locate and reference the data in the raw files
when the forensic application attempts to read file data.

RAW and Split-Raw: Support for raw files. The AFFLIB library can also directly open raw
or split-raw files if their file names are passed to the af_open() call.

9

S3: Storing on Amazon’s Simple Storage Service. For supporting grid computing applica-
tions using Amazon’s EC2, AFFLIB has the ability to directly store disk images inside
Amazon’s Simple Storage Service [Amazon, 2008].

Libewf: Legacy support for EnCase. Finally, LIBAFF can directly read disk images created
in the Guidance Software EnCase file format using libewf [Kloet et al., 2008].

The AFFLIB af_open() determines which storage layer implementation to use based on
the string pathname argument that it is provided. For example, an attempt to open or cre-
ate a file which has an extension of .aff results in an AFF file being opened or created;
opening a directory with a .afd extension results in the directory being treated as a collec-
tion of AFF files; calling af_open() with a path that has an an extension of .afd and the
O_CREAT flag results in a directory being created. S3 files are specified with a URI in the
form s3://bucketname/prefix. Split-raw files are automatically detected when a file
is opened with a .000 extension and a file is present with the same basename and a .001
extension. EnCase files are specified with the standard .E01 extension.

3.3 AFF Schema

The AFF schema defines specific segment names, their purposes, and the interpretation of the
32-bit flag and variable-length data areas. A list of the segments that have been defined as of
AFFLIB v3.0.6 appears in Table 1. Because of the open nature of AFF, applications are able to
create their own named segment and store that information in the AFF file.

Some of the more important AFF segments appear in Table 1.

Additional segment types used for integrity and privacy will be discussed later in this paper.

3.4 AFFLIB Streams Layer

In order to facilitate the integration of AFF into existing and new forensic software, AFFLIB
implements a streams layer which provides a standard POSIX-like streams abstraction through
a standard set of interfaces (Table 2).

10

Device Characteristics:
pagesize The size of each AFF page, in bytes
imagesize The number of bytes in the image
sectorsize The size of each sector, in bytes
devicesectors The number of sectors on the device.

Metadata:
case num Case number; for compatibility with EnCase.
image gid A randomly generated 128-bit number used

to uniquely identify each acquired image.

Image characteristics:
pagesize Size (in bytes) of each uncompressed AFF

data page is stored in segment “flag” field.
parity0 The parity page; an XOR of all existing pages
imaging commandline The complete command used to create the

image.
imaging date The date and time when the imaging was

started.
imaging notes Notes made by the forensic examiner when

the imaging was started.
imaging device The device that was used as the source of the

image.
blanksectors The number of sectors that are completely

blank

AFF segments that are repeated for each page %d:
page%d The named sector for each page of the disk

image; %d is replaced with the page number,
from 0 to devicesectors÷ pagesize

sectors .
page%d md5 The segment for the MD5 hash of the page
page%d sha1 The segment for the SHA-1 hash of the page
page%d sha256 The segment for the SHA256 hash of the page

Bad Sector Management:
badsectors The number of sectors in the image which

could not be read due to a hardware failure
Table 1: Some of the segment names used in the AFFLIB 3 schema.

11

AFFLIB POSIX-like functions
af open Opens an AFF/AFD/AFM/Encase/S3/raw/split

raw file
af reopen Opens an existing file handle for reading or

writing using the AFFLIB system
af popen Opens a process for reading or writing using

the AFFLIB system
af read Read bytes from the file
af seek Seek to a different position in the disk image

file
af tell Reports the current position in the disk image

file
af eof Reports if the file pointer is at the end of the

file
af write Write bytes to the file (used when imaging,

not when performing forensic analysis)
af close Closes an AFF file

Nonstandard extensions:

af is badsector Reports if the specified sector is bad
af set error reporter Establishes a callback function for alerting

the operator that is called when AFF encoun-
ters an error

af set cachesize Sets the size of the AFF page cache
af vstat Returns status information about the AFF im-

plementation and the opened file
af stats Returns statistics about an AFF file
af set option Sets an implementation option

Table 2: The AFF streams layer

12

3.5 Transparent Integration with AFUSE

Although support for AFF is relatively easy to add to an existing program by replacing calls
to open(), read() and with seek() with af_open(), af_read(), and af_seek(),
occasionally it is not possible or desired to make source code modification to forensic tools.

To accommodate these problems AFFLIB includes a user-level program called affuse. Im-
plemented on top of the Filesystem in Usespace (FUSE) [Szeredi, 2008], affuse allows a
compressed AFF file to appear as a raw file in the computer’s own file system. FUSE takes care
of automatically decompressing pages as necessary and caching the uncompressed pages with
all available memory.

For example, if the user has an AFF file called evidence.aff, this can be made to appear as
a raw file in the same file system with these commands:

ls -l evidence.aff
-rw-r--r-- 1 simsong 555 409039930 Mar 23 2006 evidence.aff
affuse evidence.aff evidenceraw
ls -ld evidence*
-rw-r--r-- 1 simsong 555 409039930 Mar 23 2006 evidence.aff
drwxr-xr-x 2 root root 0 Dec 31 1969 evidence.raw
ls -l evidence.raw
total 0
-r--r--r-- 1 root root 2111864832 Dec 31 1969 evidence.aff.raw

Notice that the current FUSE implementation reports that the raw file occupies 0 blocks and
has a time stamp of the Unix Epoc. A future version of affuse will make all of the named
segments inside the AFF file visible in their own named files.

With affuse, any Linux forensics tool can access not only AFF files, but also EnCase files
and files stored on S3. Windows can be run on the same workstation using VMWare Player
[VMWare, 2008]. VMWare Player can be configured to allow the Windows operating system
(and therefore Windows applications) to view the host computer’s file system; with affuse,
that file system can include the contents of an AFF evidence file.

4 AFFLIB 3 Integrity Features
AFFLIB 3 includes four important mechanisms for assuring the integrity.

1. Picewise hashing of image pages

2. Digital signatures of pages and all metadata

3. Parity pages

13

4. Chain-of-custody segments

The extensible design of the AFF storage system, allowed each of these features to be added to
the original AFF specification [Garfinkel et al., 2006] without the need to make changes to the
underlying AFF Data Storage Layer.

4.1 Piecewise hashing of data pages

AFF files store image data in special “page” segments which are typically 16MB in size. As
each page segment is written, AFFLIB can automatically compute the page’s MD5, SHA-1,
and/or SHA256 hash and write an associated segment containing the hash value. The name of
the hash page is simply the page name followed by the string _md5, _sha1 or _sha256. Each
hash may be individually enabled or disabled at runtime. For example, when SHA-1 piecewise
hashing is enabled and the page page3 is written, AFFLIB computes that page’s SHA-1 and
writes it into a segment named page3_sha1.

These piecewise hashes are used as a data integrity checks, similar to the way that the Expert
Witness/EnCase format uses a CRC32. Even the MD5 is dramatically more secure than the
CRC32. Nevertheless, these hashes are not intended to provide cryptographic protection for
evidence: for that purpose AFF uses digital signatures, described below.

4.2 Digital Signatures

Digital signatures represent a significant improvement for evidence integrity over today’s stan-
dard practice of recording the MD5 or SHA-1 of an imaged disk in an investigator’s notebook:

• Unlike a hash code written into an investigator’s report, digital signatures are mathemati-
cal structures created for the purpose of assuring the integrity of data: their suitability for
this purpose have been considered for decades and is widely understood.

• By using standard digital signatures, it is possible to integrate digital electronic evidence
with existing software that already understands how to process digital certificates.

• Unlike a hash code, which simply protects the image data, AFF digital signatures protect
the entire disk image, and all of the associated metadata.

• The private key used to sign the signature can be tied to a specific device or investigator,
allowing the signature to be used for non-reputability in addition to integrity.

• But the most important reason is that the use of digital signatures will permit the migration
to imaging based on trusted hardware which can then help to assure the chain-of-custody
of evidence from the system being imaged to the courtroom.

14

AFF computes digital signatures for both metadata and data. When computing signatures on
metadata, the segment name, 32-bit argument, and metadata value is signed. In the case of
digital signatures computed on image data (“pages”), the signatures are calculated on the un-
compressed data. As a result, it is possible to acquire and digitally sign a disk image and then
later compress the image without compromising the integrity of the digital signatures. Calcu-
lating the signature on the uncompressed data further assures that the compression algorithm
does not modify the data between compression and decompression: if the data were modified,
the signature would not validate.

AFFLIB uses OpenSSL to generate and verify all digital signatures; signatures are stored in
PKCS#7 [Laboratories, 1993] format. Signatures that are stored directly in segments are stored
as raw PKCS #7 objects, while signatures stored inside or adjacent to XML blocks are stored
as Base64-encoded PKCS #7 objects.

AFF digital signatures complement the existing AFF integrity measures. Because the signature
is stored in its own metadata segment, the signature does not change the content of the acquired
disk image. And because AFM files can be used to annotate raw images, AFF signatures can be
applied to raw image files without modifying the data itself. This is similar to PGP’s ability to
create “detached signatures,” [Zimmermann, 1995] although it is more powerful because PGP’s
facility can only detect that an alteration has taken place, whereas AFF’s signature facility can
report which page has been modified.

Notice that AFF signatures are independent of the underlying storage system. The signatures
can be stored in one file and the data in another file (as in an AFM file), or in multiple AFF
files (as in an AFD directory). They can even be stored in the S3 network-based object storage
system.

4.2.1 Signing AFF Segments

AFFLIB 3 allows each AFF segment to be individually signed. The signatures for these seg-
ments are stored in their own segments which are included as part of the AFF file.

The data in an AFF segment consists of three parts: the segment name, the 32-bit flag, and
the segment bytestream. Because the name and the flag determine how the contents of the
bytestream are interpreted, all three must be included in the computation of the signature.

AFFLIB 3 actually supports two signature modes, both of which include these three data ele-
ments. Both sign a hash of the segment data; the difference is how the hash is computed:

Signature Mode 0. The hash is computed from the segment name, a NULL byte, the segment
argument (as a 32-bit number in network byte order), and the segment data.

Signature Mode 1. This mode is reserved for AFF data pages. The signature is computed by
calculating the hash of the segment name, five NULL bytes, and the uncompressed page

15

data.3 In this manner, the signature is computed over the original data, rather than data
that has been compressed or otherwise processed.

As indicated above, the signatures are written into segments themselves, with the segment name
being name/sha256 where name is the original segment name sha256 is the hash algorithm
used for computing the signature. This format allows easy migration to signatures based on
SHA512, should the need arise, or NIST’s future signature algorithm. Indeed, the AFF signature
format allows a single AFF file to be simultaneously signed with multiple schemes.

The observant reader will note that since AFF signatures are themselves stored in segments, it
is possible that signatures themselves can be signed. While this is certainly a true observation,
it is not a useful one, since the integrity of a signature is assured when the signature is validated.

4.2.2 Signing AFF files with X.509 certificates

Signatures can be written with either self-signed certificates or with X.509 [ITU, 2005] cer-
tificates that are issued as part of an organization’s PKI. AFFLIB 3 uses the pluggable “EVP”
signature support in the OpenSSL library [OpenSSL, 2008] to compute signatures; this library
includes full support for both RSA and DSA X.509 certificates with 1024, 2048 or larger keys.

The easiest way to get a private key and a corresponding X.509 certificate is to make a self-
signed certificate using the openssl command:

$ openssl req -x509 -newkey rsa:1024 -keyout sign.key -out sign.key -nodes
Generating a 1024 bit RSA private key
....................++++++
.......................++++++
writing new private key to ’sign.key’

You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Monterey
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Naval
Postgraduate School
Organizational Unit Name (eg, section) []:Department of Computer

3Five NULL bytes are used so that the data offset for the hash calculation is the same with Signature Mode 1
as it is for Signature Mode 0, which simplifies the implementation.

16

Science
Common Name (eg, YOUR name) []:Simson L. Garfinkel
Email Address []:slgarfin@nps.edu
$

When this command is run the user is asked a number of questions; OpenSSL uses the responses
to these questions to build the CN field of the X.509 signing certificate and certificate request.

The contents of the certificate can be viewed with the openssl x509 -text command, as
shown in Figure 2.

4.2.3 Certification of X.509 Certificates

As an alternative to creating a self-signed certificate, the practitioner can can create an RSA
private/public key pair, create a certificate request (CSR), send the CSR to a certificate authority,
and use the certificate that the authority returns. This procedure is the same procedure that the
practitioner would use to obtain an X.509 key for email or running a secure web server [Housley
and Polk, 2001, Adams and Lloyd, 2002].

4.2.4 Security for X.509 private keys

The openssl command presented in Section 4.2.2 places both the RSA private key, the pub-
lic key, and the self-signed certificate into the same file. If the private key is stored without
encryption, then the key file must be protected if non-repudiation is to be assured. Typically
the contents of this file will be protected with the computer’s operating system using the same
mechanisms that are used to protect the computer’s device drivers, operating system, and the af-
flib tools themselves: if these tools are secure, then so is the file containing the private key, and
if these tools can be compromised, putting a passphrase on the private key adds little additional
protection.

In some situations it is advantageous to have the private key stored separately from the operating
system—for example, in a cryptographic device such as a smart card (e.g., the Department of
Defense Common Access Card [US Department of Defense, 2008]) or a USB token. Although
OpenSSL has support for these devices, we have not implemented this functionality at the AF-
FLIB level due to our limited development resources. A future version of AFFLIB can support
this functionality if it is required by AFF users.

4.3 Bill of Materials and Chain-of-Custody

AFFLIB 3 introduces a special XML structure that contains a list of every AFF segment in the
file, a signature for each segment, a set of “notes,” and a public key. This structure is called an
“AFF Bill Of Materials” (AFFBOM). An example of the XML structure appears in Figure 3.

When an AFF image is created with aimage, afconvert, copied with afcopy, or signed
with afsign, an AFFBOM is created and signed with the private key belonging to the person

17

$ openssl x509 -text -in sign.key -noout

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

a3:e1:ef:44:63:04:74:00
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=US, ST=California, L=Monterey, O=Naval Postgraduate School,

OU=Department of Computer Science,
CN=Simson L. Garfinkel/emailAddress=slgarfin@nps.edu

Validity
Not Before: May 17 01:40:13 2008 GMT
Not After : Jun 16 01:40:13 2008 GMT

Subject: C=US, ST=California, L=Monterey, O=Naval Postgraduate School,
OU=Department of Computer Science,
CN=Simson L. Garfinkel/emailAddress=slgarfin@nps.edu

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:be:4e:10:cc:e4:ae:76:c2:d1:7c:72:c7:74:32:
f3:43:04:51:ed:ba:ed:a4:26:4d:46:b8:98:6c:bc:
28:10:13:7c:7d:20:a7:69:c7:9d:f1:66:4c:d3:b1:
12:48:fc:07:2d:87:83:f3:e4:0c:c8:64:b2:38:6a:
4a:18:39:bf:3f:08:ba:37:e1:69:3f:57:0c:06:8a:
c6:95:9d:f5:4a:62:fd:4d:04:49:f1:f7:23:b0:e3:
e4:ad:41:a1:4a:64:78:d2:fb:16:3d:22:2f:e1:59:
0d:47:07:85:1a:e7:aa:fa:3b:61:fe:0f:56:21:48:
c3:e1:49:c5:ad:32:08:4d:57

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Subject Key Identifier:
AE:A6:63:40:52:BF:08:1D:E1:D3:A5:85:75:16:D8:BD:76:71:1E:BB

X509v3 Authority Key Identifier:
keyid:AE:A6:63:40:52:BF:08:1D:E1:D3:A5:85:75:16:D8:BD:76:71:1E:BB
DirName:/C=US/ST=California/L=Monterey/O=Naval

Postgraduate School/OU=Department of Computer Science/CN=Simson
L. Garfinkel/emailAddress=slgarfin@nps.edu

serial:A3:E1:EF:44:63:04:74:00

X509v3 Basic Constraints:
CA:TRUE

Signature Algorithm: sha1WithRSAEncryption
34:6d:22:50:28:72:3b:e5:4d:fd:99:3f:79:6a:37:e0:75:45:
fb:df:a5:c8:29:a5:4d:62:3f:58:8a:a6:1a:48:86:83:c7:03:
d7:59:84:b9:e5:67:2b:2b:7a:8a:13:72:ec:82:d0:9a:56:b3:
fd:a5:8a:7f:c1:68:6a:db:ea:d2:1f:41:b9:ab:23:16:f1:59:
ca:91:3d:cb:fc:58:08:01:ab:4b:7b:15:c5:c5:7a:fc:a9:e8:
ea:09:fc:8d:4f:1b:68:a7:e5:34:19:9d:ed:73:46:e5:95:87:
3e:e2:65:58:0f:a2:66:d3:a5:6f:62:47:78:e8:65:34:30:b4:
49:9d

Figure 2: The OpenSSL command can be used to decode the contents of a certificate.18

who did the acquisition. This is stored in a special segment called affbom0.

Of course an individual AFFBOM segment can be removed from an AFF file; indeed, all of
the signatures can be removed as well. This is not a shortcoming specific to the AFF signa-
ture scheme: any digital signature scheme suffers from the shortcoming that signatures can
be stripped and the content can be changed by an adversary. Signatures can be stripped from
signed code, producing code that is unsigned. Signatures can be removed from S/MIME signed
email messages, producing conventional, unsigned email message. There is, in principle, no
way to tell the difference between an object that has had its signature removed from one that
was never signed in the first place. The only way to know that a signature has been removed is
through the use of policy—for example, a protocol that prohibits an organization from releasing
an unsigned data object. But even then, there is no way to tell the difference between a genuine
data object that was released and later had its signature stripped, and a fraudulent data object
that was never signed in the first place.

4.3.1 AFF Bill of Materials

When an AFF file is created or copied, an AFF Bill of Materials can be added. This block is
an XML data structure that includes the date that it was signed, the certificate used to create
the signature, notes, and an array of elements that represent each segment in the AFF file. An
example of the schema appears in Figure 3

The segment is called a bill of materials because it is literally a parts list of all the segments that
make up the specific AFF file. Since AFF files are segmented and segments can be added or
removed at will, the need exists for a single structure that lists all of the segments that need to
be present for a file to be complete. Without the AFFBOM segments could be added, removed,
or changed without detection.

The AFFBOM contains XML elements for the date that the signature was created, the program
that created the signature, human-readable notes, and an XML array containing a cryptographic
hash of each AFF segment in the AFF file. Hashes can be computed in mode 0 or mode 1, as
discussed in Section 4.2.1. At the end of the XML structure is stored a Base64-encoded digital
signature of the structure.

What makes it possible to detect change is not just the fact that there is an AFFBOM, but the fact
that it is digitally signed. Provided that the private key is guarded and that the signature process
is trusted, a relying party can be assured that the specific set of segments with the specific hashes
existed in the AFF file at the time the signature was created.

The XML block is signed using the OpenSSL signature routines; the resulting signature is
placed at the end of the XML block as a base-64 coded PKCS #7 object. Although the W3C
XML-Signature Recommendation [Bartel et al., 2002] might have been a better choice, we were
unable to find a suitable implementation, and the complexity of the specification is such that we
did not wish to attempt writing it ourself. (The W3C reference implementation contains more

19

<affbom version="1">
<!--Date XML was written:-->
<date type="ISO 8601">19980708T13:33:11</date>
<!--Base64 encoding of certificate used to sign CCB-->
<program>afcopy</program>
<signingcertificate>
YXNkYXNkZgphZHN. . .
. . .s39fjasl3JSFCmYK

</signingcertificate>
<notes>

Human-readable notes from the examiner
</notes>
<!--What follows is an array of elements, one for each AFF segment.-->
<affsegments>
<segmenthash segname=’myname1’ mode=’0’ alg=’sha256’>

base64 encoding of the hash of the named segment
</segmenthash>
. . .<!--multiple segmenthash segments will be present-->

</affsegments>
</affbom>
7zzW9WJ07RPuTH4G291b6YSW5SUQacD7UGJTiwpA+NgPm6/RRoJwSQcud6RxwkkL
thQrN0poqv8T8U7p8cSiuphrL29oBY9J4okjv1xXTdLoHoaf5Ft6kt+QqeSX4bOB
...

Figure 3: The AFF Bill of Materials (AFFBOM) with signature at end.

than 130 C source files and requires two additional open source packages for proper operation.)
Our implementation has the advantage of being small, easy to validate, and implemented. It
would not be difficult to migrate to XML-Signature if such functionality is required, however.

4.3.2 Providing a Chain of Custody

Each time a signed AFF file is copied with afcopy, a new AFFBOM can be created which
includes a new AFFBOM that covers all of the original segments and all of the previous AFF-
BOMs. In this manner the sequence of signed bill-of-materials becomes a custody chain, show-
ing who has copied the image and verifying that no evidentuary segments have been added,
deleted, or modified. These AFFBOMs are stored in segments named affbom1, affbom2,
etc., where the number is incremented for each copy generation.

The AFFLIB source code contains a demonstration script called test_signing.sh that
creates an evidence file and three X.509 certificates: one for Mr. Agent, one for Ms. Analyst,
and one for Dr. Librarian, all officials in the fictional town of Remote, CA. The evidence file
rawevidence.iso is converted into a file evidence.aff with afconvert and then
signed with afsign using this command:

20

$ afsign -s agent.pem evidence.aff

The signature can be verified using the afverify command:

$ afverify evidence.aff

Notice that the afverify command does not need the user to specify a certificate to use for
verification, because the signing certificate is embedded in the evidence.aff file. When the
program runs it displays the certificate that was used for verification, so that the investigator can
verify that the file is still signed with the correct certificate.

Mr. Agent transfers the evidence to Ms. Analyst. This is done with the afcopy command:

$ afcopy -n -s analyst.pem evidence.aff evidence2.aff
Enter notes. Terminate input with a ’.’ on a line by itself:
This copy was made by the analyst.
.
Thank you.
Copying evidence.aff --> evidence2.aff
evidence2.aff: 20017252 bytes transfered in 10.07 seconds. xfer rate: 1.99 MBytes/sec

Notice that the file is automatically signed because a public/private keypair is provided in the
file analyst.pem. The -n option tells afcopy to take a note from standard input.

Of course, an AFF file can still be copied without using the afcopy command. In this case the
file will be copied without a new XMLBOM segment being added.

4.3.3 Verification

Verification is done with the AFFLIB program afverify. This program opens the requested
AFF file and scans for the affbomn segments. For each segment the program then verifies
the signature on the XML block, then opens each AFF segment and verifies that segment’s
cryptographic hash. (Segment hashes are cached after they are computed for efficiency.)

The afverify program can report:

• Missing segments that were signed but are now missing.

• Extra segments that were not signed but have been added to the file.

• AFF segments whose signature no longer verify.

21

• AFF segments that were modified at one point during the conveyance of evidence. These
will appear as segments that do not verify for older AFFBOMs but to verify for later
AFFBOMs. In this manner it is possible to determine when the segment was modified.

Figure 4 shows afverify applied to the file evidence2.aff created in the previous sec-
tion.

22

Filename: evidence2.aff
Segments signed and Verified: 11
Segments unsigned: 0
Segments with corrupted signatures: 0

SIGNING CERTIFICATE :
Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com
Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com

Number of custody chains: 2

Signed Bill of Material #1:

SIGNING CERTIFICATE :
Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com
Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com

Date: 2008-04-26T11:06:06
Notes:

Signed Bill of Material #2:

SIGNING CERTIFICATE :
Subject: C=US, ST=California, L=Remote, O=State Police, OU=Forensics,

CN=Ms. Analyst, emailAddress=analyst@investiations.com
Issuer: C=US, ST=California, L=Remote, O=State Police, OU=Forensics,

CN=Ms. Analyst, emailAddress=analyst@investiations.com

Date: 2008-04-26T11:06:21
Notes:
This copy was made by the analyst.

EVIDENCE FILE VERIFIES.

Figure 4: afverify applied to file evidence2.aff created as part of the AFFLIB test routines.

23

4.4 AFF Parity Pages

To allow for the recovery of data after corruption or data loss, AFFLIB 3 introduces the concept
of AFF Parity Pages. Similar to parity drives used in a hard drive storage array, the AFF parity
page is written for each disk image file at the conclusion of disk imaging; each byte of the parity
page is computed by taking the XOR of the corresponding byte of all the other disk pages in the
AFF file. Thus, the contents of any other page can be reconstructed simply by taking the XOR
of all the remaining pages and the parity page.

AFF parity pages work with piecewise hashes and digital signatures to provide enhanced data
recovery. If the hash or digital signature indicates that a page has been corrupted, that page can
be erased and then reconstructed using all of the other AFF pages and the parity page. Once
reconstruction is complete, the signature or page hash (which are stored in a different location)
can be used to determine if the reconstruction is correct.

Parity pages are automatically created when an image is signed with the afsign utility. They
can also be created by the aimage disk imaging utility, which was previously part of AFFLIB
but is now its own standalone distribution.

Because they are the same size as the data pages, parity pages are not limited to correcting a
single error. Indeed, the combination of parity pages and per-page hashes and/or signatures
allows a wide number data corruption events to be not only detected but corrected, including:

• One or more bytes changed within a single page.

• One of more bytes changed across multiple pages, provided that bytes with the same
offset are not modified on different pages.

Finally, overlapping ranges of bytes on multiple pages that are damaged can be reconstructed
using a brute force operation. In these cases multiple “trail reconstructions” must be attempted,
with each reconstructed tested by computing the pages’ hash and seeing if the hash matches
the hash that was previously calculated. Essentially, this approach uses a brute force search
for the correct data: once the correct set of bytes is found, the signatures validates. In practice
such an approach would only work if the overlap region in each page is confined to 4 bytes
or less; beyond that, the computational overhead is simply too great. If entire sectors are cor-
rupt or missing, reconstruction will not be successful. (Such a reconstruction is not currently
implemented by the afverify command, but may be in a future version.)

4.5 Signed raw files

AFF’s AFM format allows a disk image to be stored in an uncompressed raw file (eg file.iso)
and the associated metadata to be stored in a .afm file. The AFM format can also handle raw
data stored as a series of split raw files (eg file.001, file.002, etc.).

24

Beacuse AFF tools operate on named segments that are independent of the underlying storage
container, the AFM format allows any ISO-file to be signed using the afsign command. The
afsign program will automatically detect if it is signing a raw file and will create a .afm
file to hold the signature. When filename.iso is signed, the afsign create a new file
called filename.afm which contains the signatures, the signed bill of materials, and other
metadata:

$ ls -l myfile.iso
-rw-r--r-- 1 simsong simsong 63107908 Apr 26 11:30 myfile.iso
$./afsign -s agent.pem myfile.iso
Signing segments...
Calculating BOM for page0...
Calculating BOM for page1...
Calculating BOM for page2...
Calculating BOM for page3...
$ ls -l myfile*
-rw------- 1 simsong simsong 16785481 Apr 26 11:30 myfile.afm
-rw-r--r-- 1 simsong simsong 63107908 Apr 26 11:30 myfile.iso
$

Although it is also possible to sign ISO files using existing tools such as PGP with detached
signatures, afsign has several advantages:

• afsign will sign every 16 megabytes chunk of the ISO file. In this way, if the file is
corrupted, it is possible to pinpoint what data is invalid and what data is still good.

• Unlike PGP, afsign allows the addition of notes and other metadata when a signature
is written.

• afsign utilizes X.509 certificates, allowing easy integration into existing PKI-based
systems.

• Because afsign also computes a parity page, it is possible to repair a damaged raw file
using afrecover (as discussed in Section 4.4).

Figure 5 illustrates recovery of a corrupted file. First the file is corrupted with a block of random
data. Next the file is checked with afverify. Finally the file is recovered using afrecover
(Figure 5).

25

$ dd if=/dev/random of=myfile.iso count=1 skip=1 conv=notrunc
$ afverify myfile.afm
Filename: myfile.afm
Segments signed and Verified: 13
Segments unsigned: 0
Segments with corrupted signatures: 1

SIGNING CERTIFICATE :
Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com
Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com

Bad signature segments:
page0

Number of custody chains: 1

Signed Bill of Material #1:

SIGNING CERTIFICATE :
Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com
Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,

CN=Mr. Agent, emailAddress=agent@investiations.com

Date: 2008-04-26T11:35:18
Notes:

EVIDENCE FILE DOES NOT VERIFY; EVIDENTUARY VALUE MAY BE COMPROMISED.
$ afrecover myfile.afm
myfile.afm has a bad signature
Attempting to repair page0
Page page0 successfully repaired
$

Figure 5: Demonstration of file corruption and recovery using afrecover.

26

5 AFFLIB 3 Encryption Features
AFFLIB 3 introduces the ability to encrypt AFF evidence files with the AES-256 algorithm
[NIST, 2001].

Each segment of each AFF file may be optionally encrypted with a unique, randomly generated
256 bit AES session key. This key can then itself be encrypted using a passphrase provided by
the user or encrypted with an X.509 public key. Because of this two-step process, the passphrase
or public key used to encrypt an AFF file can be changed in just a few seconds without having
to decrypt and re-encrypt the entire disk image.

Whereas some other forensic programs provide the ability to put a ”password” on an evidence
file, those passwords can be disregarded by non-conformant programs. (For example, Get-
Data claims that it’s MountImage Pro program can “open EnCase password protected image
files without the password.” [GetData Software, 2008] Libewf allows the user to ignore the
passphrase for EnCase images when the images are opened.) AFFLIB 3 uses true encryption: if
you do not know the correct decryption key, the only way to access the evidence is to brute-force
the encryption passphrase or the X.509 private key.

5.1 AFF Encryption Schema

Similar to the design of AFF Signatures, AFF Encryption is layered on top of the basic AFF
functionality that stores name/value pairs.

Three encryption layers are implemented:

1. AFF Base Encryption, which provides encryption of the AFF segment contents, but not
the segment names or the segment flags. All of the segments in an AFF file are encrypted
with a the same randomly generated affkey.

2. AFF Passphrase Encryption, a scheme for storing the AFF file’s affkey in an AFF seg-
ment that is itself encrypted with a passphrase.

3. AFF Public Key Encryption, which stores the AFF file’s affkey in an AFF segment that
is encrypted with an X.509 public key.

5.1.1 AFF Base Encryption

Encrypted AFF segments are stored in segments where name is generated by taking the name
of the unencrypted segment and appending a slash followed by the encryption algorithm and
keysize. For example, whereas the first 16MB of a disk image are typically stored in a segment
named page0, in an encrypted AFF file the page is named page0/aes256.

As discussed above, a single AFF session key is used to encrypt all of the AFF segments in a
given file. In AFFLIB 3 this key is randomly generated and is not accessible to the user.

27

Encryption is implemented as modifications to the af_update_seg and af_get_seg func-
tions inside the lib/afflib.cpp source file:

• When a program linked with AFFLIB attempts to store a segment, AFFLIB checks to see
if an encryption key has been set; if one has, the segment’s content is encrypted and the
segment is stored at the modified name (e.g., page0/aes256 instead of page0).

• When a program linked with AFFLIB attempts to fetch a segment and the segment does
not exist, AFFLIB checks to see if an encryption key is set. If one is, AFFLIB attempts
to fetch the segment with the modified name. If the segment can be fetched, AFFLIB
attempts to decrypt the segment with the key that has been set. If decryption is successful
the data is returned to the caller.

By implementing encryption at this layer, we provide for data to be encrypted after it is com-
pressed by the AFFLIB page system. This is the preferred approach, as data cannot be com-
pressed after it is encrypted.

If a key is set, then pages that are written are automatically encrypted, then written to the data
store.

If an unencrypted page is updated and encryption is enabled, the encrypted page is first written,
then the unencrypted page is deleted. The delete operation involves overwriting the unencrypted
segment with NULLs inside the AFF file. Multiple overwrites are not implemented, as they are
not required to preserve data privacy on modern hardware [NIST, 2006].

It is an error to change the affkey encryption key once it has been set.

5.1.2 Encryption modes and blocking

Encryption is performed with Cipher Block Chaining mode. The initialization vector is the
name of the sector padded with NULLs. Every segment in an AFF file has a different segment
name, thus a different IV. (IVs do not need to be kept secret to ensure privacy; the sole pur-
pose of the IV is to assure that different pages with the same data nevertheless have different
encryptions.)

Block ciphers such as AES require that all buffers be padded to the block size; with AES the
block size is 16 bytes. For performance AFF does not add padding if the page is already a
multiple of the block size. If the size of the vector is not a multiple of the AES block size, two
values are computed:

extra = len(mod blocksize) (1)
pad = 16− extra (2)

28

The buffer is padded by pad bytes; the buffer is now a multiple of the AES block size. The
buffer is encrypted. Finally, extra pad bytes are appended. Although the buffer is expanded,
it is now possible to recover the original length of the buffer when the segment is read and
decrypted.

To decrypt the buffer and recover the original length, the values extra and pad are computed
once again. The extra pad bytes are removed, the buffer is decrypted, and last pad bytes are
removed. The length of the resulting buffer is set to be the length of the encrypted buffer minus
the AES block size, and the decrypted data buffer is returned. In this way, the length does
not need to be explicitly coded. This scheme is the same as the one employed by PKCS #7
([Laboratories, 1993]; in keeping with PKCS #7, the pad byte is hex 01 if one pad byte is
required, hex 02 02 if two bytes are required, and so on.

The integrity of decrypted page data can be checked by comparing the MD5 of the decrypted
pagen/aes256 segment with the decrypted contents of the pagen md5/aes256 segment
using the afverify command, or by verifying the AFF signatures if they are present.

5.1.3 Design Limitations

There are a number of limitations that arise from the way that AFFLIB 3 implements encryp-
tion. In this section we will briefly discuss the limitations and explain why we think they are
inconsequential.

• AFF Encryption only encrypts the bytestream of segments; the segment name and
32-bit flag are unencrypted.

AFF encryption is created for the specific purpose of encrypting data and metadata that
are acquired from disk images. For this reason, we concluded that there was no reason
to attempt to obscure the segment names or 32-bit flags with cryptography, because these
do not hold information that needs to be kept confidential.

• A single AFF file may contain information that is both encrypted and not encrypted.

Because encryption is performed on a per-segment basis, it is possible to have segments
that are both encrypted and unencrypted. We see this ability as an advantage, as it allows
files that are unencrypted to be encrypted in place without the need to allocate double
the disk space. Should the encryption process be interrupted (for example, by a power
failure), the process can continue where it left off at some later point.

• The affkey cannot be changed once it is set for a specific file.

We believe that the added complexity to support multiple affkeys within a single file would
not be worth the complexity. In part this is because the key is not intended to be used by
the user: it is really just a session key that is used by the passphrase or the public key
encryption system. Should the affkey be compromised, every segment would need to be

29

reencrypted. The easiest way to do this would be to copy one encrypted AFF file to
another file using the afcopy command.

5.2 AFF Passphrase Encryption

Most investigators would prefer to work with a simple passphrase than with a 256-bit encryption
key that needs to be specially maintained, so AFFLIB 3 provides this ability as well.

AFF Passphrase Encryption builds upon the Base Encryption. When a passphrase is entered
AFFLIB uses the SHA256 algorithm to change the passphrase into a 256-bit hash. But in-
stead of using this has as an encryption key directly, the hash is used to encrypt the randomly
generated affkey. The encrypted session key is then stored in the affkey-aes256 segment.

This scheme could easily be modified to support multiple passphrases on each file, storing
them in segments such as affkey-aes256 0, affkey-aes256 1, etc., although there
have been no requests for such functionality.

The contents of the affkey_aes256 segment is a 68 byte structure:

bytes purpose
0–3 The version number, stored in network byte

order.
4–67 The affkey, encrypted with AES in Electronic

Codebook (ECB) mode using SHA-256 of
the passphrase as the encryption key.

68–131 The SHA-256 of the affkey (for verification
purposes).

With this scheme the passphrase can be changed without requiring the entire disk image to be re-
encrypted—all that needs to be done is that the affkey-aes256 segment is read, decrypted
using the old passphrase, and and re-encrypted with the new passphrase. (If a disk image does
need to be re-encryped—for example, if the affkey is compromised—this can be easily done by
copying the file with the afcopy command from one AFF file to another.)

A further advantage of this scheme is that the passphrase is not cached in memory.

5.3 AFF Public Key Encryption

AFF’s public key encryption facilities allow a disk image to be encrypted when it is created
with a public key; to use the disk image at a later time requires the corresponding private key.
This might be useful if an image is to be acquired in the field: once the image is acquired, it
would be cryptographically protected so that it could not be deciphered even if the machine (or
person) doing the encryption was later intercepted.

30

In practice, the disk image’s public key is specified when the file is created. At this point a
random affkey is created, encrypted with the public key, and cached in memory. As long as the
file remains open it can be read and written. But when the file is closed the in-memory copy of
the affkey is erased. Thus, once the file is closed, access to the data for either reading or writing
requires the corresponding private key.

Public key encryption is implemented by taking the affkey and encrypting it using the OpenSSL
“envelope” provisions. This involves creating a random session key and initialization vector,
encrypting the affkey with the session key using a block cipher, and then encrypting the session
key with the public key that will be used for sealing. The resulting encrypted session key,
encrypted affkey, and initialization vector are all stored it in a segment called affkey-evpn
where n starts at 0 and increases. Padding is according to PKCS #1 [Laboratories, 2002]. In
this manner the same affkey is never encrypted twice with two different RSA public keys.

For encrypting, the public key used for sealing can be specified in one of two ways:

• In a file whose name is provided on the command line, using the “-C” option (“C” for
Certificate).

• The filename referenced by the environment variable AFFLIB_ENCRYPTING_PUBLIC_KEYFILE

For decrypting, the private key used for unsealing can be specified in one of two ways:

• In a file whose name is provided on the command line, using the “-K” option (“K” for
Key).

• The environment variable AFFLIB_DECRYPTING_PRIVATE_KEY.

Although AFFLIB does not currently support the entering of a passphrase to decrypt private
keys that protected with a passphrase or for using a smart card or cryptographic token, these
capabilities can be added to a future release if requested by users. OpenSSL already has support
for these capabilities; all that is required is passing this capability through to the AFFLIB API).

5.4 Integrating encryption with existing tools

5.4.1 Specifying a passphrase as part of a filename

AFFLIB understands Uniform Resource Identifier [Berners-Lee et al., 2005] (URI) syntax, and
URIs have provisions for specifying passwords. Thus, it is relatively straightforward to integrate
passphrase-protected AFF files with existing command-line forensic tools by simply specifying
the passphrase as part of the filename.

URIs such as http://www.afflib.org/download/afflib.tar.gz consists of scheme
(e.g., http), an authority (www.afflib.org), a path (download/afflib.tar.gz), a

31

query and a fragment (not shown here). Although the authority is typically just a hostname, the
full syntax for the authority is:

authority = [userinfo "@"] host [":" port]

Userinfo was traditionally represented as username:password. Although this syntax is
deprecated in the current version of RFC3986, to avoid for the possible leakage of confiden-
tial information, we have chosen to use it to provide forensic workers with an easy means of
specifying passwords on the command line.

A file can be encrypted using AFF afcopy command like this:

$ afcopy myfile.iso file://:password@/myfile.aff

The resulting file can only be accessed if the passphrase is used:

$ afcat myfile.aff\verb|wc
afcat: This file has 5 encrypted segments.
afcat: No unencrypted pages could be found.

0 0 0
$ afcat file://:password@/myfile.aff | wc
5481881 5980668 63107908

5.4.2 Specifying a passphrase in an environment variable

As an alternative to specifying the passphrase on the command line, AFFLIB 3 allows passphrases
to be specified in the AFFLIB_PASSPHRASE environment variable:

$ export AFFLIB_PASSPHRASE=password
$ afcat myfile.aff | wc
5481881 5980668 63107908
$

5.4.3 Using encryption with affuse

Finally, an encrypted image can be mounted using affuse; the decryption is done in the user-
level affuse program, so that operating system (and application program) are able to directly
process unencrypted, uncompressed data:

32

affuse file://:password@/myfile.aff mnt
ls -l mnt
total 0
-r--r--r-- 1 root root 67108864 Dec 31 1969 myfile.aff.raw

Notice that this command must be executed as root. Also note that modification time of the raw
file is incorrectly set to the Unix epoch in the current implementation.

33

6 Signature and Encryption API
This section describes the API for the AFF encryption layer.

AFF Base Encryption
af set aes key Sets the affkey that will be used for the cur-

rently open AFF file. Returns an error if the
key is already set.

af cannot decrypt Returns true if there are encrypted pages
present that cannot be decrypted with the cur-
rently specified affkey.

af has encrypted segments Returns true if the currently open AFF file has
encrypted segments.

af is encrypted segment Returns true if segname is encrypted.

AFF Passphrase Encryption
af establish aes passphrase If no key has been set, creates a random af-

fkey, encrypts the key with the passphrase
and stores the segment in the AFF file. Re-
turns an error if a key has already been set.

af change aes passphrase Changes the passphrase for an AFF file from
oldphrase to newphrase. Returns an error if
oldphrase is not the correct phrase.

af use aes passphrase Tests to see if passphrase is in fact the correct
passphrase for the currently opened AFF file.
If it is, the passphrase will be used. An error
is returned otherwise.

AFF Public Key Signatures
af set sign files Opens the files containing a private key and

certificate. The cryptographic information
they contain are thereafter used to sign all
segments that are updated.

af sign seg Asks AFF to sign a specified segment.
af sign all unsigned segments Asks AFF to sign all of the unsigned seg-

ments.
af is signed segment Returns TRUE if there is a signature segment

for the segment segname.

34

AFF Public Key Encryption(Sealing)
af set seal certificates Creates an affkey, encrypts the key with each

of the provided X.509 certificates, and stores
each encrypted affkey in its own segment

af set unseal keybuffer Specifies a string buffer containing an unen-
crypted RSA key in PEM format.

7 Conclusion
This paper introduces the provisions for cryptographic security, integrity, and chain-of-custody
that have been incorporated in Version 3 of the Advance Forensic Format Library (AFFLIB).
These provisions build upon the AFF format introduced by Garfinkel et. al in 2006 [Garfinkel
et al., 2006], allowing transparent access to evidence files that are digital signed or encrypted.

Compared with other approaches and alternatives, AFF Signatures and Encryption offers the
following advantages:

• The scheme was simple to implement and test.

• AFFLIB offers real encryption of evidentiary data, not a simple “password” as is present
in other systems.

• Raw files can be signed without the need to modify the original data.

• Unencrypted evidence files can be encrypted in-place.

Because of design decisions, AFFLIB encryption does have a few disadvantages. Specifically:

• Segment names and the 32-bit argument stored with AFF segments are digitally signed
but they are not encrypted. Since segment names and the 32-bit argument never hold
evidentiary data or metadata, this lack of encryption is not considered to be significant.

• Each AFF file is encrypted with its own key; the only way to change the key is to copy
the data from one encrypted file to another. However, the passphrase used to encrypt a
file can be changed instantly.

• AFFLIB caches the encryption key in memory in the AF structure, allowing the key to
be stolen by hostile software. This shortcoming can overcome through the use of trusted
operating systems or cryptographic tokens.

7.1 Future Work

We continue to make improvements in AFF and aimage. More information about AFF, in-
cluding the source code for AFFLIB 3, can be found at http://www.afflib.org/.

35

7.2 Acknowledgments

Brian Carrier and Peter Wayner both provided useful feedback on the initial design of the AFF
system. Jesse D. Kornblum provided usefulf eedback on the design of the cryptographic layer.
Chris Beeson and Bryant Ling at the FBI’s Silicon Valley Regional Computer Forensics Lab-
oratory provided useful feedback on the requirements of cryptography for law enforcement.
Basis Technology Corp. provided substantial funding for initial work on AFF. Additional funds
for AFF development were provided by the Naval Postgraduate School’s Research Initiation
Program.

The author would also like to thank the anonymous reviewers: your comments were very helpful
in improving this manuscript.

AFF and AFFLIB are trademarks of Simson L. Garfinkel and Basis Technology, Inc.

References
[Adams et al., 2001] Adams, C., Cain, P., Pinkas, D., and Zuccherato, R. (2001). Internet x.509

public key infrastructure time-stamp protocol (tsp).

[Adams and Lloyd, 2002] Adams, C. and Lloyd, S. (2002). Understanding PKI: Concepts,
Standards, and Deployment Considerations. Addison-Wesley Professional, 2 edition.

[Amazon, 2008] Amazon (2008). Amazon simple storage service (amazon s3). Amazon Web
services. http://aws.amazon.com/s3.

[ASR, 2002] ASR (2002). Expert witness compression format specication. ASR Data Acqui-
sition and Analysis. http://www.asrdata.com/SMART/whitepaper.html.

[Bartel et al., 2002] Bartel, M., Boyer, J., Fox, B., LaMaccia, B., and Simon, E. (2002). Xml-
signature syntax and processing. W3C. http://www.w3.org/TR/xmldsig-core/.

[Berners-Lee et al., 2005] Berners-Lee, T., Fielding, R., and Masinter, L. (2005). RFC 3986:
Uniform resource identifier (uri): Generic syntax.

[Boneh, 2001] Boneh, D. (2001). Cryptographic hashing. http://crypto.
stanford.edu/˜dabo/courses/cs255_winter01/1-hashing.pdf, Course
notes for CS255 Winter 01.

[Carrier, 2006] Carrier, B. (2006). A Hypothesis-Based Approach to Digital Forensic Investi-
gations. PhD thesis, Purdue University.

[Computer Systems Laboratory and Technology, 1993] Computer Systems Laboratory, N. I.
o. S. and Technology (1993). FIPS-180 secure hash standard. U.S. Department Of Com-
merce. Also known as: 58 Fed Reg 27712 (1993).

36

[Dierks and Allen, 1999] Dierks, T. and Allen, C. (1999). RFC 2246: The TLS protocol ver-
sion 1. Status: PROPOSED STANDARD.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. E. (1976). New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-22(6):644–654. citeseer.ist.
psu.edu/diffie76new.html.

[Fonseca, 2007] Fonseca, B. (2007). Hard-drive changes: Long block data standard gets green
light. Computerworld. http://www.computerworld.com/action/article.
do?command=printArticleBasic&articleId=9018507.

[Friedl, 2005] Friedl, S. (2005). An illustrated guide to cryptographic hashes. http://www.
unixwiz.net/techtips/iguide-crypto-hashes.html.

[Garfinkel, 2008] Garfinkel, S. L. (2008). Afflib. http://www.afflib.org/.

[Garfinkel et al., 2006] Garfinkel, S. L., Malan, D. J., Dubec, K.-A., Stevens, C. C., and Pham,
C. (2006). Disk imaging with the advanced forensic format, library and tools. In Research
Advances in Digital Forensics (Second Annual IFIP WG 11.9 International Conference on
Digital Forensics). Springer.

[GetData Software, 2008] GetData Software (2008). GetData Software Developoment Com-
pany. http://www.mountimage.com/.

[Haggerty and Taylor, 2007] Haggerty, J. and Taylor, M. (2007). FORSIGS: Forensic Signature
Analysis of the Hard Drive for Multimedia File Fingerprints, pages 1–12. Springer. http:
//www.springerlink.com/content/21478kr877478805/.

[Harbour, 2006] Harbour, N. (2006). dcfldd. http://dcfldd.sf.net.

[Housley and Polk, 2001] Housley, R. and Polk, T. (2001). Planning for PKI: Best Practices
Guide for Deploying Public Key Infrastructure. Wiley.

[ICS, 2008] ICS (2008). Secure hash signature generator. Intelligent Computer Solutions.
http://www.ics-iq.com.

[ITU, 2005] ITU (2005). Recommendation x.509 (08/05): The directory: Public-key and at-
tribute certificate frameworks. International Telecommunication Union. http://www.
itu.int/rec/T-REC-X.509-200508-I.

[Keightley, 2003] Keightley, R. (2003). EnCase version 3.0 manual revision 3.18. Guidance
Software. http://www.guidancesoftware.com/.

[Kloet et al., 2008] Kloet, B., Metz, J., Mora, R.-J., Loveall, D., and Schreiber, D. (2008).
libewf: Project info. Uitwisselplatform.NL. http://www.uitwisselplatform.nl/
projects/libewf/.

37

[Kohnfelder, 1978] Kohnfelder, L. M. (1978). Towards a practical public-key cryptosystem.
Undergraduate thesis supervised by L. Adleman.

[Laboratories, 1993] Laboratories, R. (1993). Pkcs #7: Cryptographic message syntax stan-
dard. ftp://ftp.rsasecurity.com/pub/pkcs/ascii/pkcs-7.asc, Version
1.5.

[Laboratories, 2002] Laboratories, R. (2002). Pkcs #1: v2.1: Rsa cryptography standard. ftp:
//ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf.

[NIST, 2001] NIST (2001). Federal information processing standards publication 197: Spec-
ification for the advanced encryption standard (aes). National Institute of Standards
and Technology. http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.

[NIST, 2006] NIST (2006). Guidelines for media sanitization. National Institute of Stan-
dards and Technology. http://csrc.nist.gov/publications/nistpubs/
800-87/sp800-87-Final.pdf.

[NIST, 2007] NIST (2007). Announcing the development of new hash algorithm(s) for the
revision of the federal information processing standard (fips) 180-2, secure hash standard.
National Institute of Standards and Technology, Commerce. http://csrc.nist.gov/
groups/ST/hash/documents/FR_Notice_Jan07.pdf.

[Novak, 2002] Novak, D. J. (2002). Governments opposition to standby coun-
sels reply to the governments response to courts order on computer and e-mail
evidence. http://notablecases.vaed.uscourts.gov/1:01-cr-00455/
docs/68092/0.pdf, UNITED STATES OF AMERICA v. ZACARIAS MOUSSAOUI,
Defendant, Criminal No. 01-455-A.

[NTI Forensics Source, 2008] NTI Forensics Source, B. S. (2008). Safeback bit stream backup
software. http://www.forensics-intl.com/safeback.html.

[OpenSSL, 2008] OpenSSL (2008). Openssl: The open source toolkit for ssl/tls. The OpenSSL
Project. http://www.openssl.org.

[Rivest, 1992] Rivest, R. (1992). RFC 1321: The MD5 message-digest algorithm. Status:
INFORMATIONAL.

[Rivest et al., 1977] Rivest, R. L., Shamir, A., and Adelman, L. M. (1977). A METHOD
FOR OBTAINING DIGITAL SIGNATURES AND PUBLIC-KEY CRYPTOSYSTEMS.
Technical Report MIT/LCS/TM-82, Massachusetts Institute of Technology. http://
citeseer.ist.psu.edu/rivest78method.html.

[Schneier, 2004] Schneier, B. (2004). Opinion: Cryptanalysis of md5 and sha: Time
for a new standard. Computerworld. http://www.computerworld.com/
securitytopics/security/story/0,,95343,00.html.

38

[Szeredi, 2008] Szeredi, M. (2008). Filesystem in usespace. http://fuse.
sourceforge.net/.

[US Department of Defense, 2008] US Department of Defense (2008). Cac: Common access
card. US Department of Defnese. http://www.cac.mil.

[US Treasury, 2008] US Treasury (2008). Ilook investigator. US Department of the Treasury.
http://ilook-forensics.org.

[VMWare, 2008] VMWare (2008). Run virtual machines on your pc for free. http://www.
vmware.com/products/player/.

[Wang et al., 2004] Wang, X., Feng, D., Lai, X., and Yu, H. (2004). Collisions functions md4,
md5, haval-128 and ripemd. In Report 2004/199. CRYPTO 2004 Cryptology ePrint Archive.
http://eprint.iacr.org/2004/199.pdf, rump session.

[Zimmermann, 1995] Zimmermann, P. R. (1995). The Official PGP User’s Guide. MIT Press.

39

Initial Distribution List
1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudly Knox Library
Naval Postgraduate School
Monterey, California

40

