
i

A :File Syatem l'or Wrlte-Onee Media
~ ' ·, . ' . : ' : ' .. • ·, ·-·.'

Simson L. Garfinkel-and J. Spencer Love

Simson L .. Qar(inkel
MIT Media Lab

Cambridge,·MA 02139
Garfinkel@MULTICS.MIT .EDU

J. Sp~ncer Lo,ve
MIT lnformat(~on,Sy.stems

Cambridge,MA 02139
JSLove@MULTICS.MIT.EDU

This research w~. performed at the MIT Media Lab during the spring and~su'.rnmer
of 1985, and was sponsored in part by a,grant frorn·IBM. . . .

Abstract

A .file system .·standard for use with: -•·write-once me~·Ha ··such as digital compact. disks is
proposed. Th~·Jiiesystem is.des~gn~d :to work .with. a.ny op~rating .. system· and a variety of
physical media. ·A:1though the implelhentation is simple, it :1>rovidesa a full-featured and
high-perforrtrance alternative' to conventional '°file syst~m~ .on traditional,. multiple-write
ID:edia such ·as .magnetic disks. . • .

1

. "\,· ', Simson L. Garfinkel & J. Spencer Love

Table of Contents
1. Introduction
2. CDFS Design Goals
3. Transactions
4. An Example Transaction
5. Driver Layer
6. Current Implementation

6.1. Programmer's interface
6.1.1. Calls for use with directories
6.1.2. Calls for use with files

6.2. Multiple Partitions and embedded file systems
6.3. CDROM and Electronic publishing
6.4. Garbage Collection

7. Current areas of development
7.1. Fragmented Files
7 .2. Addnames
7.3. Soft Links

8. Summary
9. Notes on CDFS data structures

9.0.1. Notes on End-Of-Transaction
9.0.2. Notes on Directory List
9.0.3. Notes on Directory Structures
9.0.4. Notes on Fileheaders

MIT Media Lab

2
3
4
5
9

11
11
12
14
15
16
16

17
17
18
19

21
23
23
23
24
24

page i

... i Simson L. Garfinkel & J. Spencer Love

List of Figures
Figure 4-1: A Sample transaction
Figure 4-2: A second sample transaction
Figure 0- 1: File Type definitions
Figure 9-2: End Of Transaction structure format
Figure 0-3: Directory List format
Figure 0-·4: Directory format
Figure 9-5: Fileheader structure definition
Figure 9-6: File Map format for fragmented files

MIT Media Lab

5
7

26
26
28
28
29

32

page ii

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

Note on program examples bi this article:

All. data structures . and program examples in this document are presented in the
form of C language fragments. These are living excerpts from the Media Lab's CDFS im­
plementation. Since the definition of C's int, abort int and long int differ from im­
plementation to implementation and computer to computer, we have avoided their use in
our examples. Instead, the examples only reference derived types such as int16 and
int 32. These derived types are defined separately for each compiler.

Intnn defines an unsigned integer nn bits wide, stored low-byte first. Sintnn
defines the corresponding signed-integer. char foo [nn] allocates space for an array of
nn 8-bit characters.

page 1

[t

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

l. Introduction

A preformatted, blank compact disk 1 costing under ten dollars. It can contain over
500 megabytes. The enor rate is less than 1 error · per 1014 bits read. Drives capable of
reading 176,400 bytes per second [1] have already been delivered at a retail price of less
than three hundred dollars per drive.

The CD reader hardware is currently available for computers. [5] Compact Disks
used for digital data storage are commonly referred to as CDROMs, reflecting their read­
only nature. Applications such as software distribution and electronic publishing are
natural candidates for the CDROM technology. In the absence of a file system standard
for CD RO Ms, vendors have introduced products with proprietary, read-only imitations of
existing read-write file systems. [3]

A direct read after write (DRAW) device is capiable of writing each block on the
compact disk once. The consumer demand for these devices is expected to be considerable.
We expect that the same economies of scale that have provided · the consumer electronic
market with low-cost read only devices will soon supply the market with low-cost write­
once devices.

Existing file systems will not work with DRAW devices. Their operation is predi­
cated on the assumption that any block, once written, can be rewritten. This is assump­
tion is made fully clear when blocks containing directories and file maps are
consid~red. [6) [4]

1 A compact disk (CD) consists of a thin sheet of metallic film covered by a transparent shield. Infor­
mation is stored in the form of non-reflective regions (holes or . bumps) on a narrow spiral track in the
metallic film. The CD is scanned by a solid-state laser that reflects light off the metallic film. A significant
amount of the information stored on a conventional audio-format compact disk is tracking and error cor­
recting information. 12] A more powerful laser can record information on compact disks. The error correct­
ing codes make it impossible to rewrite blocks already written on the disk.

page 2

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

2. CDFS Design Goals
Our overall goal is twofold: First, to be able to maintain files on a compact disk,

enjoying the benefits that he media affords. Secondly, we want to be able to carry our
files on CD to any workstation or computer installation and be instantly able to use and
update the stored data. CDFS must provide transportability between different sites and
different operating systems: it must be operating system independent. To accomplish
these goals, the file system must possess the following features:

• Retain the useful properties and general appearance of a multiple-write,
hierarchical file system.

• Store directory information on the same write-once media as the contained
files.

• Minimize file system overhead, including storage space, processor work and
seek activity.

• Keep a complete audit trail of every modification to the media.

• Be independent of the underlying media interface and data organization.

• Never modify data previously written to the disk.

• Permit minimum memory implementations so that file system structures need
not remain scarce buff er memory.

• Allow for easy, automatic reconstruction of the file system after media failure
or interrupted update.

• Allow for the storage of operating system specific i.nformation.

• Make provisions for alternative file systems, either in partitions or embedded
in files.

• Be simple to implement.

• Be extensible.

For most purposes, CDFS is a functional superset of most file systems commonly in
use. That is, it implements most of the conventional abstractions (files, directories, links,
timestamps) found on conventional file systems. This is to allow a hierarchy resident on
magnetic media to be copied to CD and back to magnetic media without change to the
hierarchical structure or contents.

page 3

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

3. Transactions
CDFS organizes information on the write-once media in sequences called

Transactions. Each Transaction consists of a group of files, the directories containing
those files, a Directory List and an End-Of-Transaction block (EOT).

H any updates are ma.de the current Transaction must be completed prior to dis­
mounting the media. The last block written on the compact disk at the end of a Trans­
action must be an EOT. Contained in the EOT (See figure 9-2) is a pointer to the most
recently written Directory List. Each Directory List consists of associated header infor­
mation (see figure 9-2) and an ordered array with one entry for each directory in the file
system (see figure 9-2).

Each entry in the Directory List array contains a pointer to the location of the
most recent version on the disk of that particular directory, which, in tum, contains
pointers to the most recent versions of the individual files it contains.

We arrived at the Directory List concept after taking a census of a number of
heavily used time-sharing systems. The systems we examined had a relatively small num­
ber of directories when compared to the total a~ount of online information. For example,
MIT-MULTICS, a Honeywell DPS-8/70M serving a user community of over 3000 resear­
cher~, has 4.26 gigabytes on line, 3.12 gigabytes of storage actually in use, but only 9567
directories. On the basis of this and other censuses, we do not expect that the directory
list will require a disproportionate amount of storage space.

The Directory List allows directories to be quickly located since it contains a direct
pointer to the most current version of every directory. It additionally permits new versions
of directories to be written without updating their containing directories. Thus, if in the
course of a single transaction a file is added to a directory deep in the hierarchy, it is only
necessary to rewrite the containing directory, the Directory List and the EOT. The cost of
maintaining the directory list is· much less, both in terms of storage space and processor
overhead, than the alternative of complete hierarchy rewrites.

page 4

. '
Simson L. Garfinkel & J. Spencer Love MIT Media Lab

4. An Example Transaction
Let's follow the development of a file hierarchy on a compact disk over the course

of two Transactions. In this example, Transaction update occurs as in the Media Lab's
CDFS implementation. Other implementations might perform transactional update dif­
ferently.

CDFS only writes blocks consecutively. In this example, the CD starts blank. In
the first Transaction, the compact disk is created with two files, "'life.c"' and "'wheel.c·, in
the root directory. In the second Transaction, the file "life.c· is modified while the first
file, "wheel.c" remains untouched.

At the close of the first transaction, the two files have been written, along with the
associated Directory List and EOT. A pictorial view of first few CD blocks is presented in
figure 4-1. A description of the purpose of each block follows.

Disk Location
+-------------+

/---------> I 000.000.000 I
I +-------------+
I /-> I _000.000.001 I
I I +-------------+
I I-> I 000.000.003 I
I I +-------------+
I /-> \---1 000.000.004 I
I I +-------------+
+-> \-------1 000.000.oos I
I +-------------+
\-----------1 000.000.006 I

+-------------+

Blank blocks follow.

Contents

End-Of-Transaction

"life.c" (2 blocks long)

"wheel.c" (1 block long)

root directory.

Directory List.

End-Of-Transaction

Figure 4-1: A Sample transaction

Note: the notation iii.jjj.kkk denotes a particular block on the compact disk.
(iii.jjj.kkk) refers to the block located at minute iii, second jjj, block kkk.

Arrows (--->) in the above diagram indicate pointers from the End-Of-Transaction
block to the Directory List, from the directory list to each directory, and from each direc­
tory to the files it contains. Although there are many other pointers stored in these blocks,
they have been omitted from the drawing for clarity's sake.

page 5

I 1

Simson L. Garfinkel & J. Spencer Love

Block Location Explanation

MIT Media Lab

000.000.000

000.000.001

000.000.003

000.000.004

000.000.005

000.000.006

The first block of a CDFS generated disk contains an EOT. EOTs con­
tain media-specific information about the disk, such as the recording
format, CD pointer (called ·cdblock· and explained later) format, and
the version of the CDFS that the disk was created with. This block also
contains the name of the disk's owner, the name of the site which
created the CD and other human-readable information. (See figure 9-2
for the EOT structure.)

It is the responsibility of the Driver Layer to locate the first EOT.
When the CD is mounted, CDFS derives enough information from the
first block to locate any other block on the disk.

The file ·life.c H is stored contiguously, preceded by out-of-band infor­
mation stored in a File header. (See figure 9-4 for the fileheader
structure). The contents of the file are positioned independently of the
fileheader, but in this example follow contiguously.

"wheel.c· is the second file stored on the CD, stored as a fileheader fol­
lowed by file contents.

At the close of the transaction, directories that have been modified as a
result of insertions, deletions or modifications are rewritten. Directories
consist of a fileheader, a block of data pertaining to the entire directory,
and an ordered array of elements describing each entry in the directory.
(See figure 9-4 for the directory structure). In this example, the root
directory contains two entries.

The Directory List follows the directories. (See figures 9-2 and 9-2 for
the directory list structure.)

The closing EOT is the last block written to the CD.

After the second Transaction, in which a new version of *life.c H is written, the pic­
torial view would resemble figure 4-2. Note that none of the blocks written in the first
transaction have been modified.

New block

000.000.007

Explanation

The first file written on the second transaction is the updated version of
"life.c". The new version of "life.c" contains a pointer to the previous
version.

page 6

Simson L. Garf"mkel & J. Spencer Love

Diak Location

/-->
I
I
I

+-------------+
/---------> I 000.000.000 I
I +-------------+

/-1-----> /-> I 000.000.001 I
I I I +-------------+

/-1-1-----> +-> I 000.000.003 I
I I I +-------------+
I I I /-> +-- I 000.000.004 I
I I I I +-------------+
I I +-> \-------1 000.000.005 I
I I I +-------------+
I I \-----------1 000.000.006 I
I I +-------------+
+>\-------------1 000.000.001 I
I +-------------+

I /->\---------------1 000.000.015 I
I I +-------------+
+>\------------------1 000.000.016 I
I +-------------+
\--------------------1 000.000.011 I

+-------------+

Blank blocks follow.

Contents

Superblock. (EDT)

"life.c" (2 blocks)

"wheel.c" (1 block)

root directory.

Directory List.

End-Of-Transaction

"life.c" (8 blocks)

root directory

Directory List.

End-Of-Transaction

Figure 4-2: A second sample transaction

MIT Media Lab

000.000.015 A new root directory is written out following the modified files. The
directory points to the most recent version of the fileheaders of the files
it contains. It additionally points to the previous version of the root
directory, to allow retrieval of deleted files.

000.000.016

000.000.017

The Directory List is written following the last directory. It contains a
pointer to the most recent version of each directory.

The End-Of-Transaction block is written last. It contains a pointer to
the previous End-Of-Transaction and to the current Directory List.

Note: Directories, Directory Lists and End-Of-Transaction blocks may be written
at any time. The batched nature of Transactions described here is a result of our im­
plementation, and arises from a desire to conserve the storage overhead associated with
file update, at a cost of maintaining the contents of modified directories and the directory
list in memory until the end of the transaction.

page 7

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

When the disk is mounted, CDFS reads the disk's format from the the first block
on the disk, then locates the last modified block. From the final EOT, CDFS obtains the
location of the directory list. The directory list contains pointers to the current version of
every directory on the disk. Each directory contains pointers to the fileheaders of all non­
directory contents (subdirectories are located via the directory list). Fileheaders point to
file contents. In this manner, locating the EOT allows any byte resident in the filesystem
to be easily located.

page 8

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

5. Driver Layer

The CDFS Driver Layer is responsible for reading and writing data to the DRAW
device and device control.

Locations on the write-once media are denoted by H cdblock" pointers. A cdblock
pointer consists of 64 bits partitioned into a group of bits which denote a block address
and a group of bits which denote a byte offset in that block. Thus, a cdblock pointer
points to a particular byte on the compact disk.

The partitioning and interpretation of the 64 bit cdblock quantity is the respon­
sibility of the Driver Layer. Presumably, the block address field will be further partitioned
in a way reflecting the addressing scheme used by the DRAW hardware. Details of the
partitioning scheme are recorded in the pointerdes array located in every End-Of­
Transaction block on the disk.

In the case of audio-format CDROMs, the cdblock is partitioned into 48 bits of
block address and 16 bits of byte-offset in block. The block size is 2048 bytes. The 48 bit
block address is further partitioned by the driver into three 16 bit fields: minute, second
and block number. Other partitionings are possible. When this partitioning scheme is
used, the contents of the pointerdes array in every End-Of-Transaction naturally follows
as:

Name modulo_of_ value bits_in_ value
Minute 70 16
Second 60 16
Block 75 16
Offset 2048 16

The remaining entries in the pointerdes array are blank and ignored.

Note that the HName" is not stored in the pointerdes array, but is included for
clarity's sake only. The block size is inferred from the modulo of the last entry in the
pointerdes array.

It is the responsibility of the driver layer to provide the following functions to the
CDFS:

• Return physical information pertaining to the disk currently mounted, includ­
ing block size and last addressable block on the disk.

• Read a block, returning the contents, if possible, or an error indication. Error
indications must distinguish between a virgin block and an unreadable block.

page 9

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

• Write a block on the CD. H blocks may only be written in sequence, a suitable
error code must be returned.

• Calculate successive cdblock addresses. (Address arithmetic depends on media
format at the hardware level. The driver layer is responsible for mapping
device addresses onto a simple linear address space.)

• Find the first virgin block within a given range. If this primitive is not avail­
able, CDFS will locate the first virgin block with a binary search.

page 10

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

6. Current Implementation
The first implementation of CDFS is a C subroutine library on a Digital VAX

11/785 running Berkeley 4.2 UNIX. The subroutine library is now being modified for use
with the MSDOS and VMS operating systems. Programs which wish to access files stored
on a CD must be specially modified and linked with the CD FS library.

We used a DRAW simulator to write the CDFS before DRAW devices were com­
monly available. The simulator, running under UNIX, made a large disk file take on the
appearance of a small, write-once compact disk. An entire 424MB disk pack was used for
the simulator. The simulator-based system can double as an editing system for the
development of read-only CDs: files are copied to the simulated CD. When all of the
desired files are in place, the UNIX file is copied to a tape which is used to master the
CDROM.

At first, CDFS will be used for user file storage in a public workstation environ­
ment. During a work-session, the user will copy the files he is working on from CD to a
local hard disk on the workstation. At the end of the work-session, modified files would be
copied back to CD. Eventually, we hope to be able to support diskless workstations and
automatic copying of modified files back to CD.

Work is underway on a file-server implementation of CDFS. In this implemen­
tation, a CD-equipped computer will be attached to a local area network. All the com­
puters on the network will -be able to keep files on the CD. There will be no difference,
from the user's or programmer's point of view, between files -stored on compacf disk and
files stored on conventional magnetic devices.

The Media Lab CDFS implementation lacks fragmented files, addnames, resolu­
tion of links and handling of reserved properties. These features will be added as needed
during the fall of 1985 as the CDFS user and programmer community increases.

6.1. Programmer's interface

A programmer writing CDFS applications will interact with the CDFS through the
Programmer's interface (currently implemented as a subroutine library written in C). The
programmer's interface requires the programmer to know nothing of the actual structure
of how files are stored on the CD. Files are accessed by name, directories are accessed by
number. The Media Lab compact disk programmer's interface provides the following
functions:

page 11

Simson L. Garfinkel & J. Spencer Love

6.1.1. Calls for use with directories

MIT Media Lab

The following functions in the programmer's are primarily for dealing with direc­
tories and their contents. Most of the calls require a directory number and an entry name.

CD_mkdir(int32 parent.string name)

Create a directory in a given parent directory. File Systems are initialized with an
empty root directory. The root directory has no name. The number of the root directory is
Hl,.. This function returns the number assigned to the newly created directory.

CD_dir_number_to_name(int32 dirnum,string delimstr.
string replacestr)

Convert a directory number to a full pathname. Directories in the pathname are
separated by delimstr. Any occurrences of delimstr in the pathname, other than those
being used for the purpose of delimiting directories, will be replaced by replacestr

. The use of delimstr and replacestr allow full pathnames to be formatted in a
manner similar to the host operating system. In a MSDOS based implementation, the
backwards slash character (H\ H) would be used as delimstr, while the forwards slash
(Hr) would be used on a UNIX implementation and the greater-than sign ("> ") would be
used on a MULTICS or Lisp Machine implementation.

CD_delete_entry(int32 dirnum. string entryname)

Detaches a file or directory from its parent. If entryname is a directory, it need not
be empty. If entryname is null, the directory is deleted. (Note that the root directory may
not be deleted.)

CD_get_direntries(int32 dirnum,string entryname.
int32 &entry_count)

Returns the contents of a directory that match entryname. If entryname is null,
return all of the contents. entry _count is set to the number of entries returned.

CD_rename_entry(int32 dirnum.
string old.name.string newname)

page 12

Simson L. Garfinkel & J. Spencer Love

Renames an entry in a directory and rewrites the entry's fileheader.

CD_undelete_entry(int32 dirnumber.atring entryname.
int32 version.bool aasign_new_filenumber)

MIT Media Lab

Reattaches a entryname to its parent directory. Undeleting version number Oun­
deletes the most recent version of the file or directory with this name. The entryname
must have been previously deleted (detached) with CD_delete_entry. If
assign_new_f ilenumber is true, a new filenumber will be assigned to the undeleted file;
otherwise, the original filenumber will be used.

This operation searches through previous versions of the directory for the requested
entry and reenters the entry into the directory.

CD_name_to_file_number(string pathname. int32 context.
int32 &containing_dir. int32 &filenumber,
string downdir. string updir, bool updir_is_a_dir)

Resolves relative or absolute CD pathnames to directory number and file number.
Allows the use of arbitrary down directory and up directory notations, including whether
the up directory identifier is a directory (for example, the directory N .. N in the UNIX
operating system) or a delimiter (for example, the N <" delimiter in the Multics operating
system).

CD_get_fileinfo(int32 dirnum, string filename,
int32 file_version, int16 returned_structure_version)

Returns an info-structure on the contents of a given filename in a given directory.
Specifying version "O" returns info on the most recent version. Differing return structures
are provided; in particular, a version is supported which can be derived on the basis of
information stored in the directory, eliminating the need for a seek to the fileheader.

CD_destroy_file(int32 dirnum,string cd_filename.
int32 version)

Destroys all information associated with the given filename in the given directory.
This operation is performed by the overwriting of previously recorded blocks. Used for
destroying sensitive information. If version number is 0, all versions of the file are
destroyed, otherwise only that version is destroyed. If cd_f ilename is blank, the directory

page 13

Simson L. Garfinkel & J. Spencer Love

is destroyed.

MIT Media Lab

6.1.2. Calls for use with files

The following functions are primarily for dealing with files on the CD as files.
While most calls, like as those above, take as arguments a directory number and a entry
name, these calls are more concerned with the side effects on the entry names themselves,
rather than on the directory.

CD_copy_file_to_cd(string native_filename,int32 dirnum.
string cd_filename,bool start_on_next_block,
bool preserve)

Copies a file from the native file system to the CD file system. If
start_on_next_ block is true, the contents of the copied file start on a block boundary
(important for digital music and video applications). H preserve is true, the file is copied
with the same modify times and ownership as existent on the native multiple-write file
system.

CD_copy_file_from_cd(int32 dirnum,string cd_filename.
string native_filename,int32 version,bool preserve)

Copies a file from the CD file system to the native file system. Specifying version
"O" gets the most recent version. If preserve is TRUE, then modify times, ownership and
protections on the file are restored as they were on the CD, if possible.

CD_fopen(int32 dirnum,string cd_filename,string mode)

Opens a stream for reading or writing files on the CD. Note: Only one write stream
may be open at a time.

CD_fread(CDFILE *Cd.string buffer,int32 nchars)

Reads from a stream opened with CD _f open.

CD_fwrite(CDFILE *cd,string buffer,int32 nchars)

page 14

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

Writes to a stream opened with CD_fopen.

CD_fseek(CDFILE *cd,int32 offset,int16 relative)

Position a read-stream relative to the beginning, end or current position in a CD
file.

CD_fclose(CDFILE *cd)

Close a read or write stream.

The Programmer's Interface currently lacks primitives for creation and deletion of
links addnames, and the maintainence of property lists.

6.2. 11ultiple Partitions and embedded file systems

CDFS supports the allocation of a part of the media outside the file system. There
are two ways to allocate media outside of the file system; both allocation schemes can only
take place at the time of the media's first use. Both schemes take advantage of the fact
that the first block on the media contains an End-Of-Transaction block which is used to
determine the usable blocks of the media.

In the first preallocation scheme, the first block on the media is written so as to
restrict CDFS from writing past a given block by specifying a modulo in the pointerdes
array smaller than that of the physical media; this effectively restricts CD files to, for ex­
ample, the first half of the disk. The remainder of the disk is available for extra-CDFS
use.

An alternative approach is to embed the preallocated space within a file resident in
the file system. This scheme makes use of the next_eot_location field in the first EOT
on the disk. If this pointer is null, then the entire media is searched for the last end of
transaction block while mounting. If it is not null, then only the part of the media be­
tween the end of the first transaction and the end of the media is searched.

CDFS always writes to the first unwritten, unallocated block on the media. One
reason this is done is to facilitate the mount-time binary search for the last-written EOT.
If there were unwritten blocks in the area searched that preceded the end of the last trans­
action, the binary search might find them and become confused. Partitions may be placed
wherever they can be excluded from the search.

page 15

Simson L. Garfinkel & J. Spencer Love MIT :Media Lab

H some application requires the ability to do its own media management, arbitrary
size areas of the media within the first transaction can be allocated for this purpose. As an
aid to locating them, they can appear as files within CDFS.

Partitions which appear as files in CDFS can be read and written using CDFS, al­
though any block, once written, cannot be written again.

6.3. CDROM and Electronic publishing

Software and databases are currently being sold on CDROMs. In the future, we ex­
pect text and reference books to be sold this way as well. The CDROM is simply a
prerecorded CD. Using a write-once drive, it will be possible to record additional infor­
mation on the CDROM. If a CDROM is sold in CDFS format, then CDFS can be used to
annotate and update the CDROM's contents. An unmodified CDROM can be mounted
without the binary search for the last transaction, provided that the entire initial contents
of the CDROM are the first transaction, so that the first block on the media points to an
end of transaction block followed by an unwritten block.

A book could be sold in CDROM format with a directory for each chapter, and
subdirectories for sections. The reader could enter "marginal notes" using a DRAW drive.
The directory tree would constitute an outline of the ·book, and CDFS links could be used
for cross references. If special software could use the book more effectively, demonstrate
points or animate examples, programs for a dozen different operating systems and
digitized images could be stored on the CD as well. . This barely comments on the pos­
sibilities of electronic publishing. -

6.4. Garbage Collection

As a CDFS updates media, a certain amount of garbage is generated, in old ver­
sions of files, directories~ and transactions. Eventually, the disk will fill up. In some cases,
little compaction will be possible be~ause new files have been created rather than updat­
ing old ones. In other cases, where CDFS will have been used to emulate a multiple-write
file system, a great deal of compaction will be possible by copying the most recent version
of every file to a blank disk. While compacting a CD containing many megabytes of active
files will take time, it should be possible to access and even update the hierarchy while the
files are being transferred.

page 16

Simson L. Garfinkel & J. Spencer Love

7. Current areas of development

7.1. Fragmented Files

MIT Media Lab

The existing CDFS implementation does not yet implement fragmented files, but
formats for them have been defined. Fragmented files permit multiple files to be open for
update concurrently. Without fragmentation, implementations must either restrict the
number of open write files to one or buffer write operations on a file-by-file basis.

Between the file header and the file's contents, fragmented files contain a file map
which describes the physical location of the data contained by the file. The
f ile_location field of the fileheader points to the file map instead of the file contents.
The file map is a contiguous array of fragment descriptors which describes the mapping of
valid data stored on the disk to data in a logical file. Data is stored in fragments, or
strips, of valid data, which reside in arbitrary locations on the media.

Each fragment descriptor consists of three items: the position in the file where the
fragment begins, the number of bytes in the fragment, and a cdblock pointer to the frag­
ment, or strip, on the media. The strips may logically overlap but the data must be iden­
tical in regions of overlap. Overlap permits retaining copies of valid data which have al­
ready been written. Not every lo.gical byte of a fragmented fi1e need be mapped to a physi­
cal location on the disk, but an error condition will be raised if one of these bytes is at­
tempted to be read.

Fragments occupy real space on the disk. Blocks containingJragments do not begin
with any special header. Although the implementation should be able to read files with
fragments as small as one byte, it should, for efficiency, never write fragments smaller
than at least several thousand.

Fragmented files can save space on the storage media in applications requmng
minor updates t'o large datafiles. H one byte changed in a file a million bytes long, a new
fragment of minimum size can be written out. rather than rewriting the entire file.

A contiguous file can be rewritten as a fragmented file simply by writing out a new
file header and a file map. The old filecontents are used as if they were one strip. It may
not be possible to convert a fragmented file to contiguous file, since the fragmented file
may contain mapping for a larger logical space than exist on the media.

Fragmented files have not been used to store directories~ since there is a substantial
performance penalty associated with fragmented files, especially if there are many tiny
fragments. Fragmented files cannot be used to play back audio or video in real time,
owing to the interruptions caused by seek operations between strips.

If a single byte in the middle of a large fragment is modified, a new fragment must

page 17

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

be generated to hold the modified byte and some amount of surrounding information. The
old fragment is split into two fragments. This takes advantage of the cdblock pointer's
ability to point to any byte on the media, so that a strip can begin in the middle of a
sector. The data of the new fragment and a new file map is written to the media, with one
modified and two additional fragment descriptors.

CDFS will provide primitives sufficient to read and write files with holes in them.
Primitives will be written to insert and delete data from within files, changing the position
of subsequent bytes in the file, in addition to the traditional read, write and positioning
functions.

7.2. Addnames

Each file or directory has a single location in the hierarchical directory tree. Names
in directories can be up to 48 characters long. This permits long and descriptive names for
files, and ensures that names from most other systems will fit without exceeding CDFS's
length limit. Pathnames can be much longer, since they are a delimited concatenation of
directory names and a file name.

Computer users often view viewed these characteristics as limitations. It is often
helpful to have a file or directory appear at more than one location, transforming a tree
structured hierarchy into a network. Long names may be descriptive, but they are tedious
to type; short names ease manipulation of the file system. Files or directories may have
more than one purpose. Having a. single name for a file can be very restrictive.

CDFS addresses these problems with two mechanisms: addnames and links, neither
implemented in the prototype implementation. Both constructs appear in other file sys­
tems, so their presence in CDFS makes it possible to back up addnames and links from
those file systems.

An addname is an additional name on a file or directory. After a file or directory is
created with one name (the primary name), additional names can be added. Names can be
deleted, but there must always be at least one name associated with any given file. CDFS
programmer's interface calls behave in the same manner regardless of which addname of a
file is specified. Renaming an addname does not affect the other addnames of that file.
Deleting a file with addnames deletes the file, whether the supplied name was the primary
name or an add name. If the primary name is deleted, an addname is promoted to
primary name. All of a file's addnames are confined to the same directory. A particular
name can appear only once inside a directory, and can be associated with exactly one file.

Addnames are stored in a CDFS directory as entries which have a filetype of Ad­
dname. Addnames are resolved by searching the containing directory for a non-addname
entry with the same filenumber as the addname. Information such as the file version num­
ber and file location is found from the primary name's entry.

page 18

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

The primary name's directory entry contains a count of its addnames. When the
directory is listed, this can be used to allocate storage to hold all the addnames, and the
addnames can be filled in on a second pass of the directory array. The directory array is
kept sorted in character collating sequence order for binary searching. H an addname
count is zero, then that file has no addnames. We decided not to link the names together
with pointers or array indices as this complicates the maintenance of the directory, re­
quires buffering the entire directory to modify it, and provides opportunities for inconsis­
tent directories.

Only the file_name, modify_time, file_number and file_type directory entry
fields of an addname are relevant.

7 .3. Soft Links

A link is an entry in a directory which points to another entry (called the Target)
possibly in another directory. CDFS establishes a generalized link concept known of as a
Soft Link.

Soft links consist of an entry in the containing directory and a fileheader, in which
the file_info_ structure of the fileheader has been replaced by a soft_link_info_
structure. (see figure 9-4) The soft link Target information consists of two or three parts: a
directory number, a character string, and an optional version number. The directory num­
ber is the starting point for the resolution of the character string. When the directory
number is 1 (the root directory), the soft link corresponds to Nsymbolic link" found on
other systems. The directory number is intended to allow pathnames to be relative either
to the root or to the containing directory, however any directory number can be used.

The character string consists of a filename, or a delimited concatenation of file and
directory names. There are two delimiters, which are reserved non-ASCII characters not
permitted in file names. The first delimiter, called "down," (octal character 0376) in­
dicates the end of a directory name. The second delimiter, called "up," (octal character
0375) indicates that the next name is to be resolved in the directory containing the direc­
tory or file name that the up character terminates. If the name is a link, the link target is
first determined recursively. If an "up" occurs at the beginning of the character string, the
directory containing the initial directory is used. If an "up" occurs immediately following
an "up," the directory containing the currently selected directory is used.

If a version number is specified as part of the soft link it may be necessary to search
for the requested version once the Target is located.

Soft links may be created with nonexistent targets.

Soft links can designate pathnames on other volumes. The volume name is stored
in the property list.

page 19

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

A second type of link, termed "Firm Links," is currently under consideration. A
Firm Link would specify a directory number and a file number, rather tha.n to a directory
number and a name. It would be unaffected by renaming the Target.

page 20

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

8. Summary
The Compact Disk File System (CDFS) has been developed by the MIT Media

Lab to allow for the immediate exploitation of DRAW devices as they become available.
The CDFS was designed to provide the useful capabilities of multiple-write file systems on
write-once media. The CDFS also provides new functioi:iality as a consequence of the
write-once nature of the media. Specifically, it provides for a complete history of every file
and the ability to recover files after they have been "deleted H.

CDFS stores all information pertaining to a given volume on the volume itself. No
directory information need be stored on associated multiple-write media, however perfor­
mance may be enhanced by caching information on multiple-write device. This permits a
file system resident on a CD to be moved from one site to another by merely moving the
disk from one drive to another.

CDFS is proposed as a standard so that transportability of CDs can transcend
operating systems. Any CD written under any operating system is readable under any
other operating system equipped with CDFS and a compatible drive. The standard is a
useful superset of all commonly available file systems and not a subset interchange stan­
dard. CDFS stores most information about file contents and attributes that are main­
tained by most operating systems including UNIX, MULTICS, VMS, VM/CMS,"MSDOS,
TOPS-20, and many others. This permits, for example, UNIX hierarchies and VM/CMS
minidisks to be copied to the same CD and accessed using either system.

CDFS maintains the appearance of a traditional read/write, hierarchical file sys­
tem, with directories, files, file property lists and links. The standard also includes provi­
sions for coherent extension. Certain aspects of file systems which are inconvenient to
model have been omitted, notably permitting the same file to reside in more than one
directory at the same time (such as "hard linked" files in a UNIX file system).

CDFS uses a "layered" approach to implementation. Specifics such as block size,
block addressing, and device capacity are relegated to a "driver layer" which need provide
a small number of standard primitives to the CDFS. Driver layers can be written to allow
use of the CDFS with any write-once media, including DRAW digital video disks and
punched cards.

Under normal operation, CDFS never overwrites the contents of a block, although
primitives are provided for the deliberate destruction of data. Instead, CDFS continually
writes new versions of files, directories and other volume information. Normally, the
"current" or most recent version is automatically selected and updated. Earlier versions of
files and directories can be quickly retrieved.

CDFS does not require the preallocation of separate data and directory partitions
on the CD. The CD is treated as a stream of blocks which are written sequentially. Thus,

page 21

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

at all times, the CD consists of two regions: blocks that have been written and -virgin"
blocks that have not been written. A file system which preallocated space would either
unreasonably restrict the user (who might have run out of directory space while ample file
space remained) or require complex overflow area management. Procedures for the par­
titioning of the CD and the addressing of data (such as music or preallocated files) located
outside of the file system partition but on the same CD have been established. An­
ticipated low-cost hardware which cannot write to any addressable block, but only ap­
pend to the end of the modified area can be used with the CDFS (although the operation
of destroying data or writing to an alternate partition cannot be supported on such a
drive).

While CD drives have high transfer rates, they have long seek times. With this in
mind, the CDFS has been designed to minimize the number of seeks required to find any
file on a vo]ume. Mounting a CD may require up to twenty seeks to locate the end of the
written block stream. Once a CD is mounted, any file's current version can be located in
at most one seek per level of depth in the directory tree. An additional seek may be re­
quired to read the contents of the file.

CDFS stores a substantial amount of redundant information on the disk, allowing
accurate reconstruction of a volume after media failure or partial update.

CPFS does not require that files, directories, or other volume information be writ­
ten in any particular order on the CD. Very little information need be cached in a
minimum-memory implementation _, although such an· implementation will be forced to
write these elements in a particular order. This ordering is the ordering chosen in our im­
plementation. Other orderings might be preferred if significant buffer memory is avail­
able.

page 22

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

9. Notes on CDFS data structures
The End-Of-Transaction, Directory List and Fileheader structures all contain three

distinct means of validation. These are an identifying constant string, a checksum and a
self-referential pointer. The concurrent use of all three validating methods minimizes the
chance of a mis-identification. Validation is only required to detect and recover from
media failure.

All CDFS timestamps are 64 bit numbers representing the number of s~conds (not
counting leap seconds), since 12:00 Midnight, January 1, 1901 GMT.

When a structure containing a checksum is taken as an array of int16 quantities
and summed, modulo 65536, the total must be zero for the checksum to be valid. The oc­
curance of checksum fields in the structures allows for the sum to be zero.

Elements in the directory list are sorted by directory number, root directory (1)
first. Directory numbers are the file numbers of directories. File numbers are serial num­
bers, assigned sequentially.

Note that the directory list, directory array and filemap array are organized so that
they need not fit in memory if memory is a scarce resource (and time is cheap). Fixed size
entries were used to facilitate binary searching of these arrays.

9.0.1. Notes nn End-Of-Transaction

Encryption_standard is a site-dependent reserved space to allow for the denotion
of encrypted disks. The field is ignored in the Media Lab's CDFS implementation.

Owners_name is a NULL terminated string. The length of the string may be cal­
culated by subtracting the offset of owners_name in the structure from eot_length.

9.0.2. Notes on Directory List

The directory list array is stored sorted by directory number.

The modify_ time of a directory is the most recent modification time of any of its
contents.

The contained_bytes of a directory is sum of the sizes, in bytes, of all contained
files plus the contained_bytes value for all contained directories. In the case of frag­
mented files, file size refers to the number of valid data bytes, not the highest valid data
address.

Modify_ time and Contained_bytes are calculated when Transactions are closed.

page 23

Simson L. Garfinkel & J. Spencer Love MIT Media Lab

9.0.3. Notes on Directory Structures

Directory elements are stored in a packed array following the directory _info
structure. The directory _info structure is pointed to by the directory's fileheader.

Directory entries are stored with 48 characters reserved for the entry name. These
entries are padded with the NULL character but need not be NULL terminated. The octal
characters 000 (NULL), 0376 (down) and 0375 (up) are reserved and may not be part of
an entry name.

Since the header _location for a directory _entry that is itself an entry is meaning­
less, a location of NO" is used. The location of the contained directory must be found
through the directory list.

Entries are stored sorted alphabetically on file_name for fast lookup.

9.0.4. Notes on Fileheaders

access_info_offset, backup_info_offset, file_info_offset,
site_info_offset and property_list_offset are figured as byte offsets from the start
of the f ileheader_.

ACCESS_ INFO_ VERSION # 1 defines file access protections as in the UNIX file
system .2 Access control is not enforced by CDFS, since anticipated use is by individuals
with physical access to the media. Enforcement policy is to be set by the site and im­
plementation. Most schemes for access control can be mapped onto the UNIX scheme,
but others can be implemented. For backup purposes, additional information can be
stored in the property list.

Backup_info_. backup_pathname denotes the location of the file referenced by the
fileheader when the fileheader is written. If any containing directory is renamed or moved,
backup_pathname will be invalid. f ilename_off set is the byte-offset of the filename in
backup_pathname.

The property list begins with the property _list_info_ structure. If the offset to this
structure is 0, then there is no property list. A property list consists of a group of two-

2In the UNIX file system, every file is assumed to have an owner and belong to a group. Access for owner,
group and world are denoted by three bit fields in the access_inf o_. f ile_access field. Bits 0-2 denote
world access, 3-5 denote group and 6-8 denote world. In the case of files, bit O denotes permission to execute
the file, bit 1 denotes permission to read the file and bit 2 denotes permission to overwrite the file. In the
case of directories, bit O denotes permission to reference a contained entry in the directory , bit 1 denotes
permission to list the directory and bit 2 denotes permission to make a change to the structure of the
directory.

page 24

._ . .
Simson L. Garfinkel & J. Spencer Love MIT Media Lab

element ASCII records. It is used to denote a set of user-definable properties associated
with the file.

Properties may be flags, such as ·BITSTREAM" or ·cLASSIFIED", in which
their property_ value_len is 0. Values, if specified, must be in ASCII, to eliminate
problems associated with multiple binary and floating point representations across proces­
sors.

The following properties are at the present time defined:

BITSTREAM

PARTITION

RECLEN nnn

UNIT

Denotes that the information stored in the file is to be taken as a
stream of bits and not as a stream of characters. This has relevance on
systems whose byte size is not 8 bits.

When BITSTREAM is in effect, the UNIT property has meaning.

Denotes a file whose contents are allocated outside of CDFS.

Record size of the file, expressed in characters.

Size of the byte of the machine that created the BITSTREAM. On a
PDP-10, this would have the value of "36".

VOLUME-NAME For use with soft links, denotes a link to a file resident on another CD.

page 25

" -' Simson L. Garfinkel &. J. Spencer Love

Figure 0-1: File Type definitions

#define FILE_ TYPE 1
#define DIRECTORY_TYPE 2
#define SOFT _LINK_ TYPE 3
#define FRAGMENTED_TYPE 4
#define FIRM_LINK_ TYPE 5
#define ADDNAME_TYPE 6

Figure 9-2: End Of Transaction structure format

typedef struct {
int32 modulo_of_value;
int16 bits_in_value;
int16 pad;

} pointerdef;

#define EOT_ID_STRING_LEN 8
#define EOT_ID_STRING "\237\002\CDFS\255\000"
#define EOT_VERSION 1
#define CDFS_IMPLEMENTATION_ID 1

typedef struct {
char id_string[EOT_ID_STRING_LEN];

int16 eot_version;
int16 eot_length;

cdblock

int16
int16

cdblock
cdblock
cdblock

int64
int32
int64
int64
int32
int32

.eot_location;

eot_checksum;
CDFS_implementation_id;

current_dir_list;
previous_eot_location;
next_eot_location;

filesystem_creation_time;
trans_number;
trans_start_time;
trans_end_time;
files_written_on_trans;
dirs_written_on_trans;

MIT Media Lab

page 26

Simson L. Garfinkel & J. Spencer Love

int32 next_free_file_number;

pointerdef pointerdea[16]:

int16
char
char

} eot_format_

typedef struct {

number_of_used_pointerdefs;
encryption_standard[32];
owners_name[variable];

int32 modulo_of_value;
int16 bits_in_value:
int16 pad;

} pointerdef;

MIT Media Lab

page 27

.. , f

Simson L. Garfinkel & J. Spencer Love

Figure 0-3: Directory List format

ldefine DL_ID_STRING_LEH 8
ldefine DL_ID_STRIHG "\237\001CDFS\260\000"
#define DIR_LIST_VERSIOH 1

typedef struct {
char id_string[DL_ID_STRING_LEN];

int16 dir_list_version;
int16 dir_list_header_length;
cdblock dir_list_loc;

int16 dir_list_checksum;
int16 pad;

cdblock prev_dir_list;

int32 dir_list_entry_count;
} dir_list_;

typedef struct {
int32
cdblock
int32
int64
int64
int16
int16

} list_element_;

dir_number;
header_location;
containing_dir;
modify_time;
contained_bytes;
header_size;
pad;

Figure 9-4: Directory format

#define DIRECTORY_INFO_VERSION_ 1
typedef struct {

int32
int32

int32

directory_info_version;
directory_info_length;

directory_entries;
int32 directory_entry_size;
} directory_info_;

#define MAX_COMP_LEN 48

MIT Media Lab

page 28

... ' I> • Simson L. Garfinkel & J. Spencer Love

typedef atruct {
char file_name[MAX_COMP_LEH J:
cdblock header_location;
int64 modify_time:
int32 file_number;
int32 file_size;
int32 file_version;
int16 file_type;
int16 header_size;
int16 addname_count;
int16 pad;

} dir_contents_;

Figure 9-5: Fileheader structure definition

#define FH_ID_STRING_LEN 8
#define FH_ID_STRING "\237\001\CDFS\266\000"

#define HEADER_VERSION 1
typedef struct {

char id_string[FH_ID_STRING_LEN];
int16 header_version;
int16 header_length;

int16 header_checksum;
int16 fileheader_length;

cdblock fileheader_location;

int32
int16

int16
int16
int16
int16
int16

f ile_number;
file_type;

access_info_offset;
backup_info_offset;
file_info_offset;
site_info_offset;
property_list_offset;

} fileheader_;

#define ACCESS_INFO_VERSION 1
#define GROUPLEN 32
#define OWNERLEN 32
typedef struct {

MIT Media Lab

page 29

Simson L. Garfinkel & J. Spencer Love

1nt16
int16

char
char
int16

accesa_info_veraion:
accesa_info_length;

file_owner[OWNERLEN);
file_group[GROUPLEN];
file_access;

} access_info_ ;

I* Directory component delimiter in backup_pathname *I
#define DOWN_DIR_CHAR 0376
#define UP_DIR_CHAR 0376

#define BACKUP_INFO_VERSION 1
typedef struct {

int16 backup_info_version;
int16 backup_info_length;

int32 containing_directory_number;
cdblock previous_version_location;
cdblock previous_eot_location;
int16 filename_offset;
int16 previous_version_header_size;
char backup_pathname[variable];

} backup_info_;

MIT Media Lab

Note that backup_pathname will be wrong if any containing directory
is subsequently renamed.
*I

#define FILE_INFO_VERSION 1
typedef struct {

int16 file_info_version;
int16 file_info_length;

cdblock file_location;
int32 file_length;
int64 write_time;
int64 creation_time;
int32 file_version_number;

} file_info_ ;

page 30

... .
,: '-f .. Simson L. Garfinkel & J. Spencer Love

/* If block ia a soft link. use soft_link_info_
* to decode file_info *I

#define SOFT_LINK_VERSION 1
typedef struct {

int16 soft_link_info_version;
int16 soft_link_info_length;

int64 creation_time;
int32 target_dir;
int32 target_version;
char target_name[variable];

} soft_link_info_;

#define SITE_INFO_VERSION 1
typedef struct {

int16 site_info_version;
int16 site_info_length;

char opsys[16];
char opsys_version[16];
char site_name[variable];

- } si te_inf o_ ;

#define PROPERTY_LIST_VERSION 1
typedef struct {

int32 property_list_version_;
int16 property_list_length;

int16 property_list_entries:

} property_list_info_;

typedef struct {
int16 property_name_len;
int16 property_value_len;
char property_name[variable];
char property_value[variable];

} property_list_record;

MIT Media Lab

page 31

... '
' ~ I '1 • Simson L. Garfinkel & J. Spencer Love

Figure 9-6: File Map format for fragmented files

#define STRIP_INFO_VERSION 1
typedef struct {

int32 strip_info_version;
int32 strip_info_length;

int32 strip_count;
} strip_info_;

typedef struct {
cdblock loc; I* location of first byte in strip. *I
int32 valid_chars; I* number of valid bytes in strip *I

MIT Media Lab

int32 ordinal; I* byte offset in logical file of strip *I
} fragmented_des;

page 32

') ,, -., ' - Simson L. Garfinkel & J. Spencer Love

References

[1] Sony Coorporation.
Operating Instructions.
Compact Disc Compact Player D-5 , 1984.

[2] David Ranada.

[3 1
l J

[4]

[5]

Compact Disc Digital Audio Systems.
Computers 8 Electronics 21(8), 1983.

LaserData Inc., Cambridge.
Product Description.
Laser Data PC TRIO, 1985.

Elliott I. Organick.
The Multics System: An Examination of Its Structure.
MIT Press, 1972.

Philips Subsystems and Peripherals Division.
Product Specification.

MIT Media Lab

Compact Disc Read-Only-Memory Driver CM 100/25 and CM 100/90, 1985.

[6) M. K. McKusick, W. N. Joy, S. J. Leffler, R. S. Fabry.
A Fast Fi1e System for UNIX.
Berkeley UNIX documentation (4.2), 1983.

page 33

