
T
he attack reached its peak at
approximately 4:30pm. I was sit-
ting in my office at Vineyard.
NET, an Internet service provider
on Martha’s Vineyard, typing at

a shell window connected to my ISP’s
primary Web and mail server. Sud-
denly, the computer printed something
on my screen that was tremendously
disturbing. I had asked the computer
to list the files in the current directo-
ry. The computer had told me that it
was unable to do so:

% ls
No more processes
%

This error message is printed by the
C-shell. It means that the UNIX oper-
ating system has
so many process-
es running that it
cannot create a
new process for
the ls command
to execute. This is
profoundly bad:
practically every-
thing on UNIX —
from starting up
new login ses-
sions, to receiving
mail, to the hourly
maintenance pro-
grams — requires
that a new process
be created. I hadn’t
seen this particular
error message in
nearly ten years. Back in 1988, when
I started writing my book Practical

UNIX Security (co-authored with
Purdue University professor Gene
Spafford), I mounted a bunch of
attacks against my UNIX system. We
called one a process overload attack —
a simple programmed attack in which
one program repeatedly spawns off
new processes. The program that exe-
cutes the attack is just five lines long:

main()
{
while(1)
fork();

}

Process table attacks can be deadly
to a UNIX system. The attack saps the
computer’s CPU power by constantly
creating more processes, each of which

is, itself, trying to create more pro-
cesses. At some point, all of the slots

in the process table are filled up, and
no more processes can be created.
Process table attacks can be very dif-
ficult to fight while they are in
progress. That’s because in order to
kill a process, you need to know its
process ID, and the only way to find
a process ID is by using the ps com-
mand — which itself requires the
ability to spawn off yet another
process. Instead, the standard proce-
dure is to reboot the computer and
find the attacker.

But the attack on Vineyard.NET
didn’t look like the attacks that I had
launched against myself back in
1988. For starters, the main Web serv-
er had plenty of CPU cycles to spare.
It just didn’t have any processes left.
Something else was going on. 

I typed ls a few
more times; one
out of four times
the command actu-
ally executed prop-
erly. New process-
es are created and
destroyed all the
time on a UNIX
system. What was
happening, I real-
ized, was that every
few times I typed
the ls command 
I was fortunate
enough to have my
ls process start up
before the attacker
grabbed the slot
that was just freed.

I decided against rebooting. Though
that would solve the problem in the

JULY 199946

NETWORK-BASED PROCESS TABLE ATTACKS
By Simson L. Garfinkel

Putting A Finger On It: The attack generates so many processes that eventually all
the slots are filled up and no more processes can be created.



short run, it wouldn’t tell me the
source of the attack, or how it was
being mounted. No, I needed to figure
out where the attacker was coming
from, how the attack was being
launched. Only after learning this
could I then patch the hole.

I used the ps command to see what
processes the computer was actually
running. The processes created by the
attack were obvious: our Web server
was running hundreds of copies of
our finger daemon. And the timing
was interesting too. Each process had
been started exactly 10 minutes after
the previous one. Closer examination
of our finger daemon revealed that
the program had no time-out — the
attacker was simply opening up con-
nections to port 79 of our Web server
and then letting those connections sit.
Each connection created a new pro-
cess. Indeed, the attack had been going
on all day; we had just noticed it when
our process table had been exhausted. 

Next I used the netstat command
to see where the attack was coming
from. All of the TCP/IP connections
to port 79 were coming from the same
IP address. As it turned out, the IP
address was from one of our own
users. We checked with our terminal
server and found the name of the
account that was being used. For the
purpose of this article, we’ll call the
account “Fred”. 

I called my partner Eric Bates, the
co-owner of Vineyard.NET, into my
office. Eric was immediately suspi-
cious. Eric knew Fred — Fred was a
novice user who had no interest in
attacks. Perhaps Fred’s account had
been stolen by someone else. Or per-
haps it was Fred’s teenage son. So we
tried calling Fred, but the phone was
busy. (Fred, like most people on Mar-
tha’s Vineyard, has just one phone
line.) With the problem diagnosed,
we decided to remediate: we killed all
of the finger processes and disabled
the finger daemon until we could find
the source of the problem. Finally, we
killed Fred’s dialup connection and
telephoned his home. 

Suffice it to say, Fred was confused

when we called him. He didn’t realize
that his connection to the Internet
had been blown away. He didn’t
understand how we could be calling
him while he was online. No, he said,
his son hadn’t been using the Inter-
net. Instead, he had been trying to
use some Web site’s chat service —
and the chat service had been giving
him problems. 

We never were able to figure out
how Fred had managed to attack our
system and bring it to its vir-
tual knees. Perhaps a piece of
buggy chat-system shareware
was opening up connections.
Or perhaps something about
Fred’s computer was just
batty. In any event, we could-
n’t ask Fred not to go to that
site anymore. We had to fix
the problem ourselves. 

The fix for finger was quite
simple: we added a 10-second time-
out to the finger daemon. This imme-
diately solved the problem of the
buggy chat software — with the 10-
second time-out, we would be termi-
nating the finger connections much
faster than Fred’s buggy computer
was initiating them to us. A better sol-
ution, we knew, would be to modify
the inetd daemon so that it would-
n’t spawn off new processes if the
system was close to some fixed limit. 

A few days later, we noticed that a
whole bunch of services, including
logging, had stopped working on our
main Web server. Apparently these
processes had died when they them-
selves were unable to create child pro-
cesses. Because we had never rebooted
our main computer after the attack,
the processes that had died during the
attack had never been restarted. 

The next day, I did a careful invento-
ry of all of our network services and
found that many of them were suscept-
ible to the same attack as fingerd .
Indeed, the majority of network dae-
mons will set up TCP/IP connections
and create new processes, no matter
how many processes are already run-
ning on the system. Most of these
programs either don’t have any time-

out at all, or else they time-out after a
relatively long period of time. An
attacker could exploit this by creating
new network connections and proces-
ses at a faster rate than the system
would time-out the old ones. Among
the vulnerable network servers were
ftpd, telnetd, rshd, rlogind,
rexecd, uucpd, nntpd, fingerd,
identd and even sshd . This pre-
sented us with a quandary. On the
one hand, we wanted to publicize the

attack, because inetd and other net-
work programs needed to be defend-
ed against it. At the same time, the
attack was hugely significant: every
version of UNIX, and practically every
network service, was vulnerable. 

Instead of posting the attack to a
mailing list such as BUGTRAQ, I
decided to follow a more “responsi-
ble” route. I called up my co-author
Gene Spafford at Purdue University
and told him about the attack. Spaf
told me that he would have a student
replicate it. Then, if he thought that
the attack was serious, he would noti-
fy FIRST, the Forum of Incident
Response and Security Teams (http://
www.first.org). The FIRST mailing list
is monitored by both people who deal
with security problems and with the
manufactures of operating systems. 

Spaf actually put two students to
work on the task: Tom Daniels and
Diego Zamboni. At first, they had prob-
lems replicating the attack. The obvi-
ous way to replicate it is to write a
single program which creates hun-
dreds of connections to the target
machine. This approach doesn’t work,
though, because the UNIX kernel lim-
its the number of TCP/IP connections
that a single process can create. To get

JULY 1999 47

Instead of posting the attack to a

mailing list such as BUGTRAQ, I decided

to follow a more ‘responsible’ route.



around that problem, I wrote an “ex-
ploit” script which circumvented this
limit — the script forked every sixty
seconds. The child processes would
spin off a hundred connections to the
target machine and wait. The parent
process would keep spinning off new
children. After 20 minutes, more than
2000 TCP/IP connections were open
between the two machines, and the
target machine was helpless. 

As it turned out, Spaf’s students had
figured out the problem and had writ-
ten an attack program similar to mine.
Once it was working, the students
discovered another, related security
problem — the attacking system often

crashed as well. It turns out that the
Berkeley TCP/IP stack doesn’t handle
thousands of simultaneous connec-
tions between two systems, especially
when one of the systems suddenly
crashes. 

A week after I told Spaf about the
problem, he sent out an encrypted
message to the FIRST mailing list.
(The mailing list is encrypted because
of the sensitivity of its messages.) I
sent e-mail to a UNIX vendor that I
work with from time-to-time. Then
Spaf and I moved on to other projects. 

As the months passed, I kept think-
ing about the process table attack I
had discovered. I had seen a lot of
other people get credit and publicity
for discovering attacks. I kept think-
ing that perhaps I should publicize
this attack and grab some credit for
myself. But I never found a good time. 

In February 1999, I had an unrelat-
ed security problem with a version of
UNIX I was using. It was a severe
problem, and it happened with a new
release of the vendor’s operating sys-
tem. As it turned out, it was the same
vendor that I had alerted to the process
table attack the year before. Since the

new release had just come out, I
checked it to see if it was still vulner-
able. It was. 

One of the most frustrating things
about being a computer security pro-
fessional is watching the behavior of
software vendors. Time and time again
companies ship products with known
security problems or fail to fix prob-
lems when they are brought to the
company’s attention. Often, this frus-
tration is made worse by the propri-
etary nature of most UNIX operating
systems — because the source-code is
secret, even if a customer knows that
there is a security flaw, he is helpless
to fix it (or hire somebody else to fix it).

One of the
reasons that
FreeBSD, Lin-
ux, and other
Open Source
operating sys-
tems are pop-
ular among

security professionals is that these
operating systems are free from the
slackness of the vendors. If you know
about a security problem, you can fix
it. Hand-in-hand with the growth of
free operating systems has been the
growth of “full-disclosure” mailing
lists, such as BUGTRAQ. People use
these lists to publicize security flaws
— no matter what the consequences
— under the theory that it is better to
discuss a flaw in public than to send
it to the vendors and let them forget
about it. 

In February 1999, I decided to
break my silence on the process table
attack. I took the letter that I had writ-
ten for FIRST and sent it to the RISKS
Digest, the ACM forum on computer
related Risks that is moderated by
Peter Neumann. At the end of the
posting, Peter wrote an editorial note
saying that I had told him of the vul-
nerability nearly a year before, that
we had notified the vendors, and they
had done nothing. A journalist who
follows the RISKS digest saw the post-
ing and wrote an article about it for
Inter@ctive Magazine. 

I expected that there would be a

fairly loud outcry following the publi-
cation of the flaw. I thought that some
people would chastise me for making
it public, before the vendors had a
chance to fix the problem. Instead, I
got e-mail from roughly a dozen peo-
ple. Half of them said that there was
nothing new with a process table
attack — this sort of attack had been
known for years. The other half said
that the inetd program already had a
defense against this sort of attack —
the optional argument “max” to the
wait/nowait field.

Now it’s true, process table attacks
have been known for years. But the
attack that I had discovered was dif-
ferent because it was network-based.
In hindsight, I should have called my
attack a “Network-based Process Table
Attack”, and not simply a “process
table attack”. 

On the other hand, the people who
said that the “max” argument in the
wait/nowait field defended against
this attack either didn’t understand the
attack, or the meaning of the “max”
argument. “Max” specifies the maxi-
mum number of processes that will be
spawned per minute for a particular
service. Max has nothing to do with
the maximum number of processes
that can be running at any given time. 

Not much has happened since
February. Most UNIX (and Linux) com-
puters on the Internet are still vulner-
able to the process table attack. The
attack can be mounted either directly
from a machine that has been already
broken into, or it can be mounted
using IP-spoofing. The UNIX vendors
have been told and don’t seem to
care. And many people in the Linux
and the Open Source community don’t
think that the problem is real. 

It’s all very discouraging.

Simson L. Garfinkel is the founder of
Vineyard.NET, an Internet service
provider on Martha’s Vineyard. He 
is also a technology columnist for 
The Boston Globe and the author or 
co-author of several books on compu-
ter security. He can be reached at 
simsong@vineyard.net.

JULY 199948

I expected that there would be a fairly loud outcry

following the publication of the [process table] flaw. 


