
AN AClClREEIEI BOOK FOR THE WORLCI WICIE WEB

SIMSON L. Gi\RFINKEL

W
ebBooK is a free~fonnat,

multiuser address book de
signed to be used with the

World Wide Web. WebBook is written in
Perl, and includes pattern-matching
technology to automatically recognize
email addresse,r;;. ann TJRT.f.l. in entripR. ann
format them properly. It can also be quite
fast. Figure 1 is the interface you'll meet
when you access WebBook, wbile Figure
2 sbows a sample run.

To run WebBook, you'll need Perl, a
Web browser that can handle forms, and
a Web Server On which to run Perl scripts.
!fyou don't have a Web server, take heart:
At the end of this article, I'll show you
how to write your own.

APRil 1996 • WEB TECHNIQUES

Web Book Backgrounder
I've been interested in computerized ad
dress books since the fall of 1984, when I
lost the leather-bound address book I'd had
for a number of years. Soddenly. I was
without the names, addresses, and pbone
numbers of all my friends, classmates, and
falnily. AmI lJec.;au~t::: I'll UCt::lI keeping all
sorts of additional information in my ad
dress book, I was also without directions to
people's houses, bank-account numbers,
and recipes for my favorite desserts.

Starting over, I realized that the logical
solution was to computerize my address
book to prevent a future catastrophe. But
every computerized address book I
looked at had a similar failing: Tbey were
all designed to store names, addresses
and phone numbers, but little more, Al·
though tbat might work for a sales exec
utive who merely needs to organize po
tentialleads, it doesn't work for me, and
it doesn't work for most people.

Plus
your own
Perl·based
web
server I

51

My solution was a free· format data
base kept in a word processor. To sep
arate each entry, I used a row of equal
signs. My text editor's string-search
capability located the names and ad
dresses of friends.

Over the years, my address book
grew. I wrote a series of emacs macros
for quickly navigating through tht: sea
of names. I wrote a program for find
ing names and printing mailing en~
velopcs. I finally wrote a full blown
application using NextStep. Called
"SBook" (and now sold by Sarrus Soft
W(lT(l), many b€'lieve it's one ofthe best
address books ever written-except
that it only runs on NextStep. The
problem with this is that I've moved
to the world of Macs, PCs, and Solaris
workstations. And these days, I am a
user of the World Wide Web, not a par
ticular operating system,

WebBook is the most recent incar
nation of my address book. By writing
it in Perl to run on a Web server, I
avoided SBook's biggest problem
platform dependence. Instead, Web
tlOOk uses a Web browser as a generic
graphical output device; HTML is the
presentation language, and HTTP is

S2

the API. 'Ibis puts a whole new spin on
the concept of"cJient/server," and I'm
expecting a lot of programs to adopt
tbis strategy in the future. (I've already
written a set of CGI scripts for per
forming UNIX system administration
using many ofthese Same ideas.) Web
Book also demonstrates many of the
ltll:huillUtlS that I'v~ learned uver the
past year for creating manageable
Perl/CGI scripts.

The full WcbBook program is over
1000 lines of Perl and contains many
features, such as the ability to bandle
multiple address books and pass~
word -protection of entries. Rather
than print tbe full WebBook here, I've
created a scaled~down op-monstmtion
version; see Listing One (listings be
gin on page 77). The full WebB oak is
available at my Web server: htt/)://vine
yard. net/sirnson/WebBook/!aq.htrnl.

Build for Debugging
The most difficult thing about creating
CGI programs is debugging them. I
got a head starr by using the Perl cgi
lib library developed by Steven E,
Brenner at Cambridge University,
Brenner's library bandIes communi-

cation between the Web server and
your CGI script, automatically un
escapes all variables and stuffs them
into a Perl associative array, and gives
your Perl scripts a uniform way of
handling both GET and POST re
quests. You can get more information
about cgi-lib at http://www,bia.carn
.ac.uklweb/form,hrml, I've Included a
subset of egi-lib in the version orWeb
Book presented here,

WebDook is written as a single
Perl script. Arguments are provided by
the standard CGI interface. A
special argument, or !laction/' is used
to specify whicb action the user wish
es to perform, If no action is specified,
WphRnnk dh:.pl~y~ ~ wplf'nrYIp mp.<;:~

sage, prints some information about
the database on the server, and dis
plays a searcb form. If WebBook is
asked to perform an action that it
doesn't understand, an error message
is returned to the Web browser.

It's easy to get lost within a single
Perl script: Wbat gets executed and
what doesn't? When Perl starts up, the
entire file is parsed; then execution
starts at the first line and moves down.
Many Perl programmers freely mix

WEB TECHNIQUES. APRIL 1996

global-variable assignments, exe
cutable code, and function defini
tions. But global-variable assignments
are performed at run time, rather tllan
compile time, which means that a
global assignment deep within the file
wiIJ not be executed until control
passes to that point.

To get around this. I've placed my
glohal-variable assignments at the
top of my Perl program; when this
block of code is executed, it runs the
main subroutine called; see Example
1. This strategy makes it easy to in
corporate WebBook into other Perl
scripts-in particular, those tbat im
plement Web servers.

Deciding What to Do
Once the CGI script starts up, it needs
to decide what to do. Most CGI scripts
Jusr do one or rwo !h!ngs-!ncremem
ing and displaying a counter, display
ing a form and performing a request
ed action, or whatever. Dut CGI scripts

such as WebBook that can perform
many different actions require a
means to tell the script which action
to perform. In my programming, each
link on the form and each Submit but
ton nn €,:i'II~h HTMT. form .9.AtS thE> (U'

tion variable to a different value. I fre
quently display HTML pages that con
tain multiple forms and submit but
tons, all of which invoke the same CGI
script but with different values for the
action parameter.

When an action can be executed
more than one different way (for ex
ample, a search for a name, or a full
text search), I use additional variables,
or subactions. For example, WebBook
has two basic actions: "search," which
causes !he program to look for match
ing entries in the database, and Hnew,"
which causes the program to create a
uew t:lllry. Tht: search actiull funher
has two subactions: "find name,"
which does a search on the name field,
and !tfull-text;" which scarchcs thc full
text of the entries.

Example 2 is HTML code tllat cre
ates three buttons that can invoke
these three choices. Clicking on any of
these buttons invokes the WebBook
eGI script and fnns thp s,nhrolltinA

APRil 1996 • WEB TECHNIQUES

&main. Inside the &main subroutine,
the rerl code in Example 3 receive.s the

action and dispatches it to the appro
priate Perl subroutine.

Building the Database
WebBook keeps its database in a Perl
nRM filf' Thi.'<. lptl< you cre~te ::'In ;::t.,,~

sociative array whose contents are au
tomatically stored in a DDM file.
(PerlS includes a more general tie
function that allows you to bind an
associative array with any kind of
database back end.) The file is opened
with the statement: dbmopen(%DB,
$ril1tahrrr;:p,()RRR); An }l~,..or.iativp arrny

53

consists of a set of (key, value) pairs.
WebBook uses the keys of the asso
dative array to SlOre the name of each
person in the database; the person's
entry is stored in the value. For exam
ple, my WebB oak entry might have an
element in the associative array with
the key of "Simson L. Garfinkel" and
the value "PO Box 41~~\nVmeyard
Haven, MA 02568".

Searching and Displaying
The heart of WebB oak is searching for
names. This is implemented with the
function do_search, which calls the
display_search_field function to dis
play the search field, conducts the
search with the find~names function,
then creates the appropriate HTML to
display the results.

Names are displayed in an unnum
bered list. Each name is displayed as a
link; click on the name to edit the en
try. Spaces in names must be escaped
to "+" characters; other special char
acters should be escaped as well. As
Example 4 illustrates, the code that
does this is quite simple.

WebBook automatically escapes the
entries' less-than characters (so that
they will not be interpreted as HTML
tags). It then catches the URLs and
displays them as real links, and catch
es the e-mail addresses and displays
them as mailto; URLs. Finaliy, it turns
the newlines into
 tags.

54

I
I

The code that itnplements these sub
stitutions use Perl's pattern-matching
and substitution capabilities; see Ex·
ample 5. These particular Perl features
are unparalleled in most other com
puter langoages, one reason why Perl is
so well suited to building CGI scripts.

editing
When users click on a name, the Weh
Book CGI is run with the action vari
aule s~t lu t:llit aml the lli:11lle variable
set 10 he the name of the entry being
edited. The do_editsuhroutine mere
ly displays the cntly nome os n text
field and the entry text inside a text
area. The actual editing is done by the
user's own browser. \\Then users finish
editing, they press the Save button.

Because users might change the
name of the entry during the editing,
the edit form needs to send the CGI
script both the new name (in the
name field) and the old name (in the
old-name field). These values are
hath read by the do_save_entry sub
routine. do_save3ntry checks that
$entry isn't too big. (Perl4 DHM mes
don't always work if the value is larg
er than 450 characters; PerlS over~
comes this problem.) The subroutine
then deletes the old entry and cre
ates the new one.

No command exists for creating a
new entry. That's because the &do_
edit function is used to create new ell-

tries-do_edit is simply invoked to
edit the entry with the name "". This
makes sense if you think of the action
variable as the selector for a remote
procedure call systme, rather than as
the name of the particular kind of
form being displayed.

Gotcha!
Well, tbat's enough of WebB oak to get
you going. But wait-if you type in
thib: b:t.:ript, put it un yuur b:tnver, anu
try to run it, it probably won't work.
Too see why not, run the UNIX tail
command (scc Example 6) on your
Web server's error log.

The problem is that most Web
servers run CGI scripts as user "no
body" cum -2). !fyour server is con
figured properly, user "nobody"
won't have acce~~ to create or modi~
fy files stored in the cgi-bin directo
ry. (By the way, when developing CGI
programs it's a good idea to keep a
window open with the tail -f com
mand running; this lets you immedi
ately catch your mistakes.)

There are a variety of ways around
this security problem. One is to make
the Perl script sum to a user specifi
cally created for maintaining the data
base. Another approach is to specify a
$database file stored in a directory
other than the Perl script. Both of
these are good ideas. Implementing
them is left as an exercise. For testing,

WEB TECHNIQUES. APRil 1996

you can set the $database file to be
"/tmp/database." Correct your per
missioos problem and try again.

Build Your Own Web Server
After using WebBook for a rew weeks,
my higgest prohlem was speed. Sure,
Perl is fast t:llUU~lJ ell M::all.:iliug

through the database. However, every
time the CGI script was run, the Web
server had to start up Q copy of Perl,

and Perl had to read and compile the
WebBook program before WebBook
could start respond to requests. On

APRil 1996 • WEB TECHNIQUES

my NcXTGtation, the total over
head was nearly two seconds.

I tried playing around with
PerIls undump facility, which
lets you "compile" Perl by
dumping a core file and pro
cessing it witb tbe UNIX un
dump program. Unfortunately,
undump is not a standard part
of UNIX, and I couldn't get it to
work on NextStep. So I took an
other approach-I wrote my
own Web server, and built it into
the WebBook program.

It turns out that writing a Web
server is rather trivial. A simple
Web server just listens on a port,
reads a request, and performs the
requested action. Usually, the re
quest is a GET for the file named
by the second argument. Thus, as
Example 7 shows, a simple (but
very insecure) Web server can be
written in just three lines.

This works because of tbe
simplicity of the HTTPprotocol.
When a Web browser (in this
case, Netscape Navigator 1.12
on a Macintosh) COllnects to a
Web server, it sends throogb
something like Example 8,
where lindex.html is the name
of the U RL being requested
the slasb that follows the host
name and everything after that.
In the case of the Vineyard.NET
web site, the Web server might
send back Example 9, followed
by the document itself.

I then wrote a wrapper for
WebBook's &main suhroutine. This
Perl script, "cgi-server" (see Listing
Two), takes as arguments the number
of a port on which to listen and the
name of a script to run. The script
binds to the port and awaits HTTP
connections. Each time it receives a
CUIUl~djuJl, it fmk.t; off d (,hild process

that receives the HTML command
(and aoy POST information), sets up
the npproprilltc environment vnri

ables, and runs &main. You may wish
to add more error checking or clean up
the Perl code.

15 cgi server worth it? Ab.solutely. It
causes the slow parts of WebBook
starting up Perl, and then reading and
C'ompiling the WE>hR()ok prnffl'71m-tn

happen before the request is received
from the Web server. And these parts
happen only once, rather than every
time a new comlection is received. After
that, everything is simply kept in RAM.

Conclusion
The World Wide Web is making it
possible to write a new generation
of clientl server programs. These pro
grams use a Web browser as a gener
ic client and HTML as a generic pre
sentation Jayer for specifying the cre
ation of buttons, text fields, clickabJe
links, and other widgets.

one comment I've heard abom
WebBook is that all my painstaking
work on the server can be done bet
ter on the client using Java. Well, that
might he true. But not every Web
browser supports Java, while even
Lynx users can access a WcbBook
database. Furthermore, writing Java
is certainly going to be more compli
cated than writing a f€'w lit1~.~ (If Pflrl
on a server. On the other hand, I can
certainly see many ways in which a
Java WebBook client could comple
ment the WebBook server-perform
ing searches on the end user's rna
cbine, perhaps, or even giving the
user a better text editor than the one
built into their Web browser. My het
is that Java programs won't replace
server-side CGI scripts, but will actu
ally work with them to minimize the
amount of information sent across
the oetwork and allow greater flexi
bility of data presentation.

In the meantime, if you think that
WebBook is neat, take a look aT the
FAQ. You'll find links for downloading
your own copy ofthe full program and
adding yourself to a mailing list for
WebBook users. Enjoy! ..,

Simson is author afPGP: Pretty Good
Privacy (O'Reilly & Associates, 1994)
and other books. He can be contacted
at simsong@l'ineYllrd.net.

55

