
VIEWPOINT

S
oftware patents threaten to
devastate America 's com-
puter industry. Patents
granted in the past decade
are now being used to at-
tack companies such as the

Lotus Development Corporat ion
for selling programs they have in-
dependent ly developed. Soon new
companies will often be bar red
from the software a r e n a - - m o s t
major programs will require li-
censes for dozens of patents, mak-
ing them infeasible. This problem
has only one solution: software pat-
ents must be eliminated.

The Patent System and
Computer Programs
The framers o f the United States
Constitution established the patent
system to provide inventors with an
incentive to share their inventions
with the general public. In ex-
change for divulging an invention,
the patent grants the inventor a 17-
year monopoly on its use. The pa-
tent holder can license others to use
the invention, but may also refuse
to do so. Independen t reinvention
of the same technique by another
person does not give that person
the r ight to use it.

Patents do not cover systems.
Instead, they cover part icular tech-
niques that can be used to build sys-
tems, or part icular features that
systems can offer. Once a technique
or feature is patented, it may not be
used in a system without the per-
mission of the patent h o l d e r - - e v e n
if it is implemented in a different
way. Since a computer p rogram
typically uses many techniques and
provides many features, it can in-

A C A | N S T
S O F T W A R E

P A T E N T S

fringe many patents at once.
Until recently, patents were not

used in the software field. Software
developers copyrighted individual
programs or made them trade se-
crets. Copyright was traditionally
unders tood to cover the implemen-
tation details of a part icular pro-
gram. It did not cover the features
of the program, or the general
methods used. And t rade secrecy,
by definition, could not prohibi t

The League for
Programming Freedom

any development work by someone
who did not know the secret.

On this basis, software develop-
ment was extremely profitable, and
received considerable investment,
without any prohibi t ion on inde-
penden t software development.
But it no longer works this way. A
change in U.S. government policy
in the early 1980s stimulated a
flood of applications. Now many
have been approved, and the rate is
accelerating. Many programmers
are unaware of the change and do
not appreciate the magni tude of its
effects. Today the lawsuits are jus t
beginning.

Absurd Patents
The Patent Office and the courts
have had a difficult time with com-
puter software. Until recently the
Patent Office refused to hire com-
puter science graduates as examin-
ers, and even now does not offer
competit ive salaries for the field.
Patent examiners are often ill-
p repa red to evaluate software pa-
tent applications to de termine if
they represent techniques that are
widely known or obv ious - -bo th of
which are grounds for rejection.

The i r task is made more difficult
because many commonly used soft-
ware techniques do not appear in
the scientific l i terature of computer
science. Some seemed too obvious
to publish while others seemed in-
sufficiently general; some were
open secrets.

Compute r scientists know many
techniques that can be generalized
to widely varying circumstances.
But the Patent Office seems to be-
lieve each separate use of a tech-

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l 17

t . r~-..- .

nique is a candidate for a new pa-
tent. For example, Apple was sued
because the Hypercard p rogram
allegedly violates patent number
4,736,308, a patent that covers dis-
playing port ions of two or more
strings together on the s c r e e n - -
effectively, scrolling with multiple
subwindows. Scrolling and subwin-
dows are well-known techniques,
but combining them is now appar-
ently illegal.

The grant ing of a patent by the
Patent Office carries a presumpt ion
in law that the patent is valid. Pat-
ents for well-known techniques that
were in use many years before the
patent application have been up-
held by federal courts. It can be dif-
ficult to prove a technique was well
known at the time in question.

For example, the technique of
using exclusive-or to write a cursor
onto a screen is both well known
and obvious. (Its advantage is that
another identical exclusive-or oper-
ation can be used to erase the cur-
sor without damaging the other
data on the screen.) This technique
can be implemented in a few lines
of a p rogram, and a clever high
school s tudent might well reinvent
it. But it is covered by patent num-
ber 4,197,590, which has been up-
held twice in court even though the
technique was used at least five
years before the patent application.
Cadtrak, the company that owns
this patent, collects millions of dol-
lars from large computer manufac-
turers.

English patents covering custom-
ary graphics techniques, including
airbrushing, stenciling, and com-
bining two images under control of
a third one, were recently upheld in
court, despite the testimony of the
pioneers of the field that they had
developed these techniques years
before. (The cor responding U.S.
patents, including 4,633,416 and
4,602,286, have not yet been tested
in court, but they probably will be
soon.)

All the major developers of
spreadsheet programs have been
threa tened on the basis of patent

4,398,249, covering "natural o rde r
reca lc" - - the recalculation of all the
spreadsheet entries that are af-
fected by changes the user makes,
ra ther than recalculation in a fixed
order . Current ly Lotus alone is
being sued, but a victory for the
plaintiff in this case would leave the
o ther developers little hope. The
League has found pr ior art that
may defeat this patent, but this is
not assured.

Nothing protects p rogrammers
from accidentally using a technique
that is patented, and then being
sued for it. Taking an existing pro-
gram and making it run faster may
also make it violate half a dozen
patents that have been granted, or
are about to be granted.

Even if the Patent Office learns
to unders tand software better, the
mistakes it is making now will fol-
low us into the next century, unless
Congress or the Supreme Court
intervenes to declare these patents
void.

However, this is not the entire
problem. Compute r p rogramming
is fundamental ly different from the
fields the patent system previously
covered. Even if the patent system
were to opera te "as in tended" for
software, it would still obstruct the
industry it is supposed to promote.

What Is "Obvious"?
The patent system will not grant or
uphold patents that are j u d g e d to
be obvious. However, the system
interprets the word "obvious" in a
way that might surprise computer
programmers . The s tandard of
obviousness developed in other
fields is inappropr ia te for software.

Patent examiners and judges are
accustomed to considering even
small, incremental changes as de-
serving new patents. For example,
the famous Polaroid vs. Kodak case
hinged on differences in the num-
ber and o rde r of layers of chemicals
in a f i lm--d i f fe rences between the
technique Kodak was using and
those described by previous, ex-

p i red patents. The court ru led that
these differences were unobvious.

Compute r scientists solve prob-
lems quickly because the medium
of p rogramming is tractable. They
are t rained to generalize solution
principles from one problem to
another . One such generalization is
that a p rocedure can be repeated or
subdivided. Programmers consider
this obv ious - -bu t the Patent Office
did not think it was obvious when it
granted the patent on scrolling
mult iple strings, described earlier.

Cases such as this cannot be con-
s idered errors. The patent system is
functioning as it was designed t o - -
but with software, it produces out-
rageous results.

Patenting What Is Too
Obvious to Publish
Sometimes it is possible to patent a
technique that is not new precisely
because it is obvious- - so obvious
that no one would have published a
paper about it.

For example, computer compa-
nies distr ibuting the free X Window
System developed by MIT are now
being threa tened with lawsuits by
AT&T over patent number
4,555,775, covering the use of
"backing store" in a window system
that lets multiple programs have
windows. Backing store means that
the contents of a window which is
temporar i ly partly h idden are
saved in off-screen memory, so they
can be res tored quickly if the ob-
scuring window disappears.

Early window systems were de-
veloped on computers that could
not run two programs at once.
Since computers had small memo-
ries, saving window contents was
obviously a waste o f scarce memory
space. Later, larger mult iprocessing
computers led to the use of backing
store, and to permit t ing each pro-
gram to have its own windows. The
combination was inevitable.

The technique of backing store
was used at MIT in the Lisp Ma-
chine System before AT&T appl ied
for a patent. (By coincidence, the
Lisp Machine also suppor ted multi-

18 J anua ry 1992/Vo1.35, No.I/COMMUNICATION8 OF THE ACM

processing.) The Lisp Machine de-
velopers published nothing about
backing store at the time, consider-
ing it too obvious. It was ment ioned
when a p rogrammers ' manual ex-
plained how to turn it on and off.

But this manual was published
one week after the AT&T patent
app l ica t ion- - too late to count as
pr ior art to defeat the patent. So
the AT&T patent may stand, and
MIT may be forbidden to continue
using a method that MIT used be-
fore AT&T.

The result is that the dozens of
companies and hundreds of thou-
sands of users who accepted the
software from MIT on the under-
standing that it was free are now
faced with possible lawsuits. (They
are also being threa tened with
Cadtrak 's exclusive-or patent.) The
X Window System project was in-
tended to develop a window system
that all developers could use freely.
This public service goal seems to
have been thwarted by patents.

Why Software is Different
Software systems are much easier to
design than hardware systems of
the same number of components.
For example, a p rogram of 100,000
components might be 50,000 lines
long and could be written by two
good programmers in a year. The
equipment needed for this costs less
than $10,000; the only other cost
would be the programmer ' s own
living expenses while doing the job.
The total investment would be less
than $100,000. I f done commer-
cially in a large company, it might
cost twice that amount. By contrast,
an automobile typically contains
under 100,000 components; it re-
quires a large team and costs tens of
millions of dollars to design.

And software is also much
cheaper to manufacture: copies can
be made easily on an ordinary
workstation costing under $I0,000.
Producing a complex hardware sys-
tem often requires a factory costing
tens o f millions of dollars.

What is the reason for these dif-
ferences in cost? A hardware sys-

tem must be designed using real
components. They have varying
costs; they have limits of operat ion;
they may be sensitive to tempera-
ture, vibration or humidity; they
may generate noise; they drain
power; they may fail ei ther mo-
mentari ly or permanent ly . They
must be physically assembled in
their p rope r places, and they must
be accessible for replacement in
case they fail.

Moreover, each of the compo-
nents in a hardware design is likely
to affect the behavior of many oth-
ers. This greatly complicates the
task of de te rmining what a hard-
ware design will do: mathematical
model ing may prove wrong when
the design is built.

By contrast, a computer p rogram
is built f rom ideal mathematical
objects whose behavior is defined,
not modeled approximately, by
abstract rules. When an if-state-
ment follows a while-statement,
there is no need to study whether
the if-statement will draw power
from the while-statement and
thereby distort its output , or
whether it could overstress the
while-statement and make it fail.

Despite being built f rom simple
parts, computer programs are in-
credibly complex. The p rogram
with 100,000 parts is as complex as
an automobile, though far easier to
design.

While programs cost substan-
tially less to write, market and sell
than automobiles, the cost of deal-
ing with the patent system will not
be less. The same number of com-
ponents will, on the average, in-
volve the same number techniques
that might be patented.

The Danger of a Lawsuit
Under the current patent system, a
software developer who wishes to
follow the law must de termine
which patents a p rogram violates
and negotiate with each patent
holder a license to use that patent.
Licensing may be prohibitively ex-

pensive, or even unavailable if the
patent is held by a competitor. Even
"reasonable" license fees for several
patents can add up to make a proj-
ect infeasible. Alternatively, the
developer may wish to avoid using
the patent altogether, but there
may be no way a round it.

License negotiations may be a
problem in themselves, as the de-
velopers of Xywrite recently
learned. This summer they sent the
users of Xywrite a "downgrade,"
removing a popular feature: the
space bar served as a command to
correct spelling errors and expand
abbreviations. Threa tened by the
holder of a patent covering this fea-
ture, they tried to negotiate a li-
cense, but found that the patent
holder kept increasing his de-
mands. Eventually they felt com-
pelled to remove the feature of the
program.

The worst danger of the patent
system is that a developer might
find, af ter releasing a product , that
it infringes one or many patents.
The result ing lawsuit and legal fees
could force even a medium-sized
company out of business.

Worst of all, there is no practical
way for a software developer to
avoid this danger since there is no
effective way to find out what pat-
ents a system will infringe. The re is
a way to try to find o u t - - a patent
s e a r c h - - b u t searches are unreliable
and in any case too expensive to use
for software projects.

Patent Searches Are
Prohibitively Expensive
A system wi th a hundred thousand
components can use hundreds o f
techniques that might already be
patented. Since each patent search
costs thousands of dollars, search-
ing for all the possible points of
danger could easily cost over a mil-
lion. This is far more than the cost
of writing the program.

The costs do not stop there. Pa-
tent applications are written by law-
yers for lawyers. A p rog rammer
reading a patent may not believe
that his or her p rogram violates the

COMMUNICATIONS OF THE ACM/January 1992/Vo1.35, No.l l g

patent, but a federal court may rule
otherwise. I t is thus now necessary
to involve patent attorneys at every
phase of p rogram development .

Yet this only reduces the risk of
being sued l a t e r - - i t does not elimi-
nate the risk. Therefore , it is neces-
sary to have a reserve of cash for
the eventuality of a lawsuit.

When a company spends millions
to design a hardware system, and
plans to invest tens of millions to
manufacture it, an extra million or
two to pay for dealing with the pa-
tent system might be bearable.
However, for the inexpensive pro-
g ramming project, the same extra
cost is prohibitive. Individuals and
small companies especially cannot
afford these costs. Software patents
will put an end to software entre-
preneurs .

Patent Searches Are Unreliable
Even if developers could afford
patent searches, these are not a reli-
able method of avoiding the use of
patented techniques. This is be-
cause patent searches do not reveal
pending patent applications (which
are kept confidential by the Patent
Office). Since it takes several years
on the average for a software pa-
tent to be granted, this is a serious
problem: A developer could begin
designing a large p rogram after a
patent has been appl ied for, and
release the p rogram before the pa-
tent is approved. Only later will the
developer learn that distr ibution of
the p rogram is prohibited.

For example, the implementors
of the widely used public domain
data compression p rogram Com-
press followed an algori thm ob-
tained from the j ou rna l IEEE Com-
puter. (This a lgori thm is also used in
several popular p rograms for micro-
computers , including PKZIP.) They
and the user community were sur-
prised to learn later that patent
number 4,558,302 had been issued
to one of the authors of the article.
Now Unisys is demand ing royalties
for using this algorithm. Al though
the p rogram Compress is still in the
public domain, using it means risk-

ing a lawsuit.
The Patent Office does not have

a workable scheme for classifying
software patents. Al though patents
are most frequently classified by
end results, such as "converting
iron to steel," many patents cover
algorithms whose use in a p rogram
is entirely independen t of the pur-
pose of the program. For example,
a p rogram to analyze human
speech might infringe the patent on
a speedup in the Fast Four ier
Transform; so might a p rogram to
pe r fo rm symbolic algebra (in multi-
plying large numbers). But the cat-
egory to search for such a patent
would be difficult to predict.

You might think it would be easy
to keep a list of the patented soft-
ware techniques, or even simply
remember them. However, manag-
ing such a list is nearly impossible.
A list compiled in 1989 by lawyers
specializing in the field omit ted
some of the patents ment ioned in
this column.

Obscure Patents
When you imagine an invention,
you probably think of something
that could be described in a few
words, such as "a flying machine
with fixed, curved wings" or "an
electrical communicator with a mi-
c rophone and a speaker." But most
patents cover complex detailed
processes that have no simple de-
s c r i p t i o n s - o f t e n they are speed-
ups or variants of well-known pro-
cesses that are themselves complex.

Most of these patents are nei ther
obvious nor brilliant; they are ob-
scure. A capable software designer

will "invent" several such improve-
ments in the course of a project.
However, there are many avenues
for improving a technique, so no
single project is likely to find any
given one.

For example, IBM has several
patents (including patent number
4,656,583) on workmanlike, albeit
complex, speedups for well-known
computat ions pe r fo rmed by opti-
mizing compilers, such as register
coloring and comput ing the avail-
able expressions.

Patents are also granted on com-
binations o f techniques that are al-
ready widely used. One example is
IBM patent 4,742,450, which cov-
ers "shared copy-on-write seg-
ments." This technique allows sev-
eral p rograms to share the same
piece o f memory that represents
informat ion in a file. I f any pro-
gram writes a page in the file, that
page is replaced by a copy in all of
the programs, which continue to
share that page with one another
but no longer share with the file.

Shared segments and copy-on-
write have been used since the
1960s; this part icular combination
may be new as a specific feature,
but is hardly an invention. Never-
theless, the Patent Office thought it
meri ted a patent, which must now
be taken into account by the devel-
oper of any new opera t ing system.

Obscure patents are like land
mines: o ther developers are more
likely to reinvent these techniques
than to f ind out about the patents,
and will then be sued. The chance
of runn ing into any one of these
patents is small, but they are so
numerous that you cannot go far
without hitt ing one. Every basic
technique has many variations, and
a small set o f basic techniques can
be combined in many ways. The
patent office has now granted at
least 2,000 software p a t e n t s - - n o
less than 700 in 1989 alone, accord-
ing to a list compiled by EDS. We
can expect the pace to accelerate. In
10 years, p rogrammers will have no
choice but to march on blindly and
hope they are lucky.

~O January 1992/%1.35, No.l/COMMUNICATIONS O F T H E A C M

Problems of Patent Licensing
Most large software companies are
trying to solve the problem of pat-
ents by getting patents of their own.
Then they hope to cross-license
with the other large companies that
own most of the patents, freeing
them to go on as before.

While this approach will allow
companies like Microsoft, Apple
and IBM to continue in business, it
will shut new companies out of the
field. A future start-up, with no
patents of its own, will be forced to
pay whatever price the giants
choose to impose. That price might
be high: established companies
have an interest in excluding future
competitors. The recent Lotus law-
suits against Borland and the Santa
Cruz Operation (although involv-
ing an extended idea of copyright
rather than patents) show how this
can work.

Even the giants cannot protect
themselves with cross-licensing
from companies whose only busi-
ness is to obtain exclusive rights to
patents and then threaten to sue.
For example, consider the New
York-based Refac Technology De-
velopment Corporation, represent-
ing the owner of the "natural order
recalc" patent. Contrary to its
name, Refac does not develop any-
thing except lawsuits--it has no
business reason to join a cross-
licensing compact. Cadtrak, the
owner of the exclusive-or patent, is
also a litigation company.

Refac is demanding 5% of sales
of all major spreadsheet programs.
I f a future program infringes on 20
such pa tents - -and this is not un-
likely, given the complexity of com-
puter programs and the broad ap-
plicability of many patents-- the
combined royalties could exceed
100% of the sales price. (In prac-
tice, just a few patents can make a
program unprofitable.)

The Fundamental Question
According to the U.S. Constitution,
the purpose of patents is to "pro-
mote the progress of science and
the useful arts." Thus, the basic

A p ~ e M t
~ s ~ n

a b $ @ ~ u t e
~ o n @ p o l y °

question at issue is whether soft-
ware patents, supposedly a method
of encouraging software progress,
will truly do so, or will retard prog-
ress instead.

So far, we have explained the
ways in which patents will make
ordinary software development dif-
ficult. But what of the intended
benefits of patents: more invention,
and more public disclosure of in-
ventions? To what extent will these
actually occur in the field of soft-
ware?

There will be little benefit to soci-
ety from software patents because
invention in software was already
flourishing before such patents ex-
isted, and inventions were normally
published in journals for everyone
to use. Invention flourished so
strongly, in fact, that the same in-
ventions were often found again
and again.

In Software, Independent
Reinvention Is Commonplace
A patent is an absolute monopoly.
Everyone is forbidden to use the
patented process, even those who
reinvent it independently. This pol-
icy implicitly assumes inventions
are rare and precious, since only in
those circumstances is it beneficial.

The software field is one of con-
stant reinvention. It is sometimes
said that programmers throw away
more "inventions" each week than
other people develop in a year. And
the comparative ease of designing
large software systems makes it easy
for many people to do work in the
field. A programmer solves many
problems in developing each pro-
gram. These solutions are likely to
be reinvented frequently as other
programmers tackle similar prob-
lems.

The prevalence of independent
reinvention negates the usual pur-
pose of patents. Patents are in-
tended to encourage inventions
and, above all, the disclosure of in-
ventions. I f a technique will be rein-
vented frequently, there is no need
to encourage more people to invent
it. Since some developers will
choose to publish it (if publication is
merited), there is no point in en-
couraging a particular inventor to
publish i t - -a t the cost of inhibiting
use of the technique.

Overemphasis of Inventions
Many analysts of American and
Japanese industry have attributed
Japanese success in producing
quality products to their emphasis
on incremental improvements, con-
venient features and quality rather
than noteworthy inventions.

It is especially true in software
that success depends primarily on
getting the details right. And that is
most of the work in developing any
useful software system. Inventions
are a comparatively unimportant
part o f the job.

The idea of software patents is
thus an example of the mistaken
American preoccupation with in-
ventions rather than products. And
patents will encourage this mis-
taken focus, even as they impede
the development work that actually
produces better software.

Impeding Innovation
By reducing the number of pro-
grammers engaged in software
development, software patents will
actually impede innovation. Much
software innovation comes from
programmers solving problems
while developing software, not
from projects whose specific pur-
pose is to make inventions and ob-
tain patents. In other words, these
innovations are byproducts of soft-
ware development.

When patents make develop-
ment more difficult, and cut down
on development projects, they will
also cut down on the byproducts of

COMMUNICATIONS OF THE ACM/January 1992/Vo1.35, No.l 21

deve lopmen t - -new techniques.

Could Patents Ever Be
Beneficial?
Although software patents in gen-
eral are harmful to society as a
whole, we do not claim that every
software patent is necessarily harm-
ful. Careful study might show that
unde r certain specific and narrow
conditions (necessarily excluding
the vast majori ty of cases) it is bene-
ficial to grant software patents.

Nonetheless, the r ight thing to
do now is to eliminate all software
patents as soon as possible, before
more damage is done. The careful
study can come afterward.

Clearly, software patents are not
urgently needed by anyone except
patent lawyers. Patents did not
solve any problems of the prepa ten t
software industry. T h e r e was no
shortage of invention, and no
shortage of investment.

Complete elimination of soft-
ware patents may not be the ideal
solution, but it is close and is a great
improvement . Its very simplicity
helps avoid a long delay while peo-
ple argue about details.

I f it is ever shown that software
patents are beneficial in certain
exceptional cases, the law can be
changed again at that t i m e - - i f it is
impor tant enough. The re is no rea-
son to continue the present cata-
strophic situation until that day.

Software Patents Are
Legally Ouestlonable
It may come as a surprise that the
extension o f patent law to software
is still legally questionable. I t rests
on an ext reme interpreta t ion of a
part icular 1981 Supreme Court
decision, Diamonds vs. Diehr.]

Traditionally, the only kinds of
processes that could be patented
were those for t ransforming matter
(such as, for t ransforming iron into
steel). Many other activities which
we would consider processes were
entirely excluded from patents, in-

ISee Samuelson, P. "Legally Speaking." Com-
mun. A C M (Aug. 1990).

cluding business methods, data
analysis, and "mental steps." This
was called the "subject matter" doc-
trine.

D i a m o n d vs. Diehr has been inter-
pre ted by the Patent Office as a re-
versal of this doctrine, but the
Court did not explicitly reject it.
The case concerned a process for
curing r u b b e r - - a t ransformat ion
of matter. The issue at hand was
whether the use of a computer pro-
gram in the process was enough to
r ende r it unpatentable, and the
Court ruled that it was not. The
Patent Office took this narrow deci-
sion as a green light for unlimited
patent ing of software techniques,
and even for the use of software to
pe r fo rm specific well-known and
customary activities.

Most patent lawyers have em-
braced the change, saying the new
boundar ies of patents should be
def ined over decades by a series of
expensive court cases. Such a
course of action will certainly be
good for patent lawyers, but it is
unlikely to be good for software
developers and users.

One Way to Eliminate
Software Patents
We recommend the passage of a
law to exclude software from the
domain of patents. No matter what
patents might exist, they would not
cover implementat ions in software;
only implementat ions in the form
of hard-to-design hardware would
be covered. An advantage of this
method is it would not be necessary
to classify patent applications into
hardware and software when ex-
amining them.

Many have asked how to define
software for this p u r p o s e - - w h e r e
the line should be drawn. For the
purpose of this legislation, software
should be def ined by the character-
istics that make software patents
especially harmful :

• Software is built f rom ideal infal-
lible mathematical components ,

whose outputs are not effected by
the components into which they
feed.

• Ideal mathematical components
are def ined by abstract rules, so
that failure of a component is by
definit ion impossible. The behav-
ior of any system built of these
components is likewise def ined
by the consequences of applying
the rules step by step to the com-
ponents.

• Software can be easily and
cheaply copied.

Following this criterion, a p rogram
to compute pr ime numbers is a
piece of software. A mechanical
device designed specifically to per-
form the same computat ion is not
software, since mechanical compo-
nents have friction, can interfere
with one anothers ' motion, can fail,
and must be assembled physically to
form a working machine.

Any piece of software needs a
hardware pla t form in o rde r to run.
The software operates the features
of the hardware in some combina-
tion, unde r a plan. We propose that
combining the features in this way
can never create infr ingement . I f
the hardware alone does not in-
fringe a patent, then using it in a
part icular fashion under control of
a p rogram should not infringe ei-
ther. In effect, a p rogram is an ex-
tension of the p rogrammer ' s mind,
acting as a proxy for the p rogram-
mer to control the hardware.

Usually the hardware is a gen-
era l -purpose computer , which im-
plies no part icular application.
Such hardware cannot infr inge any
patents except those covering the
construction o f computers . Our
proposal means that, when a user
runs such a p rogram on a general-
purpose computer , no patents
o ther than those should apply.

The tradit ional distinction be-
tween hardware and software in-
volves a complex of characteristics
that used to go hand in hand. Some
newer technologies, such as gate
arrays and silicon compilers, b lur

(continued on page 121)

21~ January 1992/Vol.35, No.I/COMMUNICATIONS OF THE ACM

Institute and State University. His re-
search covers algorithms for hashing,
graph embedding, and computational
geometry.

QI FAN CHEN is a Ph.D. candidate and
graduate research assistant in the De-
partment of Computer Science at Vir-
ginia Polytechnic Institute and State
University. His research covers algo-
rithms for hashing, as well as develop-
ment of an efficient object-oriented
database for graph-structured support
data to support information retrieval,
hypertext, and semantic network pro-
cessing.

A u t h o r s ' Presen t Address : Dept. of
Computer Science, 562 McBryde Hall
VPI&SU, Blacksburg, VA 24061-0106;
email: fox@vtopus.cs.vt.edu; foxea@
vtccl; heath@vtopus.cs.vt.edu; cheng@
vtopus.cs.vt.edu

AMJAD M. DAOUD is a Ph.D. candi-
date in the Department of Computer
Science at Virginia Polytechnic Institute
and State University and is employed by
the Computer Science Department at
Western Geophysical. His research cov-
ers algorithms for hashing, searching of
library catalogs, experimental retrieval
systems, and methods for improving the
performance of information retrieval
and optical disc systems. A u t h o r ' s Pres-
ent Address : Western Geophysical,
10,001 Richmond Ave., Houston TX
77042-4299; email: amjad@vtopus.
cs.vt.edu

*This work was funded in part by grants from
the National Science Foundation (Grant IRI-
8703580), the Virginia Center for Innovative
Technology (Grant INF-87-012), Nimbus
Records, OCLC, and the State Council of
Higher Education. AT&T and Apple Com-
puter have provided equipment used in some
of our experiments.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/92/0100-105 $1.50

(continued from page 22)
the distinction because they com-
bine characteristics associated with
hardware with others associated
with software. However, most of
these technologies can be classified
unambiguously for patent pur-
poses, either as software or as hard-
ware using the preceding criteria. A
few gray areas may remain, but
these are comparatively small, and
need not be an obstacle to solving
the problems patents pose for ordi-
nary software development. They
will eventually be treated as hard-
ware, as software, or as something
in between.

What YOU Can DO
One way to help eliminate software
patents is to join the League for
Programming Freedom. The
League is a grass-roots organization
of programmers and users oppos-
ing software patents and interface
copyrights. (The League is not op-
posed to copyright on individual
programs.) Annual dues for indi-
vidual members are $42.00 for
employed professionals, $10.50 for
students, and $21.00 for others. We
appreciate activists, but members
who cannot contribute their time
are also welcome. Contact the
League at:

• League for Programming Free-
dom
1 Kendall Square #143
PO Box 9171
Cambridge, MA 02139
o r tel. (617) 243-4091;
Email: {league@ prep.ai.mit.edu},

In the United States, you may also
help by writing to Congress. You
can write to your own representa-
tives, but it may be even more effec-
tive to write to the subcommittees
that consider such issues:

• House Subcommittee on Intellec-
tual Property
2137 Rayburn Bldg.
Wash., DC 20515

• Senate Subcommittee on Patents,
Trademarks and Copyrights
United States Senate
Wash., DC 20510

You can phone your representa-
tives at (202) 225-3121, or write to
them using the following addresses:

• United States Senate
Wash., DC 20510

• House of Representatives
Wash., DC 20515

Fighting Patents One by One
Until we succeed in eliminating all
patenting of software, we must try
to overturn individual software pat-
ents. This is very expensive and can
solve only a small part of the prob-
lem, but that is better than nothing.

Over turning patents in court
requires prior art, which may not
be easy to find. The League for
Programming Freedom will try to
serve as a clearing house for this
information, to assist the defend-
ants in software patent suits. This
depends on your help. If you know
about prior art for any software
patent, please send the information
to the League.

If you work on software, you can
help prevent software patents by
refusing to cooperate in applying
for them. The details of this may
depend on the situation.

Conclusion
Exempting software from the scope
of patents will protect software de-
velopers from the insupportable
cost of patent searches, the wasteful
struggle to find a way clear of
known patents, and the unavoida-
ble danger of lawsuits.

If nothing is changed, what is
now an efficient creative activity
will become prohibitively expen-
sive. To picture the effects, imagine
if each square of pavement on the
sidewalk had an owner, and pedes-
trians required a license to step on
it. Imagine the negotiations neces-
sary to walk an entire block under
this system. That is what writing a
program will be like if software pat-
ents continue. The sparks of crea-
tivity and individualism that have
driven the computer revolution will
be snuffed out.iprepared by Rich-
ard StaUman and Simson Garfinkle.

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l ! 2 1

