
"That's
a great
program;
it'sjust
whatf
need."

"~nt
mefIJ
make a
copy
foryou?"

PHaro, RICK FREEDMAN

~--

By SI~ISON L. GARFI:\KEI.

.

Computer wbiz Ricbard Stallman
is determined to make software free-even

if be bas to transform tbe industry
single-banded0~

Programs
to the People
A

CCORDING to the Software
Publisher's Association
(SPA), more than half of all
programs currently in use are
illegal copies. SPA estimates

that unauthorized copying costs the
software industry nearly $2 billion a
year in lost revenue. The crooks aren't
just pimply-faced pirates or vendors in
Southeast Asia copying programs and
shipping them back to the United
States. Rather, all of us are to blame
smaIl offices buying one copy of a word
processor and using it on two com
puters, or people copying a program
from work for use at home. After all,
a copy of a program works as well as
the original, so why pay?

Richard M. Stallman, president of
the Cambridge-based Free Software
Foundation (FSF), believes companies
that sell programs give their customers
the choice of being criminals or bad
neighbors. People can break the law
by I=opying programs for friends, or
they can force friends to go and buy
their own. "Imagine if somebody was
going around your neighborhood say
ing, 'I will give you all of these won
derful things if you promise not to let
your neighbors have them:" says
Stallman. "To many people, that per-

son would be the Devil." Six years ago,
when he started the work his founda
tion supports, his motivation was to
be part of a software-sharing commu
nity in which people can freely give
copies of programs to their friends: "I
decided that I was going to do it even
if I had to write all the software
myself."

What might have been an impossi
ble task for anyone else was just a mat
ter of punching in~oding for
Stallman, who many consider to be
one of the world's greatest and most
prolific programmers. Already he has
helped create dozens of programming
tools, many of them vastly superior to
their commercially available counter
parts, and broad acceptance by users
has convinced several companies,
such as Hewlett-Packard and Digital,
to include his programs with their
computer systems. At the forefront of
his achievements is EMACS, a power
ful program used by hundreds of
thousands of people throughout the
world. EMACS lets programmers per
form an extensive range of tasks-'
from editing files to playing games
and they can alter it to their own lik
ing and add their own features.

Moreover, the free-software move-

TECHNOLOGY REVIEW 53

ment Stallman has spearheaded is taking off. He h'lS
convinced hundreds of programmers to contribute their
time and efforts. Most of the programs these people
have produced are small improvements to other free
programs that are already available, but others have
been substantial projects, conceived, developed, and
distributed as free software. Also, FSF has attracted
more than $600,000 worth of gifts in cash and com
puter equipment. And last summer, Stallman was
awarded a "genius grant" from the MacArthur Foun
dation in recognition of his work.

Stallman wants to create a family of free software so
good that companies who do not use it could be driven
out of business. In the process, he hopes to free com
puter users and return youthful hacker idealism to the
computer world.

He may just do it.

Back to the Source

P
rograms, which allow compute14 to be word
processors today and electronic spreadsheets or
payroll-printers tomorrow, are something like
a cross between a cookbook recipe and a mathe

matical proof. Each line of a program contains a set
of instructions for the computer to execute at a certain
time; around the instructions are comments that ex
plain how the program works. Programmers call the
collection of instructions and comments the "source
code;' and in the early days of computing, companies
almost always provided it with the programs they sold.
Programmers read the code to learn how programs
worked and modified it to fix problems and add fea
tlires. They even built new programs by taking parts
from old ones and reassembling them.

But as the business of computing exploded in the
1970s and 1980s, companies began restricting access
to source code so that competitors couldn't see how a
program worked and write their own versions. Richard
Stallman thinks that was a big mistake. Making source
code available again is key to his free-software move
ment. He likes to explain why it's so important by tell
ing the story of the first two laser printers at the MIT
Artificial Intelligence Laboratory, where he was a
researcher from 1971 until 1983.

The laser printers of the mid-1970s were the size of
today's compact cars. When Xerox gave the AI lab a
Xerox Graphics Printer, the only place for it was in the
lab's ninth-floor machine room. Researchers connect
ed the printer to the local area network that the lab was
developing, and soon anybody in the building could

SIMSON L GARFINKEL is afree-lance science writer and a doctoraican·
didate in the MIT Media Laboratory. He is writing a book about Richard
Swl/man and Project GNU.

;4 FEBRUARI'I.IIARCIi IWI

prlllr a IOO-page document by typing in a few
commands.

That worked fine, except that sometimes the printer
would run out of paper or jam, and dozens of other
jobs would pile up_ Other times there would simply be
,1 lot of people wanting to print long documents, and
the person who needed to print a single page would
have to run up and down the stairs or babysit the printer
until that page appeared. But since the programmers
at the lab had the source code to the program that ran
the printer, they could add features that solved these
problems. Soon the printer was helping the lab run
smoothly. "It would send you a message when your
document had actually been printed;' recalls Stallman.
"It would send you a message if you had anything
queued and there was a paper jam."

All this changed in 1978, when Xerox replaced the
machine with a new laser printer called a Dover but
wouldn't share the printer's source code with the lab.
"We wanted to put those features into the Dover pro
gram, but we couldn't;' Stallman says. Xerox wouldn't
put the features into the program either. "So we had
to suffer with paper jams that nobody knew about."

Keeping source code proprietary hurts users in a wide
variety of other ways as well. Say a real estate compa
ny with an accounting-system program that allows for
10 checking accounts suddenly finds itself in charge of
13 properties. The program may not be able to handle
the additional accounts, and if the company doesn't
have the source code, it will either have to change ac
counting practices or find a new program. If the real
estate firm lacks the source code, it may not even be
able to hire an outside programming firm to make the
necessary changes. "It is a monopoly because only one
company can provide you with fixes. or updates or
changes to that program;' says Robert]. Chassell, FSF's
treasurer. "It's like you bought a car but there was only
one mechanic who was permitted to work on it, and
he lived in another city. Americans and American law
have been against monopolies for years and for good
reason-it is bad for both industry and the public."

Although consumers theoretically have the choice of
being able to buy a different program, that choice is
often illusory. "People have spent money on a specific
program, but more significantly, they have become
habituated to it;' explains Chassell, who was trained
as an economist at Cambridge University in Eng
land. "The expense of changing to a new program is
not buying it: the expense is unlearning one program
and relearning a second one:'.

To add to the cost, most programs store their data
files in a format that is not compatible with compet
ing programs. Most people, says Chassell, will put up
with two or three major problems with a program
rather than make a change.

• !
1-
., .. ,

•
• i

t
.~.

..
. ,

~

The Rise of UNIX mimicked the way that programmers think. C, the
programming language UNIX programs were written

U
til recently, people had the same problems in, was created by Ritchie expressly to make them

switching between computers made by differ- "portable'!...-that is, able to run on different computers.
ent companies that they have today switching· And unlike other portability schemes under develop
between different application programs. The· ment at the time, C was designed to be sleek, simple, •

problem had to do with the operating system, the. and fast.
master control program that orchestrates the functions Nevertheless, problems remained. UNIX, which the
a computer performs: every computer had a different AT&T researchers had developed on DEC computers,
one, and all of them were incompatible. Computers handled data a littIe. differently than the operating sys-
made by IBM used an operating system called VM, > tern on IBM computers-which meant that UNIX pro-

o while those made by Prime used PRIMOS. Digital grams, even if they were scrupulously written in C,
Equipment Corp. had a r--------. _> __________ ---, didn't always work on an
variety of different operat- IBM. The Honeywell
ing systems-sometimes Thefireedom operating system was a lit-
more than one for each tie different still, creating a
computer that it sold. to change whole new set of obstacles.

For the hardware computer Programs that worked on
manufacturers, this was one machine would mys-
good business, because programs teriously fail on others.
even if a company lost its is often Then somewhere
competitive edge, it would around 1976 Thompson
still have a captive base of illusory. and Ritchie made a break-
users who would have to through. They decided
keep buying its computers that although writing their
to run their old programs. programs in C was certain-
And these users could be ly a good idea, it wasn't
counted on to pay just enough. What they really
about anything the compa- needed to do, they reflect-
ny asked. From the users' ed, was to move UNIX
point of view, this state of itself-after all, an operat-
affairs was simply a fact of ing system is just another
life. It added to costs, and program, and users could
there was nothing they simply run UNIX instead
could do about it. But for computer researchers, such of the system the computer manufacturer had supplied.
"closed systems" were a nightmare. If someone devel· It was a radical idea in an age when every computer
oped a program on one computer, those who had other and its particular operating system seemed to be inex-
kinds of machines had no access to any of the research tricably linked.
that person had done. By this time, UNIX had become more than just a

Today, "open systems;' which let users mix hardware research curiosity. As early as 1973, some 25 Bell Labs
and software components built by different vendors, computers were running it, and the operating system
are changing the computer industry. Compatibility soon spread outside of the telephone company. By 1977,
makes more services and products available, while com- more than 500 sites were using it, 125 of them at univer-
petition cuts prices. Open systems are, in fact, central sities, among them the University of California at
to Stallman's mission to liberate software, though he Berkeley.
can hardly be credited with originating the idea. At its UNIX took a new turn at Berkeley that shows just
core is a special operating system called UNIX and a how much can be done when a source code remains
programming language called C, both de\-eloped at Bell available to users. Like other schools, I1:rkeley had paid
Labs in the 1970s. S400 for a tape that included the complete source code

UNIX, a pet project of AT&T researchers Ken to the operating system. But instead of merely running
Thompson and Dennis Ritchie, evolved into a program- UNIX, two bright graduate students, Bill Joy and
mer's dream. The system was composed of compact Chuck Haley, started m'lking changes. In 1977, Joy sent
programs called tools, each of which performed a sin- alit 30 free copies of the Berkeley Software Distribu-
gle function. By putting tools together, programmers tion (BSD) UNIX, a collection ofprogr;.ul1S and modifi-
could do complicated things. The operating system cations to the UI\'IX svstern.

1111 ;-.Tlt\TIO'.S' -\In Sl'lKOl.

Over the next six years, the BSD UNIX grew into
an operating system of its own that had significant ad
vantages over AT&T's. For example, a programmer us
ing the BSD UNIX could switch between multiple
programs running at the same time. AT&T's UNIX al
lowed the names on files to be no more than 14 letters
long, but on Berkeley's they could stretch out to 255
letters. Berkeley also developed software to connect
many UNIX computers together using high-speed net
works. If there had been a popularity contest between
the two systems, the BSD UNIX would have won hands
down. And Berkeley never charged more than a modest
duplication fee for its software.

Yet Berkeley didn't make a dent in AT&T's sales: since
the university's system was based on UNIX, anybody
who wanted to run it first had to purchase a source
code license for UNIX from AT&T. What's more, the
company was beginning to realize the true value of the
operating system it had spawned. In 1977, a commer
cial source-code license for UNIX cost $17,000, but by
1981, that price had jumped to $43,000.

Educational source-code licenses for UNIX were still
under $1,000, so many universities bought the AT&T
license, put the system that went along with it on the
shelf, and ordered the BSD UNIX from Berkeley. But
the businesses that were turning to UNIX couldn't justi
fy spending tens of thousands of dollars just for a source
code. Instead, they spent the few hundred dollars AT&T
charged for versions of UNIX that didn't include the
code. These firms couldn't make changes or see how
programs were written, but they could still write their
own applications.

Software War

B
ack at MIT, Richard Stallman and the AI lab
had had their own brush with commercializ
ing software-with very different results. In the
late 19705, the lab was peopled with students,

professors, and staff that had drifted in during their high
school or college days and never left. This tightly knit
community of hackers seemed to live for programming

. alone. In many ways, what united them was that the
lab had built its own computer, the List> Machine, and
a whole new operating system designed for AI appli
cations.

Progress in developing software for the Lisp Machine
was swift: whenever somebody discovered a bug, it was
fixed. If people wanted to add a feature to a program
make it do something useful that it hadn't done
before-they went right ahead.

Encouraged by the academic success of their
machine, a group of hackers left the lab in 1980 to set
up a company to commercialize the computer. They
called it Lisp Machine Inc. (LMI). Soon a second group

56 FEBRUARYI~IARCH 1991

left'and set up a company called Symbolics. Both com
panies licensed the Lisp Machine operating system from
MIT, and a clause in their contracts specified that any
improvements they made had to be returned to the In
stitute. So although competition between the twO com
panies was fierce, they shared everything they learned.
Any time anyone made an advance, everyone in the em
bryonic industry benefited. The hackers at the AI lab
saw the cooperation between Symbolics, LMI, and
MIT as a model for software development.

Then in 1982, Symb'olics' lawyers reread their licens
ing agreement with MIT and discovered that while they
had to give any new software they created back to the
Institute, they didn't have to grant MIT the right to
redistribute those ideas. Programmers at Symbolics de
veloped a new feature for the operating system and re
fused to let MIT share it with LMI. Although the feature
wasn't in itself a major advance, Symbolics' new poli
cy was the death knell to software sharing.

"Stallman and I went into a crash mode;' recalls
Richard Greenblatt, the Lisp Machine's inventor. They
refused to accept Symbolics' terms, and decided to rein
vent the company's new feature for themselves. "We
hacked around the clock for twO solid weeks and fi
nally PUt a comparable feature into the MIT sources."

For the following two years, Stallman took every im
provement that Symbolics' programmers made and re
wrote it for the operating system used by MIT and LMI.
Programs that took Symbolics months to write he
would rewrite in a matter of days. The only reason he
did it, he says, was to punish Symbolics for breaking
its promise to share software. He called it "the war."

But while he fought the war, Stallman's beloved AI
lab fell apart. All the old hackers slowly left, siphoned
off by LMI and Symbolics. "Machines would break and
there was no one to fix them anymore-they had to be
turned off and abandoned;' he remembers. "It was a
society that could no longer keep itself going. I was the
last one who could keep it going, but I couldn't, be
cause one person wasn't enough."

He also came to realize that his fight had little sig
nificance. The evolution of computer systems had
bypassed the Lisp Machine, which was too specialized
and expensive to produce. Stallman saw that the real
enemy was not Symbolics but the entire software in
dustry that was restricting access to source code.

In 1984, he decided that it was time to start a counter
attack: "Instead of continuing to punish those who had
destroyed the old software-sharing community, I want
ed to start a new one:' He quit his job at MIT. More
than anything else, he didn't want a repeat of the Lisp
Machine debacle-spending years on a project just to
have it pulled out from under him and licensed to a com
pany on MIT's terms. Then he sat down and started
the task of building a new operating system.

•

I

What's GNU?
Richard Stallman 'imission to liberate a1/SottWare

began at Mrr's Artificial InteUigence Laboratory bacllin 1982,
changes, and then say that
their "improved" programs
were separate inventions and
proprietary. To prevent that,
he invented a new kind of
licensing agreement, the
"Copyleft;' which lets people

H
e called his brainchild
GNU, a recursive
acronym meaning
GNU's Not UNIX.

As early as 1984, UNIX

when fellow backers reneged on their tacit promise to share

their Ideas. 1bday. the movement he bas speare.aded
. .

has taken off.

appeared to be on its way to becoming the operating
system of the future. It was taking over the computer
research world and making strong inroads in commer
cial computer systems. Versions of it were already avail
able for most computers-from microcomputers to
supercomputers-and engineers were rapidly adapting
it to others. UNIX could even run on the lowly IBM
Pc. Stallman reasoned that a free version of the oper
ating system, written completely from scratch, would
have a large user base eager to accept it.

But GNU would not be UNIX, even though all GNU
software would also run on UNIX. Most significant
ly, the source code for any GNU program would be
available to anyone who wanted it, and people would
be able to freely redistribute their own copies of the
software-both identical copies for friends and en
hanced copies, like Berkeley's version of the original
UNIX.

Stallman's main worry was that some comp~ny
would take the operating system he wrote, make some

l'IIOTo: L. B..s.RRY IIf.TI!ERI~GTOX

do anything they want with the software except restrict
others' right to copy it. As Stallman says, "Forbidding
is forbidden:' The Copyleft furthermore requires that
anybody who distributes a GNU program make its
source code available for a nominal fee. And if any piece
of a Copylefted program is included into another pro
gram, the entire resulting program is Copylefted.

Although Stallman expected that other programmers
would eventually help him OUt with his project, at first
he was on his own. When he discovered that nobody
else had been assigned to his old office at the AI lab,
he started sneaking back at night: he needed a com
puter to write GNU, and the machines at the lab were
available. Soon he was working there days as well.
Patrick H. Winston, the AI lab's director, knew about
it, but he didn't say anything, since he saw Stallman's
resignation as largely symbolic. If Stallman was going
to continue writing good programs that other people
in the lab could use, Winston wasn't about to tell the
13-year veteran to leave.

TECIl\OLOGY REYIE\l' ;7

Within a year, Stallman's first program was out: GNU
EMACS, which edits programs and does a much bet
ter job of it than the standard editor that comes with
UNIX. EMACS is so powerful that people can use it
to write programs, try them out, read electronic mail,
browse through online documentation, find program
ming mistakes with the help of a debugger (also writ
ten by Stallman), and even play games. Programmers
immediately saw the caliber of the promised GNU soft
ware and shared the program with their friends.

And then, just as Stallman had hoped, they started
fixing his bugs and adding new features. The hard thing
about writing a major pro
gram like EMACS, he ex
plains, is starting it. Once
the first version is available,
people play with it and eas
ily make substantial contri
butions. By producing just
one crop of free software,
Stallman bootstrapped a
movement that has grown
in momentum as the soft
ware has improved. Today
hundreds of significant
subsystems for EMACS
have been contributed
from around the world,
and programmers have
adapted it to more than 50
different kinds of com
puters. It runs on every
thing from desktop
microcomputers to Cray
supercomputers.

The success of EMACS led Stallman to found the
Free Software Foundation, which gives a tax deduction
to companies and individuals who want to contribute
to Project GNU. Stallman describes it as "a charity for
writing computer programs;' and from that perspec
tive, it has been highly successful, receiving $267,782
in donations in 1989 alone. The foundation also earned
$330,377 from the sale of manuals and,.computer tapes
containing GNU programs. Moreover, Stallman and
the other FSF programmers no longer sneak around to
use the AI lab's computers, since they have a fleet of
high-performance workstations donated by Hewlett
Packard, Thinking Machines, Sony, and even Bell
Laboratories. Companies have donated cash as well,
and paid for technical staff to spend a year in Cam
bridge working with Stallman.

The foundation uses the money it garners to pay its
staff of fourteen, which includes nine programmers and
three technical writers. Even though Stallman works
for free, he doesn't expect everybody else to do the same.

;8 FEBRUARY/MARCH 1991

Nevertheless, FSF programmers earn only 525,000 a
year, which is one-half to one-third the salary they
would command on the open market. Paying low wages
lets FSF take on more staff members, and it guarantees
that they're all committed to the cause.

A Programming Coup

I
n the workstation and minicomputer market, GNU
has already caught on strong. Many computer
companies that sell UNIX-based systems
including Convex Computer Corp., which makes

Most
programs

lnuse today
are illegal

caples.

mini-supercomputers, and
DEC-already include
GNU software as part of
their standard operating
system distribution. Data.
General and NeXT, Inc.,
the billion-dollar starrup of
Apple Computer's found
er Steve Jobs, use GNU as
the basis of their worksta
tion line. About the only
territory that remains un
touched by GNU-and by
UNIX as well-is the
personal-computer mar
ket: the UNIX that runs on
the IBM PC often costs
more than 51,000 for a us
able configuration. But the
situation is due to change.
As soon as the core of
GNU is operational, some
thing that Stallman expects

before the end of 1991, GNU software will run on any
personal computer based on the Intel 386
microprocessor-what is quickly becoming the stan
dard machine-for free.

If EMACS made the computer world suspect that
Project GNU was a force to be reckoned with, what
clinched the matter was Stallman's second GNU pro
gram, something called the GNU C Compiler (GCC).
Compilers are those critical programs that translate
source code into "machine code;' or language that a
machine can use. But not all compilers are equal. Given
the same source code, different compilers will produce
different machine code. A certain compiler may gener
ate machine code that is more efficient than another's,
or it may make mistakes, so .that its machine code
doesn't work properly. \

Stallman knew that he had to write"a-good-€-co -
piler; otherwise people wouldn't want to use it. But h
didn't intend to write one of the best. Because it is free
software, GCC simply became one of the best. Stallman

•

•

I implemented ideas that had been in textbooks for years,
and then, since the compiler was distributed with the
source code, programmers all around the world helped
make it better. .

Today the machine code GCC generates is more relia
ble than that from other commercially available com
pilers. The reason, say its users, is that people who
discover bugs can figure out the fixes themselves by
looking through the source code. All the bug reports
and the fixes-end up back on Stallman's workstation.
New releases of the compiler come out nearly every
month instead of every year, as is the case with most
commercial software.

GCC can also generate
code for more than 11
different kinds of micro
processors, while most
commercial compilers are
tailored to a specific
microprocessor. Before
Stallman wrote GCC, no
body believed a compiler
that generated code for
more than one kind of
machine could be efficient,
but Stallman's compiler is
efficient indeed: it consis
tently produces machine
code that runs 20 to 30
percent faster than the
code from other commer
cially available compilers.

"The only way for other
commercial compilers to
continue to exist in the face
of GCC is to offer features that GCC does not;' says
Don Seeley, a senior systems programmer at the U niver
sity of Utah. "The many vendors whose compilers are
not even current with old technology will lose. New
compilers must be at least as good as GCC, or the mar
ket won't accept them."

It was rave reviews like Seeley's that convinced Ralph
W. Hyver, who now manages Hewlett-Packard's Infor
mation Architecture Group, to give FSF a 5100,000 cash
grant and another 5350,000 in equipment. Helping
Stallman made sense, says Hyver, because many of the
research groups that Hewlett-Packard was supporting
were using GNU software. The company was also us
ing GNU programs internally.

Another convert is NeXT. All of the software that
it delivers with its computers is compiled with GCe.
"The issue for us had nothing to do with proprietary
versus non-proprietary," says Bud Tribble, NeXT's vice
president of software engineering. "\"V'e benchmarked
many compilers, and found the Gee code produced

to be excellent. The internal structure of GCC was also
very clean and allowed us to extend it in several ways.
If there had been another 'non-free' compiler that was
better, we probably would have used it instead."

Conflicting Definitions of Freedom

N
evertheless, other companies have been reluc
tant to use GNU software. Some have spent
million's of dollars developing their own C com
pilers aQd may feel threatened by a compiler

Stallman developed essentially by himself. Engineers at
Sun Microsystems, for ex
ample, refuse to even talk
about GCC anymore.
"They have all spoken with
people about GCC in the
past and believe that com
paring our compilers with
GCC quickly becomes a
fairly unproductive
philosophical discussion,"
says Erica Vener, a
spokesperson for the com
pany. "Bottom line, Sun is
in the business of selling
the products it develops."

But ironically, it is prob
ably the Copyleft, more
than anything else, that is
preventing more wide
spread adoption of GCC
and other GNU programs.
Most companies aren't
comfortable with the idea

of selling a program only to have the customer turn
around and make a copy for a friend. And they don't
like the requirement that the source code be made avail
able to anybody who asks for it.

At Berkeley, UNIX developer Mike Karels says that
the software he writes is actually more free than
Stallman's. Since the mid-1980s, Karels and the other
researchers at Berkeley's Computer Systems Research
Group (eSRG) have been working to isolate their pro
grams from AT&T's. And it has paid off. By now, a "sig
nificant fraction" of their code has been "written from
scratch," Karels notes. Berkeley gives those programs
away to companies that do not have AT&T source-code
licenses and imposes essentially no restrictions. The
companies, in other words, may modify and resell
the software without providing the source code to their
customers.

Throughout the 1980s, eSRG developed a set of pro
grams for networking computers. Firms bought the
software, sometimes altered the source code and add-

ed features as they saw fit, and marketed the finished
product. Today nearly every UNIX manufacturer sells
a version of the Berkeley networking software, and
some companies have even placed the programs into
integrated circuits that are used inside IBM personal
computers. Karels says none of that would have hap
pened if Berkeley had required that the networking
source code be made available to customers: compa
nies would have been frightened away by the idea that
they would somehow lose their competitive edge. And
he adds that many users aren't interested in seeing the
source code anyway.

Unfortunately, Berkeley's terms also mean that cus
tomers who buy Karels's programs from vendors have
to rely on the vendors for bug fixes. This matters the
most with security problems. In 1988, for instance, the
infamous computer worm written by Robert T. Mor
ris got through a hole in Berkeley's network mail pro
gram and shut down thousands of computers across
the country. The fix, like many security-related fixes,
required changing a single line of the mail program,
and it was distributed over the network within a few
hours after the worm had been stopped.lil::lt it was use
ful only to those schools and businesses that had the
source code. Others had to get new versions of the mail
program from their vendors, some of whom took more
than a month to distribute them.

"We have been pushing for vendors to ship source
code for security-critical functions;' Karels says. But
vendors haven't complied.

The Question of Support

A
dvocates of FSF believe it is precisely because
of the Copyleft that GNU software will even
tually dominate the computer industry. And,
hey say, by voting with their checkbooks, peo

ple are already forcing manufacturers to abandon their
proprietary operating systems. Given the opportunity
to use free software, many computer users might soon
refuse to purchase anything else.

The pressure will become even more intense once FSF
follows through on its plan to produce a spreadsheet
program for workstations and advanced PCs that com
petes with Lotus's best-selling 1-2-3. Although at first
the GNU spreadsheet will lack many of the features of
1-2-3, they will surely be added over time. Soon the only
competitive advantage of 1-2-3 will be its name.

But who would pay for programmers to eat if all soft
ware were free? The same people that are now, says
Stallman. Most programs are written for internal use,
nor for resale, and that will continue, he argues. A com
pany that pays a programmer to write a word proces
sor for drawing up reports and other such applications
shouldn't care if that program is shared with another
company-especially if the second company gives bug
fixes and improvements back. GNU software will make

60 FEBRVARY/.\IARCfI 1991

programmers more producti\'e, since they won't have
ro write each new application from scratch, Stallman
points out. He's looking toward a future in which com
panies that sell computer programs earn their money
not by using the copyright law to prevent people from
making copies, but by offering services like support and
training. If you had a personal computer, for example,
you would pay company programmers to add extra fea
tures or help you use the ones already provided.

Naturally, not everyone is enthusiastic about the idea.
"It is nice to say that we should just sell support and
give away the software, but why?" asks Tom Lemberg,
vice-president of Cambridge-based Lotus Development
Corp. "The way our economic system works is that peo
ple who create value are able to get value by selling it."

Other critics note that in fact product support for
GNU software has been lacking so far-and that this
could prevent businesses from wholeheartedly adopt
ing the programs. "Digital supports people in mass
quantities;' says Jon Hall, one of Digital's product
managers for ULTRIX Workstation Software. "Thou
sands of customers at one time. Some of the customers
are not even computer literate, much less UNIX liter
ate:' He contends that Digital can provide that level of
support only by charging for its software and using the
copyright system to prevent people from making their
own copies.

But companies that exclusively supported free soft
ware would have lower costs. Michael Tiemann, who
wrote a compiler for the G+ -r programming language,
is banking on that idea: lastJanu Iry he founded Cyg
nus Support, a firm that writes, sells, and supports
Copylefted software. Tiemann believes that wholesale
adoption of GNU programs will be inevitable once
there's a company willing to sign its name on the dot
ted line, charge an annual fee, and guarantee to fix any
bugs and answer any questions a customer might have.
Cygnus is that company.

In its first year of operation, Cygnus signed over a
million dollars in support contracts. One of the clients
is Intel, which needed a C compiler for a new
microprocessor that it has developed. "They want to
ship GCC as their standard compiler, but companies
that they sell to are concerned that it is not a support
ed product. So they contracted with us to do the sup
port for it;' says David Wallace, another Cygnus
founder. "We are also starting to get calls from people
whose potential clients are telling them 'if it doesn't run
the GNU software, we are not going to buy your hard
ware;" he adds.

Wallace acknowledges that it will take years to wean
the computer indusrry away frOJ;Il proprietary software.
Yet he maintains that Stallman isn't JUSt a fluke
programmer, and that GCC is not just a lucky success.
"The free-software part isn't a gimmick;' he points out.
"It is the very thing that makes the software so
good." •

