
386 User's Log
Moving from

DOS to Unix:

backup options

BY SIMSON L. GARFINKEL

he BACKUP and RESTORE utilities
on MS-DOS systems leave a lot to

_ be desired as a hard disk backup
system. Because these programs store in-
formation from the MS-DOS file system
as they copy the files, they are slower
than other disk backup programs that
access the floppy disk directly. There is
also no easy way to get a list of the files
on a BACKUP floppy disk, and it is not
possible to RESTORE a file to a directory
other than the one from which the
BACKUP took place.

On the other hand, when an experi-
enced MS-DOS user sits down at a 386-
based Unix system for the first time and
wants to copy files onto a floppy disk, a
menagerie of choices present themselves,
each with its own special-purpose utility
program and syntax. In this article, I will
discuss the process of mounting a floppy
disk as a Unix file system and will then
give you an in-depth tour of the two most
popular Unix backup utilities: tar and
cpio.

It is possible to put an actual Unix file
system on a floppy disk - indeed, this is
the format in which Unix boot disks are
distributed. To do so requires first for-
matting the floppy disk and then using
the /etc/mkfs command to create the
file system. (Some versions of Unix have
an /etc/newfs command that acts as a
front end to /etc/mkfs and creates the
/lost+found directory in the new file
system.) File systems on floppy disks must
be mounted with the /etc/mount com-
mand before they are accessed and
unmounted with the /etc/umount com-
mand when you are finished with them.
Instead of being given prefixes like A:
and B:, files stored on the floppy disk are
mounted into an already extant directory
on the hard disk's root file system, usu-
ally /mnt. Once your floppy disk has
been mounted as a file system, you can
simply copy files to it with the Unix cp
command.

Fortunately, Unix provides ways of
using floppy disks for file storage that are
faster and more straightforward than this
floppy file system approach.

A variety of Unix utility programs have
evolved over the years for archiving files
to and restoring files from magnetic tape
drives. Because the Unix programmer's
interface to the tape drive is very similar

to the interface for most other Unix mass
storage devices, these programs work
equally well when used with a floppy
disk. Indeed, they treat floppy disks as if
they were small magnetic tapes: reads
and writes are performed consecutively
from the first block on the disk to the last.
While this may seem inefficient, it has the
advantage of minimizing the time that the
floppy disk's head spends seeking.

The two most popular programs used
for transferring files between the tape or
floppy drive and the hard disk are tar
(tape archiver) and cpio (copy file ar-
chives in and out). Another set of pro-
grams available on Berkeley-Unix-based
systems are dump and restore. In line
with the general Unix philosophy, these
programs all provide different ways of
accomplishing more or less the same
things: copy a file or files to a tape ar-
chive, restore them, or print an archive's
table of contents.

Whether it is "better" to use tar or
cpio is a subject of long-standing debate
among Unix gurus. The programs are
actually quite similar; the key difference
is that tar reads the list of files to be
stored from the command line while cpio
reads the file list from standard input.

Saving Files with tar
To copy a directory of files named

/u/simsong to a floppy disk or tape
drive with tar, you might type:

. $ tar cv /u/simsong

The c option tells tar that you want
to create a new tar archive. The v fol-
lowing the c tells tar to operate in
"verbose" mode. In its normal, silent opera-
tion, tar prints only error messages.

The name /u/simsong is the name
of the file or directory to copy. If the
name provided is a directory, tar auto-
matically copies all the files in that direc-
tory. If there are any subdirectories
within the named directory, tar auto-
matically copies them too, recursively.

Notice that /u/simsong is an absolute
path name - that is, it begins with a for-
ward slash. Tar files made this way can be
restored only to the exact place that they
were saved from. A far more flexible ap-
proach is to create the tar archive using
relative path names; more on this later.

If I type the tar cv /u/simsong
command on my system, I might get a
response like this:

a /u/simsong/article 1 blocks
a /u/simsong/mbox 32 blocks

The a at the beginning of each line
indicates that tar is adding to the file
archive. The second field on each line is

the name of the file being added, fol-
lowed by the number of "tape" blocks
taken up by the file.

If tar encountered an error in copy-
ing the file, it might have generated an
error message like:

tar: tape write error

This can be confusing to the novice
user until you remember that tar is a
tape archive program and, as such, as-
sumes that it is writing to a magnetic tape
even if it isn't. As a reward for your trou-
bles, remember that you won't have to
learn the syntax of a new archiving sys-
tem if you buy a streaming tape drive for
your system - tar will work equally well
with any device, even baroque ones like
automatic card punches.

A list of the files in the archive can be
made by using the t (for titles) option:

$ tar t
/u/simsong
/u/simsong/article
/u/simsong/mbox

If you also specify the v option, tar
will print additional information on each
file (e.g., the length, permission mode,
and time stamp).

Files on an archive can be restored by
using the x, or "extract" option. Again,
the v is specified so that you can see
what tar is doing:

$tar xv
/u/simsong/article, 321 bytes,
1 tape blocks

/u/simsong/mbox, 16000 bytes,
32 tape blocks

The option f can be used to change
the name of the device (or file) that tar
uses to save the archives in. Thus:

Star fcv/dev/fdl /u/simsong

would save /u/simsong on a 51/4-inch,
1.2-Mbyte disk in the second floppy disk
drive (the first floppy drive is /dev/
fdO).

Most versions of tar are compiled so
that they default to a reasonable mass
storage device (e.g., most Ultrix versions
of tar on VAXes use the 9-track tape
drive at 1600 bpi (bits per inch), while
most 80386-based versions of tar use
the PC's 51/4-inch disk in high-density
mode). Alternatively, some versions of
Unix have tar use a default device named
/dev/tar (which is a link to the par-
ticular device that the site administrator
wants to use for defaults). Other versions
of tar read their default device from a
file in the /etc directory.

JcLxe4&IMr88

da�rr�l

:

,%



Moving Files with tar
In the above examples, tar was al-

ways given a full path name (/u/
s ims ong) as a command-line argument. It
is also possible, and usually preferable,
to give tar a relative path name, which
allows the archive to be restored any-
where in the Unix file system. The fol-
lowing two examples illustrate this:

$ cd /u/simsong
$tar cv .
a ./article 1 blocks
a ./mbox 32 blocks

$ cd /u/joconnor
$ tar xv
./article, 321 bytes, 1
blocks

./mbox, 16000 bytes, 32
blocks

tape

tape

The two files archived from /u/
simsong have now been restored in the

/u/j oconnor directory (assuming that
the person performing the extract opera-
tion has write access to /u/joconnor).

If your intention is simply to move or
copy files from one directory hierarchy to
another, you can dispense with the tape
or floppy disk entirely and pipe the out-
put of one tar command into the input
of another:

$ (cd/u/simsong; tar cf- .)
(cd /u/joconnor; tar xpf-)

tar takes the dash (-), when pre-
sented as the name of an archive file, to
mean standard input or standard output.
The p option in the second tar com-
mand means "preserve," an option that
assures that the files will be restored with
the same file permissions (read, write,
and execute) as they were saved. If the
person doing the restore is the super-
user, the files will be restored with their
user ID intact (i.e., the ownership of the

files will be unchanged); otherwise the
restorer will become the owner of the
relocated files.

Although this may seem a contorted
way of moving files when commands
such as my, mvdir, and cp already exist,
using tar has the advantage of preserv-
ing owner and modification times of files,
as well as preserving links, when moving
files across devices. (When my moves a
file across a file system, it is forced to
copy the file to the new file system and
then delete the old.)

The tar example also has the advan-
tage that it can be readily extended, in a
networked environment, to move files
between networked computers:

$ (cd /u/simsong; tar cf - .) I
rsh unix2 "( c d /u/joconnor;
tar xpBf - )"

The command rsh specifies that the
second tar command is to be executed
on the computer named unix2. The sec-
ond cd andt tar commands are enclosed
in quotes so they get sent to unix2 as a
complete command; the added B in the
second t ar command assures that block-
ing will be properly performed over the
network connection.

Although commands such as rcp and
ftp exist to transfer files between net-
worked computers, using tar is one of
the few ways of assuring that the files will
be sent with their permissions and owner
IDs intact and that files that are linked
(with either soft or hard links) are sent as
such, rather than expanding each link
into a copy of the same file.

tar can also be used to gather to-
gether many files into a single "ta r file."
These files are typically given names like
emacs.tar or uucp.tar and are fre-
quently used to distribute projects that
are made up of lots of small files, like
source code distributions or the individ-
ual chapters, drawings, and associated
files of a large document. To create a tar
file for a project that is kept in a directory
/u/simsong/Book you might execute
the command:

$ cd /u/simsong
$tar cfv book.tar Book
a Book/ch-01
a Book/ch-02

Using other options to tar, it is possi-
ble to add files to a tape only if they are
not there (or if they have been modified
since last writing), to create tar archives
that span more than one tape (or disk),
and to prompt the user for a yes/no
response before each file is saved or re-
stored. You should check your Unix man-
ual for details.

cpio
Like tar, cpio bundles a group of

files together in a single archive. Unlike

I

90
MIPS

-�--CI--·----�-·ll -·P- ------- ·--



tar, however, cpio defaults to writing
its archive to standard output: the output
stream of cpio must be redirected to
whatever device or file you want to save
the data on.

The second major difference between
tar and cpio is that tar takes the
names of the files to be saved on the
command line, while cpio reads the list
from standard input. Thus, to save the
files in /u/simsong with cpio, it is first
necessary to get a list of them. The find
command constructs this list nicely, as in
this example:

$ find ./u/simsong -print I
cpio -oBv > /dev/fdO

The -o option to cpio indicates that
you are "outputting" data to an archive.
The B option causes output to be
blocked with 5 Kbytes to the record, which
dramatically improves efficiency on de-
vices like tapes and disks. The -v option
lets you see what's going on, just as it
does with tar.

If you were planning to restore these
files on some other machine, you would
also want to use the c option (i.e., cpio
-ocBv), which makes cpio write ASCII
headers, for portability.

To read the archive back, use cpio
with the -i option:

cpio-iv < /dev/fdO

By default, cpio will read all the files
in the archive. To restrict the restore to a
single file, specify its name on the com-
mand line, as with tar.

Moving Files with cpio
Let's see what it's like to move the files

between the /u/simsong and /u/
joconnor directories using cpio. Con-
sider the following example:

$ cd /u/simsong
$ find. -print I cpio -ovB
>/dev/fdO

$
$ cd /u/joconnor
$ cpio -idmvB </dev/fdO

Mail
Mail/mbox
article
33 blocks

The -d option, used on the input side,
tells cpio to create subdirectories if it
needs to. In this example, cpio would
have issued an error message if we hadn't
used the -d switch.

The -m switch instructs cpio to pre-
serve the modification time of each file.

Since our intention is simply to move
files from one directory to another, we
can use cpio's -p switch (for "pass")
and forget about the floppy disk alto-
gether:

$ cd /u/simsong
$ find . -print I cpio -pdmvl
/u/joconnor

/u/joconnor/article
/u/ joconnor/Mail/mbox
33 blocks

Again, this example assumes that the
person issuing the cpio command has
write access to /u/joconnor.

Because cpio reads the list of files to
save from standard input, it allows
greater flexibility in actually choosing these
files. Using the find command, it is pos-
sible to select all the files in a file system
that belong to a given user, are larger
than a particular size, or haven't been
accessed for more than a given number
of days.

For example, you can use the follow-
ing cpio command to find all the files

owned by user simsong and save them
on a floppy disk:

$ find . -user simsong -print I
cpio -oB > /dev/fdO

Of course, this could also be done with
tar, using the command:

$tar cf 'find .-user simsong
-print'

However, the Unix backquote nota-
tion fails when the command contained
within the backquotes expands to more
than 4096 characters.

It should also be noted that there are
some versions of tar (i.e., the System V
and Xenix versions) that will not archive
or restore empty directories or nonregu-
lar files (e.g., the block-special and char-
acter-special files in the /dev directory
or the FIFO file in /usr/spool/lp).
So, at least on these Unix systems, cpio
will be able to completely back up your
root file system and your /usr/spool
file system (assuming you have one), while
tar will not.

Explore the Options
The Unix toolkit of utilities frequently

provides you with more than one way to
get a job done. This is certainly the case
when the job at hand is moving files or
backing up your system. As a newcomer
to Unix, you might want to take the time
to use both tar and cpio for a while
and explore their options (see the sum-
mary in the sidebar on page 90) as you
archive files and move them around in
your system. With some practice, you'll
find the backup tool that suits the occa-
sion and feels comfortable to use. ·

Simson L. Garfinkel is afreelance writer and
computerconsultant lin'ng in Cambridge, MA.

92 
.Iilps

Next month in MIPS...

S ince we last tested RISC workstations based on Motorola's
88000, faster versions of the processor have hit the market. Next
month we'll see how much of a boost the increased clock speed
gives to new systems from Opus and Everex and to Tektronix's
RP88, an 88000 coprocessor board for the Macintosh. We'll also
report on how these new systems compare to 486 systemis.

Also featured next month are new 80486 systems from Olivetti
and Cheetah, the former enhanced with the EISA bus and the
latter with a new memory interface. A review of 386SX computers
rounds out our system coverage.

On the software scene, MIPS editors examine typical uses of
computer-aided software engineering (CASE), test several CASE
applications under DOS and Windows and on the Mac, and
explore the likely future of CASE. Other articles include a com-
parison of hard disk controllers, a review of the QNX operating
system, and more.

n�p -- --- ---

.MPs92


