SYSTEM AND METHOD THAT PROVIDES FOR THE EFFICIENT AND EFFECTIVE SANITIZING OF DISK STORAGE UNITS AND THE LIKE

Inventor: Simson L. Garfinkel, 634 Pleasant St., Belmont, MA (US) 02478

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 909 days.

Appl. No.: 09/925,616

Filed: Aug. 9, 2001

Int. Cl. G06F 12/14 (2006.01)

U.S. Cl. 713/193, 713/164

Field of Classification Search 713/193, 713/199, 713/193, 194, 164, 165, 166; 365/191, 195

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
6,212,600 B1 * 4/2001 Friedman et al. 713/112

OTHER PUBLICATIONS
Boneh et al., “A Revocable Backup System”, Dept. of Computer Science, Princeton University, Princeton, NJ.

An arrangement sanitizes a digital data storage unit, such as a disk data storage unit, by encrypting the information that is stored thereon. When the previously-stored information is retrieved from the digital data storage system storage unit, the information is decrypted prior to being provided to the device that requested retrieval of the data. If the digital data storage unit is to be sanitized, the key or keys that used to at least decrypt the data stored on the digital data storage unit are discarded or made unavailable for use in decrypting the encrypted digital data, thereby making the unencrypted data unavailable. Any of a number of types of encryption/decryption methodologies can be used, including a symmetric key methodology, an asymmetric key methodology such as a public key/private key methodology, or any of a number of other encryption/decryption methodologies.

41 Claims, 1 Drawing Sheet
FIG. 1

TO/FROM DATA UTILIZATION DEVICE

INTF 13

CONTROLLER 12

ENCRYPT/DECRYPT 15

KEY STORE 14(1)

... KEY STORE 14(N)

11(1) ...

11(N)

FIG. 2

TO/FROM DATA UTILIZATION DEVICE

INTF 113

CONTROLLER 112

ENCRYPT/DECRYPT 115

KEY GENR 117

PATTERN STORE 118(1)

... PATTERN STORE 118(N)

KEY STORE 114(1)

... KEY STORE 114(N)

PATTERN STORE 119(1)

... PATTERN STORE 119(N)

111(1) ...

111(N)
SYSTEM AND METHOD THAT PROVIDES FOR THE EFFICIENT AND EFFECTIVE SANITIZING OF DISK STORAGE UNITS AND THE LIKE

FIELD OF THE INVENTION

The invention relates generally to the field of digital data processing and storage, and more specifically to systems and methods that provide for sanitizing of disk storage units and the like.

BACKGROUND OF THE INVENTION

Digital computers, mass digital data storage subsystems and the like typically include disk storage units to provide for relatively long-term storage of digital data. It is often necessary to remove a disk storage unit from a computer, mass storage subsystem, etc., in which it formed a component. This may occur, for example, if it is necessary to remove the disk storage unit for repair, if it is necessary to replace the disk storage unit, if the computer, mass storage subsystem, etc., is to be discarded, or for other reasons that will be apparent to those skilled in the art.

Data stored in a disk storage unit is often confidential to the organization that maintains the computer, mass storage subsystem, etc., in which the disk storage unit forms a component. Several problems can arise in connection with maintaining the confidentiality of the data that is stored in a disk storage unit. For example, disk storage units store data, organized into files, in magnetic form. Typically, when a file is deleted, the data is not erased from the disk storage unit, but instead information detailing the locations of the data comprising the respective file is deleted from tables that are maintained therefor by the computer, mass storage subsystem, etc. Accordingly, merely erasing files from a disk storage unit will not serve to erase the data contained in the files. The data can be recovered using any of a number of conventional data recovery techniques.

Even if efforts are made to sanitize a disk storage unit, that is, to erase the data stored in a disk storage unit, to overwrite the data with other data, or to perform other sanitizing operations that will be apparent to those skilled in the art, it is often still possible to recover the erased or overwritten data, since it is not unusual for residual magnetic fields to remain after the erasure or overwriting that can be detected sufficiently for the data represented thereby to be reconstructed. In addition, since the data storage capacity of disk storage units is quite large and growing, the time required to overwrite the data stored on a typical disk storage unit even once is prohibitive, and typically data is not considered “wiped” until it has been over-written at least several times, generally with predetermined data patterns.

Moreover, during wiping, a “Trojan horse” program can cause data to be copied from the storage locations in which it is currently stored to spare storage locations on the disk storage unit that may be provided to accommodate the possibility that some of the “regular” storage locations may go bad. If a regular storage location does go bad, the disk storage unit automatically stores the data that is to be stored on the bad regular storage location on a spare storage location that has been allocated therefor. Thereafter, when the data is to be retrieved from a “regular” storage location for which a spare storage location has been allocated, the disk storage unit will automatically retrieve the data from the spare storage location and provide the data to the device that requested the data. Generally, the spare storage location will be known to the disk storage unit, and not to the device, that is, the computer or the like that stores data in, and retrieves data from the disk storage unit, and so the wiping will be in connection with the regular storage locations and not the spare storage locations. In that case, the data will still be available in the spare storage locations.

Instead of overwriting or wiping a disk storage unit, the contents of a disk storage unit can be erased in a “bulk erasure” operation by bringing the disk storage unit in close proximity to a strong magnetic field to “de-gauss” the disk storage unit. However, de-gaussing a disk storage unit, in addition to erasing the data stored thereon, will also erase formatting information that identifies the storage locations, making the disk storage unit thereafter unusable.

SUMMARY OF THE INVENTION

The invention provides a new and improved system and method for the efficient and effective sanitizing of disk storage units, while additionally providing that the disk storage units can be subsequently used without risking the confidentiality of data previously stored thereon.

In brief summary, generally the invention provides for sanitizing of a digital data storage unit, such as a disk data storage unit, by encrypting the information that is stored thereon. When the previously-stored information is retrieved from the digital data storage system storage unit, the information is decrypted prior to being provided to the device that requested retrieval of the data. If the digital data storage unit is to be sanitized, the key or keys that used to at least decrypt the data stored on the digital data storage unit are discarded or made unavailable for use in decrypting the encrypted digital data, thereby making the unencrypted data unavailable. Any of a number of types of encryption/decryption methodologies can be used, including a symmetric key methodology, an asymmetric key methodology such as a public key/private key methodology, or any of a number of other encryption/decryption methodologies as will be apparent to those skilled in the art.

The decryption key can be provided to the disk storage unit in any of a number of ways that would facilitate discarding of the decryption key when the disk storage unit is to be sanitized. For example, the decryption key may be stored in non-volatile random-access memory (“NVRAM”) and available for use in decrypting data retrieved from the disk storage unit. When the disk storage unit is to be sanitized, the NVRAM can be made unavailable to the person or entity that has possession of the disk storage unit, by, for example, discarding the NVRAM, erasing the NVRAM, destroying the NVRAM, or any other arrangement whereby the contents of the NVRAM are unavailable to the person or entity that has possession of the disk storage unit. Since this makes the decryption key unavailable to the person or entity that has possession of the disk storage unit, the person or entity that has possession of the disk storage unit will be unable to retrieve the data in unencrypted form.

Alternatively, some or all of the decryption key can be stored on the disk storage unit itself, and another portion provided in, for example, an integrated circuit (“IC”) chip, and the key obtained by performing a selected processing operation in connection with the portion of the key stored on the disk storage unit and the portion stored on the IC chip. For example, the decryption key can be formed by concatenating the portion stored on the IC chip with the portion stored on the disk storage unit. Alternatively, the decryption key can be formed by performing an exclusive-OR (“XOR”) operation in connection with the portion stored on the disk
storage unit and the portion stored on the IC chip. Other types of processing operations that can be used in connection with the portion stored on the disk storage unit and the portion stored on the IC chip, which can be used to generate a decryption key, will be apparent to those skilled in the art. When the disk storage unit is to be sanitized, the IC chip can be removed, destroyed, or the like, which can make it impossible to reconstruct the key(s).

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the appended claims. The above and further advantages of this invention may be better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a functional block diagram of a mass storage subsystem including a system that provides for the efficient and effective sanitizing of disk storage units included therein, constructed in accordance with the invention; and

FIG. 2 is a functional block diagram of a second embodiment of a mass storage subsystem including a system that provides for the efficient and effective sanitizing of disk storage units included therein, constructed in accordance with the invention.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

FIG. 1 is a functional block diagram of a mass storage subsystem **10** including a system that provides for the efficient and effective sanitizing of disk storage units included therein, constructed in accordance with the invention. With reference to **FIG. 1**, the mass storage subsystem **10** includes one or more disk storage units **11(1)** through **11(N)** (generally identified by reference numeral **11(n)**), a controller **12**, an interface **13** and one or more key stores **14(1)** through **14(N)** (generally identified by reference numeral **14(n)**). Each disk storage unit **11(n)** stores digital data provided to the mass storage subsystem **10** by an external data utilization device (not shown), which digital data can later be retrieved, by the same or a different data utilization device, for usage. The data utilization device(s) may include any of a number of types of devices, including but not limited to, computers, including personal computers, computer workstations, mini- and mainframe computers, that retrieve data from the mass storage subsystem **10**, process the data, and provide processed data to the mass storage subsystem **10** for subsequent storage. In addition, the data utilization device(s) may include any of a number of types of other devices, including data visualization devices that display the data, in text, image or any other form, to a user, devices for producing hardcopy output, network or other communication devices for transferring data over a network or other communication medium to other data utilization devices, backup devices for producing backup copies of data stored on the mass storage subsystem **10**, as well as any of a number of other types of devices that can produce and/or make use of digital data.

The interface **13** connects to one or more of the data utilization devices over a communication link **16**. The communication link **16** may be any of a number of types of communication links over which information in digital form may be transferred. The interface **13** receives storage retrieval requests from data utilization devices over the communication link **16**. A storage request initiates a storage operation in connection with the mass storage subsystem **10** to facilitate the storage of data on one or more of the disk storage units **11(n)**. Storage requests may be accompanied by the data to be stored, or the data may be provided to the mass storage subsystem **10** separately from the request. A retrieval request initiates a retrieval operation to enable data to be retrieved from one or more of the disk storage units **11(n)**. After the data has been retrieved, it can be transferred by the interface **13** over the communication link **16** to the device that issued the retrieval request, or to one or more other devices as directed by the retrieval request.

After the interface **13** has received a storage or retrieval request, it will provide the request to the controller **12** for processing. The controller performs a number of operations in connection with the mass storage subsystem **12**, including scheduling of storage and retrieval operations by the respective disk storage units **11(n)**, buffering of data to be stored in a storage operation pending storage in a disk storage unit **11(n)**, buffering of data retrieved from a disk storage unit **11(n)** prior to transmission to the destination data utilization device by the interface **13**, and the like.

In addition, the controller **12** includes an encryption/decryption module **15** that performs an encryption operation in connection with data to be stored on a disk storage unit **11(n)** to encrypt the data before it is transferred thereto for storage, and a decryption output in connection with data retrieved from a disk storage unit **11(n)** to decrypt the data after it has been retrieved and before it is transferred by the interface **13** to the destination data utilization device. When performing an encryption or decryption operate in connection with data to be stored on or that has been retrieved from a disk storage unit **11(n)**, the encryption/decryption module **15** makes use of a key stored in a correspondingly-indexed key store **14(n)**. The encryption/decryption module **15** may make use of any of a number of encryption/decryption methodologies, including a symmetric key methodology, an asymmetric key methodology such as a public key/private key methodology, or any of a number of other encryption/decryption methodologies as will be apparent to those skilled in the art. If the encryption/decryption module **15** makes use of a symmetric key methodology in connection with a disk storage unit **11(n)**, the key store **14(n)** will store one key that it will use for both encryption of data to be stored and decryption of data that has been retrieved. On the other hand, if the encryption/decryption module makes use of an asymmetric key methodology in connection with a disk storage unit **11(n)**, the key store **14(n)** will store two keys, namely, an encryption key that it will use for encryption of data to be stored and a decryption key that it will use for decryption of data that has been retrieved. It will be appreciated that the encryption/decryption module **15** may make use of different methodologies for different ones of the disk storage units **11(n)**, in which case one or more of the key stores **14(n)** may store one key used for both encryption and decryption, and others may store two keys, one used for encryption and the other used for decryption. In addition, it will be appreciated that data stored on one or more of the disk storage units **11(n)** may not be encrypted, in which case no key need be provided therefor.

As noted above, one or more of the disk storage units **11(n)** generally store data provided thereto by the controller **12** in encrypted form. For the disk storage units **11(n)** for which data is stored in encrypted form, as long as the key is available to decrypt the data stored on the disk storage unit **11(n)**, the data stored on the disk storage unit **11(n)** can be decrypted and provided to a data utilization device. Accordingly, if it is desired to make the data stored on a disk storage unit **11(n)** unavailable for access, at least in unencrypted
form, the key that is used for decryption is discarded. This can be accomplished in a number of ways. For example, the key store 14(n) can merely be erased, if it the key store 14(n) is in the form of a volatile memory. Alternatively, if the key store 14(n) is in the form of a non-volatile memory, the key store 14(n) can be removed from the mass storage subsystem 10. In that case, erasure or destruction of the non-volatile memory comprising the key store 14(n) can ensure that the data stored on the disk storage unit 11(n) will remain unavailable for access in unencrypted form; the non-volatile memory can be erased using any of a number of conventional erasure techniques, including, for example, application of a selected voltage to the circuitry comprising the key store. As another alternative, the key store 14(n) can comprise a selected storage location on the disk storage unit 11(n) itself, in which case the key can be erased by erasing the selected storage location. As yet another alternative, the key or keys to be used in connection with a disk storage unit 11(n) can initially be stored on the disk storage unit, and thereafter copied by the controller 12 to a separate volatile or non-volatile key store 14(n); in that case, when it is desired to make the data on the disk storage unit 11(n) unavailable in unencrypted form, operations can be performed in a manner similar to those described above in connection with both the disk storage unit 11(n) and the key store 14(n).

If the key or keys used by the encryption/decryption module 15 to encrypt data to be stored on a disk storage unit 11(n), and to decrypt data retrieved from the respective disk storage unit 11(n), are stored in a key store 14(n) separate and apart from the respective disk storage unit 11(n), the key or keys may be initially provided in a number of ways. For example, the key(s) can be initially stored on the disk storage unit 11(n) and copied by the controller 12 to the respective key store 14(n) as part of an initialization procedure when the disk storage unit is first installed in the mass storage subsystem 10, when the mass storage subsystem 10 is first powered on or configured, or as part of any other procedure as will be apparent to those skilled in the art. The controller 12 may also enable the disk storage unit 11(n) to erase the key(s) from the disk storage unit 11(n) if, for example, the key store 14(n) is a non-volatile memory. Alternatively or in addition, the key(s) may be provided in machine readable form on another machine readable medium that may be read by the controller 12 using a suitable reading device (not separately shown).

As a further alternative, the controller may be provided with a key generator module that can generate the key(s) to be used with the disk storage units. One illustrative embodiment thereof will be described in connection with FIG. 2. FIG. 2 depicts a mass storage subsystem 110 that includes one or more disk storage units 111(n), an interface 113 connected to a communication link 116, key store(s) 114(n) and a controller 112 that generally correspond to and operate in a manner similar to respective disk storage units 11(n), interface 13, communication link 116, key stores 14(n) and controller 12, except as follows.

In addition to an encryption/decryption module 115, which corresponds to and operates in a manner similar to an encryption/decryption module 15, the controller 112 is also provided with a key generator 117 that generates one or more keys for a disk storage unit 111(n) by use of a bit pattern stored on, for example, the respective disk storage unit 111(n) itself and another bit pattern. The bit pattern stored on the respective disk storage unit 111(n) may be stored on, for example, a storage location on the disk storage unit identified as pattern store 119(n). The other bit pattern used by the key generator 117 in generating one or more keys for the disk storage unit 111(n) may be provided in another pattern store 118(n), which may comprise a component of the mass storage subsystem 110, a machine-readable medium that is readable by an appropriate reading device, or the like. The mass storage subsystem 110 may include a single pattern store for storing a bit pattern that can be used for all disk storage unit(s) included therein, a plurality of pattern stores 118(n) each of which stores a bit pattern for a correspondingly-indexed disk storage unit 111(n), or a plurality of pattern stores each of which stores a bit pattern that will be used in connection with generating one or more keys for selected ones of the disk storage units 111(n). The key generator 117 can perform any of a number of processing operations in connection with the bit patterns, which may include concatenating the bit patterns together, exclusive-ORing ("XORing") some or all of the bit patterns together, or any other types of processing operations as will be apparent to those skilled in the art.

When it is desired to sanitize a disk storage unit 111(n) in the mass storage subsystem 110, the decryption key can be made unavailable by erasing or destroying the key store 114(n) and erasing or destroying one or both of the pattern stores 118(n), 119(n), thereby to make one or both of the bit patterns stored therein unavailable. Making one of the bit patterns unavailable will generally suffice to make regeneration of the key(s) difficult if not impossible.

The invention provides a number of advantages. In particular, the invention provides an arrangement whereby a disk storage unit can be efficiently and effectively sanitized in such a manner that it can subsequently provided to a repair facility, be used in another environment, and the like, while maintaining the confidentiality of the data stored thereon. This is accomplished by providing that the data stored on the disk storage unit is encrypted, and decrypted during a retrieval operation, and further providing that the key used in decrypting the data be unavailable when it is desired to sanitize the disk storage unit. The key used in decrypting the data can be made unavailable by, for example, erasing or destroying a store in which the key is stored; if the key is stored in multiple stores, preferably all of the stores will be, for example, erased or destroyed so that the key will thereafter be unavailable for use in decryption. Without the key, the data stored on the disk storage unit generally cannot be retrieved in unencrypted form, in which case the data will remain confidential if the disk storage unit is provided to an entity other than that for which the data comprises confidential information.

It will be appreciated that a number of changes and modifications may be made to the arrangement described herein. As noted above, any of a number of conventional encryption/decryption methodologies may be used, including both symmetric key and asymmetric key methodologies. It will be appreciated that generally the ability of an encryption/decryption methodology to maintain the confidentiality of the encrypted data will reflect the security of the methodology and the number of bits comprising the key(s) used in encryption and decryption. In addition, it will be appreciated that, if it is desired to have the data stored on the disk storage unit available in unencrypted form after the disk storage unit has been sanitized, it will generally be desirable to backup the data before the disk storage unit is sanitized, using any of a number of conventional backup arrangements. The data may be backed up directly onto another disk storage unit, or onto a backup medium such as tape, after which it can be loaded onto another disk storage unit for subsequent retrieval.
Although the arrangement has been described as being used in connection with disk storage units, it will be appreciated that the arrangement can also be used in connection with other types of digital data storage arrangements, including storage subsystems that emulate disk storage units but make use of storage media other than magnetic disks.

It will be appreciated that a system in accordance with the invention can be constructed in whole or in part from special purpose hardware or a general purpose computer system, or any combination thereof, any portion of which may be controlled by a suitable program. Any program may in whole or in part comprise part of or be stored on the system in a conventional manner, or it may in whole or in part be provided to the system over a network or other mechanism for transferring information in a conventional manner. In addition, it will be appreciated that the system may be operated and/or otherwise controlled by means of information provided by an operator using operator input elements (not shown) which may be connected directly to the system or which may transfer the information to the system over a network or other mechanism for transferring information in a conventional manner.

The foregoing description has been limited to a specific embodiment of this invention. It will be apparent, however, that various variations and modifications may be made to the invention, with the attainment of some or all of the advantages of the invention. It is the object of the appended claims to cover these and such other variations and modifications as come within the true spirit and scope of the invention.

What is claimed as new and desired to be secured by Letters Patent of the United States is:

1. A digital data storage subsystem for storing data in digital form comprising:
 a. a storage medium configured to store digital data;
 b. a storage control module configured to
 i. in response to a storage request requesting storage of digital data, receive the digital data that is to be stored in response to the storage request from a source, encrypt the received digital data using a selected encryption key and enable the encrypted digital data to be stored on the storage medium; and
 ii. in response to a retrieval request requesting retrieval of digital data, enable at least one selected portion of the encrypted digital data to be retrieved from the storage medium, decrypt the retrieved encrypted digital data using a selected encryption key, and provide the decrypted digital data to a destination;
 c. a sanitization control module configured to, in response to a sanitization request, make the decryption key unavailable to the storage control module, thereby disabling the storage control module from thereafter decrypting the encrypted digital data stored on the storage medium.

2. A digital data storage system as defined in claim 1 in which the storage medium is a magnetic medium, in which the encrypted digital data is stored in magnetic form.

3. A digital data storage system as defined in claim 2 in which the magnetic medium is a disk.

4. A digital data storage system as defined in claim 1 in which the storage medium is an electronic medium, in which the encrypted digital data is stored in electronic form.

5. A digital data storage system as defined in claim 1 in which the storage control module is configured to make use of a symmetric key encryption and decryption methodology in encrypting the digital data and decrypting the encrypted digital data.

6. A digital data storage system as defined in claim 1 in which the storage control module is configured to make use of an asymmetric key encryption and decryption methodology in encrypting the digital data and decrypting the encrypted digital data.

7. A digital data storage system as defined in claim 1, the digital data storage system further comprising a decryption key store configured to store the encryption key, and the storage control module is configured to make use of the decryption key stored in the decryption key store in decrypting the encrypted digital data.

8. A digital data storage system as defined in claim 7 in which the sanitization control module is configured to make the decryption key unavailable to the storage control module by wiping the decryption key from the decryption key store.

9. A digital data storage system as defined in claim 8 in which the sanitization control module is configured to wipe the decryption key from the decryption key store by erasing the decryption key store.

10. A digital data storage subsystem as defined in claim 7, wherein the decryption key store is included on the storage medium.

11. A digital data storage system as defined in claim 1, the digital data storage system further comprising a key generator configured to generate the decryption key.

12. A digital data storage system as defined in claim 11 in which the key generator module is configured to generate the decryption key from two bit patterns provided thereto using a predetermined generation methodology.

13. A digital data storage system as defined in claim 12 in which the key generator module is configured to generate the decryption key by concatenating the bit patterns together.

14. A digital data storage system as defined in claim 12 in which the key generator module is configured to generate the decryption key by exclusive-ORing the bit patterns together.

15. A digital data storage system as defined in claim 12 which the key generator module is configured to store the encryption key in a decryption key store, and the sanitization control module is configured to make the decryption key unavailable by making the decryption key and at least one of the bit patterns unavailable.

16. A digital data storage subsystem as defined in claim 1, the digital data storage subsystem further comprising a decryption key store configured to store a decryption key, wherein the storage control module is configured to allow access to the stored information without disclosing the decryption key to the source of the storage request.

17. A digital data storage subsystem as defined in claim 1, the digital data storage subsystem further comprising an interface for communication with a data utilization device over a communications link.

18. A computer program product for use in connection with a processor to provide a sanitizing subsystem for sanitizing a digital data storage subsystem for storing data in digital form, the computer program product comprising:
 a. a storage control module configured to enable the processor to
 i. in response to a storage request requesting storage of digital data, receive the digital data that is to be stored in response to the storage request from a source, encrypt the received digital data using a selected encryption key and enable the encrypted digital data to be stored on the storage medium; and
 ii. in response to a retrieval request requesting retrieval of digital data, enable at least one selected portion of
the encrypted digital data to be retrieved from the
storage medium, decrypt the retrieved encrypted
digital data using a selected decryption key, and
provide the decrypted digital data to a destination;
and
B. a sanitization control module configured to enable the
processor to, in response to a sanitization request, make
the decryption key unavailable to the storage control
module, thereby disabling the storage control module
from thereafter decrypting the encrypted digital data
stored on the storage medium.

19. A computer program product as defined in claim 18
in which the storage control module is configured to enable the
processor to make use of a symmetric key encryption and
decryption methodology in encrypting the digital data and
decrypting the encrypted digital data.

20. A computer program product as defined in claim 18
in which the storage control module is configured to enable the
processor to make use of an asymmetric key encryption and
decryption methodology in encrypting the digital data and
decrypting the encrypted digital data.

21. A computer program product as defined in claim 18,
in which the storage control module is configured to enable the
processor to make use of the decryption key stored in a
decryption key store in decrypting the encrypted digital data.

22. A computer program product as defined in claim 21
in which the sanitization control module is configured to
enable the processor to make the decryption key unavailable to
the storage control module by wiping the decryption key
from the decryption key store.

23. A computer program product as defined in claim 22
in which the sanitization control module is configured to
enable the processor to wipe the decryption key from the
decryption key store by erasing the decryption key store.

24. A computer program product as defined in claim 18,
the computer program product further comprising a key generator configured to enable the processor to generate the
decryption key.

25. A computer program product as defined in claim 24
in which the key generator module is configured to enable the
processor to generate the decryption key from two bit
patterns provided thereto using a predetermined generation
methodology.

26. A computer program product as defined in claim 25
in which the key generator module is configured to enable the
processor to generate the decryption key by concatenating the
bit patterns together.

27. A computer program product as defined in claim 25
in which the key generator module is configured to enable the
processor to generate the decryption key by exclusive-
ORing the bit patterns together.

28. A computer program product as defined in claim 25
in which the key generator module is configured to enable the
processor to store the decryption key in a decryption key
store, and the sanitization control module is configured to
enable the processor to make the decryption key unavailable
by making the decryption key and at least one of the bit
patterns unavailable.

29. A method of operating a data storage subsystem
for storing data in digital form, the method comprising:
A. a storage control step in which
i. in response to a storage request requesting storage of
digital data, the digital data that is to be stored in
response to the storage request from a source is
received, encrypted using a selected encryption key
and the encrypted digital data stored on a storage
medium; and

ii. in response to a retrieval request requesting retrieval
of digital data, retrieving at least one selected portion
of the encrypted digital data to be retrieved from the
storage medium, decrypted using a selected decryption
key, and the decrypted digital data being provided
to a destination; and

B. a sanitization control step in which, in response to a
sanitization request, the decryption key is made
unavailable for decryption, thereby disabling the
decryption of the encrypted digital data stored on the
storage medium.

30. A method as defined in claim 29 in which the storage
control step includes the step of making use of a symmetric
key encryption and decryption methodology in encrypting
the digital data and decrypting the encrypted digital data.

31. A method as defined in claim 29 in which the storage
control step includes the step of making use of the decryption
key stored in a decryption key store in decrypting the
encrypted digital data.

32. A method as defined in claim 29, in which the storage
control step includes the step of making use of the decryption
key stored in a decryption key store in decrypting the
encrypted digital data.

33. A method as defined in claim 32, in which the
sanitization control step includes the step of making the
decryption key unavailable by wiping the decryption key
from the decryption key store.

34. A method as defined in claim 33 in which the
sanitization control step includes the step of wiping the
decryption key from the decryption key store by erasing the
decryption key store.

35. A method as defined in claim 29, the method further
comprising a key generator step of generating the decryption
key.

36. A method as defined in claim 35 in which the key
generator step includes the step of generating the decryption
key from two bit patterns provided thereto using a predetermined generation methodology.

37. A method as defined in claim 36 in which the key
generator step includes the step of generating the decryption
key by concatenating the bit patterns together.

38. A method as defined in claim 36 in which the key
generator step includes the step of ORing the bit patterns together.

39. A method as defined in claim 36, in which the key
generator step includes the step of storing the decryption key
in a decryption key store, and the sanitization control step
includes the step of making the decryption key unavailable
by making the decryption key and at least one of the bit
patterns unavailable.

40. A mass storage subsystem comprising:

- an interface for accepting requests and for passing unencrypted data between a data utilization device and the
system;
- a store for cryptographic information, wherein the storage subsystem is configured to retain the cryptographic
information within the storage subsystem;
- a storage control module configured to receive a storage request and associated data through the
interface and to encrypt said data using the cryptographic information prior to passing the
encrypted data to a storage medium; and
- receive a retrieval request through the interface and to
decrypt requested data using the cryptographic information prior to passing the decrypted data to the interface; and
a sanitization control module configured to receive a sanitization request and to make at least some of the cryptographic information unavailable to the storage control module to prevent decryption of at least some of the encrypted data passed to the storage medium.

41. The mass storage subsystem as defined in claim 40 wherein the store for cryptographic information is included on the storage medium.

* * * * *