COMPUTING IN HIGHER EDUCATION: THE ATHENA EXPERIENCE

Project Athena at MIT is an experiment to explore the potential uses of advanced computer technology in the university curriculum. About 60 different educational development projects, spanning virtually all of MIT's academic departments, are already in progress.

EDWARD BALKOVICH, STEVEN LERMAN, and RICHARD P. PARMELEE

Computing has been widely discussed as having the potential to radically change higher education. The advent of low-cost, high-performance personal computers has been touted by some as the savior of the American university system and condemned by others as the beginning (or even the final stage) of its downfall.

With the veritable blitz of media attention that has been focused on the educational uses of personal computing over the past few years, it has become increasingly difficult to realistically assess the actual changes this new technology is likely to accomplish. Part of this difficulty has resulted from the largely technology-driven frame of reference in which computation has been viewed; universities have often simply accepted the specific technologies of current hardware and software before asking how they might use them.

In this article the use of computation in higher education is approached from an entirely different perspective. We begin by speculating on how computer technology—in its broad sense—might be of actual use in the curriculum, and we do not overly concern ourselves with the question of whether those uses are practical within the context of current technology. In particular, we seek to identify areas where current educational methods have observable deficiencies that might be alleviated by the use of appropriate software/hardware combinations.

After presenting some pedagogically useful paradigms concerning the use of computation in the curriculum, we then proceed to develop a model of computation that could sustain those potential uses. Finally, we examine how the wide-scale implementation of this model might in turn influence the university as an institution.

The ideas presented here are derived from our work on Project Athena at the Massachusetts Institute of Technology (MIT). Introduced in May 1983, Project Athena is an experiment to explore the potential uses of advanced computer technology in the university curriculum. MIT has enlisted the assistance of the Digital Equipment Corporation, the International Business Machine Corporation, and other corporate sponsors, each working independently with MIT. These corporate sponsors are providing (as grants to MIT) the hardware, software, equipment maintenance, and some of the technical staff. The university itself is raising $20 million to support the needed software, operations, and staff. By the end of the project, MIT will have installed a network of about 2000 high-performance graphics workstations. More importantly, about half of MIT's $20 million budget has been made available to faculty members for the creation of new-applications software to be used in MIT's own curriculum. About 60 different educational development projects—spanning virtually all of MIT's academic departments and collectively offering a wealth of ideas about how computation can be used in the curriculum—are already in progress under the auspices of Project Athena.
POTENTIAL EDUCATIONAL USES OF COMPUTATION

In an academic setting, computer systems could probably be used in five distinct ways. First, the original use of computers as an integral part of teaching and research in computer science and electrical engineering will undoubtedly continue. Second, the current administrative use of computers for financial management and other record keeping will also remain. Third, the fairly recent availability of generic software for text processing, spreadsheet analysis, personal database management, etc., has already become widespread within universities. Fourth, the use of computers for electronic mail and related forms of asynchronous communication is still in its early stages. And, fifth, what will probably be the most controversial use is that of the computer as an integral part of the instructional process. Focusing on the fifth point, we will explore in this section some possible future academic uses of computing.

The Computer as a Simulator of Complex Systems

One of the most common requests in faculty members' proposals to Project Athena is to use the computer as a simulator for physical or social phenomena that are too complex to be understood from mathematical formulations. The subject areas involved are as diverse as orbital mechanics, supply/demand equilibriums in economic systems, turbulent flows of fluids, electromagnetic fields around charged objects, and the analysis of policies on releasing water from dams into major river basins.

In each of these areas, students have usually learned mathematical formulations that model the phenomena under study. Many students, however, find it difficult to translate the abstract, mathematical formulation into a real, intuitive understanding that they can internalize and use in subsequent courses. Although all students should understand the formal mathematics, not all can exercise the model on problems of meaningful size, either because of the computational effort or because the answers are too hard to portray. In many cases, faculty confine examples to problems that are "solvable" on the blackboard, and students' assignments are limited to similar, often trivial, examples. Appropriately constructed software—running on hardware with the capacity to solve and to portray larger scale (and consequently more realistic) applications of the mathematical formulations—allows students to test their intuition against the predictions of formal models. The student can be asked to pose a variety of "What if?" questions about problems so sufficiently rich that not even the qualitative answers may be obvious. A measure of the success of the user interface and presentation software, if not of the underlying simulation code itself, is the extent to which the student is drawn into this "What if?" sequence. It should be fun! To the extent that this is successful, it brings to the curricula a powerful new mode of learning.

The obvious hazard of simulation is generally that the chances are increased that the results presented may be artifacts of flaws in the model, in its evaluation, or even in the presentation itself. Making simulation more central to the educational process carries as a concomitant the requirement to give it some greater emphasis in the curricula. Simulation is now emerging as a potential form of scientific inquiry, paralleling the two more traditional modes of theory and experimentation. If this admittedly controversial trend continues, the computer will undoubtedly become a central element for teaching students how to devise simulations as part of the scientific method.

The Computer as a Laboratory Instrument

The creation of meaningful laboratory experiences, particularly at the undergraduate level, has often been a frustrating task for universities. High-quality laboratories are expensive, and many universities have been unable to recapitalize them as technology has advanced. Most students can recall the disappointing experience of recording data in a lab subject, only to find that the results bore virtually no relationship to the theory taught in class. The cause of this frustration with laboratory experiences may go back to the unrealistic way in which we have gone about creating such courses. First, real insight from experimentation is rarely derived from a single experiment—students should have a wide range of experimental data available when seeking to draw inferences or to validate a theory. Second, the student in the lab often does not have the opportunity to correct flaws in experimental technique because the data are acquired in a single, brief lab session that does not provide an immediate means of checking data as they are collected. Also, the particular theory that the lab is intended to illustrate is often too disconnected (in the logical rather than physical sense) from the experiment the student actually conducts. Finally, experiments that yield truly significant results often require data to be subjected to sophisticated analysis techniques in order to reduce data, filter noise, etc., before meaningful inferences can be drawn.

Instead of the traditional student labs, let us consider an alternative in which data are acquired digitally by a computer. The computer allows the data to be displayed, compared directly with predictions from theory, postprocessed, stored for subsequent analysis, shared with data from students running the same or related experiments, and compared with data acquired from more sophisticated experimental apparatus. The most obvious benefit of this approach is that many of the unnecessarily tedious tasks associated with doing the lab exercise can be eliminated, allowing the student to focus on the physical phenomena under study. More subtle is the possibility for students to run their own experiments, with data being subject to analysis and comparison with standardized results right in the lab. Students could be asked to analyze not only their own experimental results (which are often too limited for meaningful inferences to be drawn), but also the data of
Making simulation more central to the educational process carries as a concomitant the requirement to give it some greater emphasis in the curricula. Simulation is now emerging as a potential form of scientific inquiry, paralleling the two more traditional modes of theory and experimentation.

students, the translation of these iconic pictures into the mental models of the actual objects they are intended to represent can be difficult. A critical advantage of computer-generated images over static textbook pictures is that students can manipulate them—that is, rotate, compress, or edit a particular display. Such graphical tools place the students in control of the representation of material and free them from being locked into a single set of predefined pictures.

The importance of allowing students to control and manipulate graphical representations is perhaps most clear in computer-aided design (CAD) applications. The need for architects and engineers to rearrange components of designs easily has been crucial to the success of CAD in industry, and it is reasonable to suppose that the same benefits would extend to learning the design process itself. Another advantage lies in the use of animation, particularly in helping students visualize what happens in time-dependent systems involving moving objects, vibration, or the evolution of complex social systems (such as the national economy). Finally, the order in which the components of a picture are drawn can often provide students with as much insight as does the picture itself. For example, when displaying the magnetic field around a set of charged objects, it is important to display lines of symmetry and to exploit such symmetry in the solution. Computer-generated displays that first draw in one quadrant and then reflect that drawing into a symmetric quadrant, do more than illustrate the field under study; they also help the student gain insight into more general problem-solving methods.

The Computer as a Blackboard
Most of the limitations of textbooks apply to blackboards as well. Although students do benefit from watching how images are constructed on a blackboard, they may also have to bear the burden of the instructor's limited artistic abilities. Moreover, many complex images are very difficult to draw, and once displayed on the blackboard, they are difficult to change in a clear way. Large-screen, high-resolution projection is a significantly better medium, particularly in large lectures. In addition, the computer-generated graphics used in class can easily be made available to students for further study outside of class.

The Computer as a Special-Purpose Learning Environment
Certain academic disciplines require resources that, for most students, are unavailable. For example, student composers of orchestral music ideally should (and rarely do) have access to a complete symphony orchestra to hear their own compositions. The computer, however, can supply the foundation for a specialized environment that provides for input on a clavier keyboard and output from sound-synthesis hardware with high-resolution graphics to display musical notation. This form of "composer's workbench" would offer the student a powerful tool for exploring music and would provide a qualitatively different experience from more conventional approaches.

The Computer as a Communications Medium
Universities are, to a large degree, in the communications business. Written reports, if not central to a technical curriculum, are important. The lab report is the student's prose description of the theory (including math symbols) and the lab experience (including graphs and charts). Computer-supported processing of intermixed text, symbols, and graphics, though possible, is still too awkward for student use for project reports. Thus the current handwritten, cut-and-paste approach necessary to prepare a lab report is a high barrier to "What if?" revisions. The payoff for text-processing support for these technical reports will be at least as high as that already observed for simple text. The result is not just better reports for equal or less effort; it is that greater academic emphasis can be placed on the quality of the report itself, allowing it a more central place in the curricula.

The role of the library in the curricula will also shift. Currently the library is viewed as a place rather than as a set of services. Students go there, when it is open, to search the literature. With personal-computer access, the library can enhance some of its present services and provide entirely new ones as well. An Athena project by the library to allow computerized access to its catalogs is the first step in this direction. As more material becomes machine readable (for example, videodisc storage of whole journals can be on line), students will not only search for relevant material, but will obtain copies as well. By making the library more accessible,
sustain these uses. Our point of view is a practical one.

The Computer as Recreation
Linked computers would offer the possibility of using multiplayer games to teach in subject areas (such as economics, logistics, and political science) where the true complexity of the system under study arises from the interactions of numerous individuals. Such computer-mediated simulations have been used as either totally self-contained activities or as a preliminary procedure to a further classroom-based exercise.

Obviously, computer-based communication in mediated games has a quality different from direct, face-to-face contact. In some situations this makes computer-mediated gaming a somewhat artificial experience. However, there are instances where it is important to be able to exert control over the information that can be transmitted to actors in a game. For example, students can be taught how changes in the ability of mock superpowers to communicate during hypothetical crises can affect likely outcomes. By regulating how often information can be exchanged or by altering the allowed content of messages, various possible forms of communication can be simulated. An analogous situation exists in business simulations where legal restrictions that may affect market outcomes are imposed on discussions between competing businesses.

The Computer as Recreation
It would be incomplete to think of computers at a university only in terms of their use in the curriculum. For many students, the computers provide a rich and varied source of extracurricular activities. In addition to games, computers support the activities of many campus clubs and individuals. For example, a club at MIT is using Athena's computation resources to develop a simulated mission of the space shuttle. Another club, the Student Information Processing Board, has been given access to the UNIX® source code and a machine to experiment with, and routinely makes significant modifications in both the kernel and utilities.

THE COMPUTATIONAL ENVIRONMENT
FOR EDUCATION
Now that we have examined some possible future academic uses of computing, we will turn our discussion to the computing environment that would be needed to sustain these uses. Our point of view is a practical one.

UNIX is a trademark of AT&T Bell Laboratories.

Although the cost of some components of campus computing systems is expected to decline, computing will never be free. This is particularly apparent when some of the indirect costs of computing—such as the faculty and student time required to develop, maintain, and administer academic software—are taken into consideration.

We believe that the envisioned computing environment can be realized in a few years. At the moment, however, MIT and the vendors involved in Project Athena are subsidizing the resources needed to experiment with the computing model. We do expect that the computing environment will be self-sustaining by the end of the experiment.

Assumptions
In projecting future computing needs, we have assumed that computing will be available for use in a variety of courses spanning many disciplines and that it will be incorporated into many settings on a campus. We also expect that the strategies for capitalizing computing will be flexible. They could range from personal computers purchased by individual members of the academic community to computing plants owned entirely by the institution. MIT, like many other campuses, will most likely use computers acquired both by individuals and by the university. In any case, academic computing must be cost-effective in order to sustain itself; it has to be designed and delivered in a way that takes into account the "true" costs of development and operation. Finally, computing needs to preserve individual and institutional investments in the presence of rapidly changing technology.

Implications
Ubiquity. If computing is to become an integral part of the educational landscape, it must be treated as a utility. A time-sharing system whose response degrades in the middle of a typical academic term must be regarded as a failure mode of a public utility in much the same way that a "brownout" is viewed as a failure mode of an electrical utility.

Campus computing facilities need to be predictable. We believe that this can be achieved by systems that dedicate a computer(s) to one user for a session.

Time-sharing systems do not scale to support an entire campus. Even networks of time-sharing systems fail to provide predictable responses for computing environments that emphasize computationally intensive applications or interactive graphics. Because personal computers lack the information-sharing and communications features of time-sharing systems, they are an inadequate solution to the problem unless they are set up as part of a larger computer network supporting information sharing. Of course, there must be sufficient number of individual computers available in order to avoid shifting queueing delays from the CPU of a time-sharing system to the keyboards of a network-based system. What we do not yet know is how many
In an expert tutor, the student acts as the primary problem solver, and the computer offers advice on request.
solutions. Computing supplied by multiple vendors presents universities with the same challenges to their investment in educational software as do diverse workstations owned by both students and the university.

These observations suggest that, in order to be cost-effective, educational uses of computing must anticipate changing technology. Applications have to be built on higher level abstractions that hide the underlying technology. Ideally, these abstractions evolve slowly and can be reimplemented on new technological bases to preserve existing educational software. Such abstractions can be provided by a single vendor—for example, through a well-integrated set of operating systems, communications protocols, and layered products that span the vendor's hardware products. Alternatively, the abstractions might be generic—for example, an operating system, network protocols, and layered products that span multiple vendors' products. If every user interface to educational computing presented a computing environment based on the same set of abstractions, training costs could be reduced. In addition, if the choice of abstractions were to be widely accepted by other universities, this approach would also encourage the exchange of educational software.

ATHENA'S COMPUTATIONAL ENVIRONMENT

The first two years of Project Athena were supported by a campuswide network of time-shared computers. This system was designed to be deployed quickly and used to support the initial development of educational software by faculty and students. It simulated many of the features we expected to include in the computing environment provided by workstations.

We are now entering the second phase of the project, which is adding public and private workstations to the network and which is converting existing time-shared computers to service facilities. The conversion should result in a system with the following general features.

The System

Athena will provide its users with a system of individual computers linked by a network. Users may own a computer (private workstation) or may use public facilities (public workstation). All workstations will be dedicated to one individual per session and will be designed to deliver the computing power needed for interaction and graphics. The network will offer access to other computers operated by MIT and will provide services to all workstations.

The owner of a private workstation may assume that the machine is never used by anyone else. A public workstation will be dedicated to a single individual per session; however, users will need to assume that others use it as well. Public workstations are "serially reusable" resources, and it will be possible for a user to "reset" a public workstation to a known state and to easily reconstruct information "cached" in its local mass storage.

Members of the campus community will be able to use any public workstation or privately owned equipment, and they will not be limited to just one computer. The system will provide facilities that will make it possible to share information and to access data and programs from any computer. For example, sample computers will provide access to systems libraries (containing system software needed to reconstruct information cached in a workstation's local mass storage), to class libraries (containing course-specific data and programs), and to user lockers (containing user-specific programs and data).

The characteristics of workstations are motivated by their applications, and Project Athena assumes that advanced workstation technology will enable significant advances in the application of computers to education. It also assumes that the cost of such advanced technology will be reduced with time. The hardware used in the project is limited to a few types of computers and is provided by multiple vendors. The general features of an Athena workstation include:

- a memory from 1 to 16 Mbytes with memory-management features that can be used to communicate among independent address spaces and to effect dynamic linking in a large address space (required to construct software such as LISP-based tutor);
- a high-performance processor capable of executing at least one million instructions per second (to explore realistic problems requiring complex calculations);
- a high-bandwidth, bit-mapped display (to provide high-quality interactive graphics);
- an "open" design that can be extended to include peripherals such as keyboards, sound-generation devices, video input/output, data acquisition, and control devices (required by specific laboratory applications and special-purpose environments such as a composer's workbench).

The network, which is representative of networks being developed at other universities, is implemented with multiple technologies and is based on a high-speed backbone network. Existing campus facilities have access to high-speed, local-area networks connected to the backbone network via special-purpose gateways. Future facilities are likely to use both high-speed, local-area networks and lower speed, wide-area networks connected to the backbone network.

Coherence

Project Athena must minimize unnecessary differences and limit training costs in order to sustain itself. Academic applications need to share common code and build on one another. It ought to be possible to make only a one-time investment in training that is applicable to all uses of the system or to make the use of applications and system software self-evident. It must also be possible to run most applications and to access information using any public or private workstation.

A key software module is the operating system, which insulates the user and applications from changes in technology and differences in the hardware supplied.
by multiple vendors. Other major software modules include discipline-specific software (e.g., software that illustrates electromagnetic fields) and general-purpose software (e.g., word processing). These modules define three interfaces that must be coherent:

- **system interface** — the interface between the operating system and applications;
- **application interface** — the interface between applications;
- **user interface** — the interface between the user and the applications and operating system.

These coherent interfaces provide the base of abstractions needed to preserve the investment in educational software and limit training costs.

The computing environment, which includes operating-system functions and general-purpose applications and libraries, is the same on all workstations. Project Athena uses a single operating system and a single communication protocol family to implement its computing environment. The operating system is UNIX, which provides the foundation needed to port all applications to all types of workstations. In addition, the same suite of general-purpose software (e.g., an editor, a word processor, a graphics library) is available at every workstation. UNIX hides the underlying computer technology from the user, limits the training costs, and provides a framework for writing (exportable) applications that can be made to work with different types of workstations. At the moment, the training required to use UNIX and the general-purpose software is significant. However, it is a one-time investment that we believe will be reduced with experience and with refinements to the system.

The TCP/IP protocols are used to implement the same “virtual network” for all network technologies used in the project. The virtual network hides technology-specific features. A uniform virtual network is needed to provide common communication functions that span multiple vendors' computers. With careful planning, the TCP/IP protocols could be replaced by another protocol suite with similar functions.

The investment required for the development of new academic applications can be reduced in several ways. One approach is to look for “vehicles” other than one-of-a-kind programs for delivering educational materials. Some examples of existing vehicles are spreadsheet sheets or application generators for drill and practice materials. Another approach is to support methods and techniques that would reduce the effort required to create new software. An example of this would be a library of routines for 3-D graphics. The former approach requires considerable innovation and is best left to exploration by faculty and students; the latter can be systematically attacked by defining and implementing a coherent interface between applications.

A working hypothesis of Project Athena is that most scientific and engineering applications can usefully interact only when employing a small number (20-30) of data types (e.g., graphs, arrays, tables). The application interface can be defined by implementing common representations of these data types and mechanisms for manipulating them. This motivates our goal of keeping the number of “supported” programming languages small because it is practical to provide such implementations for only a small number of languages.

If the number of ideas in the application interface is small and concise, then the programming interface of an application is easier to understand. If an application's use of the concepts in the interface is complete, then programs can be combined in standard ways. A program that takes advantage of such an interface is more likely to be used with other programs. For example, a word-processing program should be able to incorporate the tables or graphs produced by another program performing an analysis of laboratory data. The ability to combine applications should also lead to interdisciplinary efforts. For example, programs that model thermodynamic systems could be used with a variety of discipline-specific applications.

Experience with the system has demonstrated that few applications in Athena's existing computing environment have coherent interfaces. Improvements in this area represent a major technical thrust of the project and should have a major impact on the use of computing at MIT.

New technology (i.e., bit-mapped displays and computers dedicated to a single user) and the potential for the comprehensive use of computing motivate the need to refine user interfaces. A "standard" framework for the user interface, common to all applications (including the operating system), can reduce the amount of training needed to use applications. New applications will emphasize interaction and graphics. If code for user interfaces can be generalized, it will reduce the amount of new code required to develop an application.

There are two ways of thinking about a standard framework for user interfaces. The first is to require that all applications use a single framework. The interface may be complex enough to require training, but because there is only one interface, training becomes a one-time investment. The alternative is to allow user interfaces to differ, but to require that all interfaces be self-explanatory.

The major risk of any standard framework for user interfaces is that a standard framework, if applied prematurely or blindly, suppresses innovation. Concepts employed in the design of a user interface span diverse areas of research (e.g., human factors and graphics), and there is little agreement on what contributes to a good user interface. Although Project Athena is addressing the issues of user interfaces, they remain difficult issues, and we have modest expectations for success.

Ownership and Operation

The campus network is owned and operated by MIT. Although the network's growth has been somewhat ad hoc, it has followed the general model of subnetworks linked by a "spine" network. The network has been subsidized by Project Athena (its largest client). A long-
December 23, 1985

Dr. Steven R. Lerman
Director, Project ATHENA
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

Dear Steve:

Your articles, "Project Athena at MIT", which appeared in the Winter 1984 EDUCOM BULLETIN and "Computing In Higher Education: The ATHENA Experience", which appeared in the November 1985 Communications of the ACM, contain a great deal of important information relevant to Computer-Intensive Environments. We would like to include one or the other of these articles in a forthcoming book tentatively titled, Computer-Intensive Campuses: Working Papers. The CIE track at EDUCOM '85 was very popular and received considerable accolades. As a result, we have decided to publish these transcripts along with four CIE-related Bulletin articles and three presentations from Snowmass '85.

Enclosed please find copies of your articles, a copy of the draft outline, copies of the Bulletin articles to be added, and a copy of my Snowmass '85 paper. Copies of the EDUCOM '85 CIE track transcriptions and the two other Snowmass '85 articles are not available at this time. We are uncertain whether this will be an EDUCOM publication or whether we will seek a commercial publisher.

Any revisions you wish to make will be welcome, but we ask that you have them to us by 24 January. We trust that you will be amenable to our doing some minor stylistic editing to ensure continuity and transition. If, for any reason, you do not wish to have your paper included in this book please let us know.

If you have any questions please feel free to call me or Gretchen Shankweiler, who is our editorial and research assistant on this project. We look forward to working with you.

Best wishes for the holidays.

Sincerely,

Daniel A. Updegrove
Vice President

cc: Tony Cline, Gretchen Shankweiler

enc.
To: Rip Parmelee, Ed Balkovich

From: Steve Lerman

Date: December 30, 1985

I received this request to republish our article. I would like to agree to this, but any decision obviously requires all of our consent.

Please let me know ASAP whether you think we should agree.

✓ SRL:cs

Attachment