David D. Clark (MIT CSAIL) Simson Garfinkel (Harvard John A. Paulson School of Engineering and Applied Sciences) KC Claffy (University of California, San Diego)

Exploring the Limits of Differential Privacy TPRC52 September 20, 2024 Washington, DC

Clark, David D. and Garfinkel, Simson and Claffy, KC C., Exploring the Limits of Differential Privacy (July 31, 2024). Available at SSRN: <https://ssrn.com/abstract=4911177>

Differential privacy $-$ it's the future.

Invented in 2006 and used in the US 2020 Census.

Widely recognized as useful and powerful privacy-enhancing technology (PET).

Called for in "National strategy to advance privacy-preserving data sharing and analytics," NCO NITRD, Washington, DC, USA, Tech. Rep., Mar. 2023.

Provides *mathematical certainty* regarding maximum "privacy loss" for any data release.

Composable — Differential privacy avoids the "mosaic problem" that befuddles other privacy technologies like de-identification.

Tunable — Data curator can control the privacy loss/utility trade-off.

Worst Case Assumption — Protects outliers and everybody else.

Some funding agencies are encouraging researchers to use DP to release their data. **2**

DP's goal is to prevent database reconstruction

Differential privacy protects confidential data used for public statistics.

- You are in a class with 9 other students.
- The teacher announces that the average score is 98%.
- You look at your test and you got an 80%.
- Now you know the grades for everyone in the class...

Example:

Consider a survey of companies — what % of your systems are patched?

January

It's pretty easy to figure out that Echo has 25% of its systems patched

DP solves this problem by adding noise to published results

Fe

We don't know what noise was added, so we can't figure out Echo's contribution.

How much noise is enough?

DP "Laplace Mechanism"

 $f^*(x) = f(x) + \text{Lap}(x)$

$f =$ function to make private

Lap = Laplace Noise

 Δf = Sensitivity (how much each person can change the function)

 ϵ = The privacy loss parameter. (0 = full privacy; ∞ = infinite privacy loss)

How much noise do we add? That's a policy decision.

Highly accurate. High privacy loss

Shape your future **START HERE >**

11

Ways of using DP - three models

Trusted Curator Model

Trusted Curator With Synthetic Data Model

Local Model

These examples use ε=1

Note ε*=1 is almost always the wrong choice.*

Pure DP uses Laplace noise. What if there are 100 companies and they all have 50% patched?

Note we are looking at just ε =1

It looks the same if there are 50 companies with 0% patched and 50 companies with 100% patched.

What if every company is 0% patched?

DP is not designed to protect this!

- **Everybody looks equally bad!**
- Even a company not included in the sample looks bad!
- How would you report the average is -2%?
- Notice these same problems happen if every company is 100% patched.

What if there are just 10 companies?

DP is designed to protect the worst case. What if the attacker knows companies 1-9 are 50% patched?

Now the attacker can get a good idea of company #10, at least with ε =1

Thank you!

David Clark — ddc@mit.edu Simson Garfinkel — simsong@alum.mit.edu KC Claffy — kc@sdsc.edu

Our focus is on harms, not the mathematical loss of privacy.

(in the paper) We argue for a pragmatic (but thus risky) approach to adding noise.