
1

Why digital forensics tools require continual updating
November 9, 2023

Sharpening Your Tools

44 COMMUNICATIONS OF THE ACM | AUGUST 2023 | VOL. 66 | NO. 8

practice

I
M

A
G

E
 B

Y
 Z

I
N

E
T

R
O

N

DOI:10.1145/3600098

 Article development led by
queue.acm.org

Updating bulk_extractor for the 2020s.

BY SIMSON GARFINKEL AND JON STEWART

Sharpening
Your Tools

DIGITAL FORENSICS (DF) is a fast-moving field with
a huge subject area. A digital investigator must be
able to analyze “any data that might be found on any
device anywhere on the planet.”12 As such, developers
must continually update DF tools to address new file
formats, new encoding schemes, and new ways that
the subjects of investigations use their computers. At
the same time, tools must retain the ability to analyze
legacy data formats—all of them, in fact.

Most DF tools run on consumer desktop operating
systems, adding another layer of complexity: These
operating systems are also continually evolving.
Analysts must update and upgrade their systems, lest
they risk compromise by malware, which decreases
productivity and can discredit an analysis in court.
This is true even for workstations that are “air gapped”
(not connected to the Internet), since malware in
evidence can exploit bugs in forensic software.19

Surprisingly, open source forensic tools distributed
as source code face a greater challenge when the
underlying operating system is upgraded: Software

compatibility layers typically empha-
size compatibility for the application
binary interface (ABI), not source code.
Software compiled from source must
cope with upgraded compilers, librar-
ies, and new file locations. As a result,
older open source software frequently
does not run on modern systems with-
out updating. One way around this
problem is to run the old software in-
side a virtual machine—but older virtu-
al machines won’t be protected against
modern malware threats.

One advantage of open source soft-
ware is the end user has the source code
and is therefore able to update the ap-
plication (or pay for a programmer to
update the application). In practice,
many users of DF tools lack the exper-
tise, financial resources, and time to up-
date the collection of open source tools
they rely upon to do their jobs. Instead,
that task falls upon tool developers,
who must simultaneously cope with es-
sential changes in DF best practices as
well as in operating systems, compilers,
and libraries, while avoiding inadver-
tent changes to important functional-
ity. Developers must also resist the urge
for aggressive rewrites that add new
expansive functionality, lest they suc-
cumb to the “second-system effect.”5

This article presents our experience
updating the high-performance DF tool
BE (bulk _ extractor)16 a decade af-
ter its initial release. Between 2018 and
2022, we updated the program from
C++98 to C++17. We also performed a
complete code refactoring and adopted
a unit test framework.

The new version typically runs with
75% more throughput than the previ-
ous version, attributable to improved
multithreading. This article provides
lessons and recommendations for oth-
er DF tool maintainers. All developers
can benefit from the detailed discus-
sion of how embracing features in the
C++17 standard and modern software
engineering practices can improve the
correctness, reliability, and throughput
of forensic software. Businesses and
funding agencies can use this experi-
ence to help justify the substantial cost

By Simson Garfinkel, Jon Stewart
Communications of the ACM, August 2023, Vol. 66 No. 8, Pages 44-52
10.1145/3600098

Simson L. Garfinkel
Chief Scientist, BasisTech

Joint work with
Jon Stewart, Aon Cyber Solutions

Digital forensics tools require constant maintenance

OS Creep
Language Creep
Forensic Science Creep
O&M (operations & maintenance) “tail”

2

https://pixabay.com/illustrations/hacker-computer-ghost-cyber-code-4031973/

Digital forensics tools require constant maintenance:  
OS Creep

Platforms being analyzed change over time
 Windows 7 → Windows 95 → Windows NT →

Windows XP → Windows 2000 → Windows 7 →
Windows 10 → Windows 11

 Feature Phones → iPhone & Android
 Tablets

Forensics practitioners favor different operating systems over time.
 Linux / Windows / MacOS

OS used for analysis must be upgraded
 Old apps may have bugs or security vulnerabilities
 Old apps may not run on new OS
 New versions of apps may not run on old operating systems

3

Windows 2000

Windows XP

Digital forensics tools require constant maintenance: 
Language Creep

Mostly a concern for open-source software
 Open-source software is typically distributed in source-code form
 Operating systems are better at preserving binary compatibility than source-code

compatibility
—ABI (Application Binary Interface) is very stable.

—High-level languages change — file names change, features are deprecated, etc.

 Example:
—Java source code from the early 2000s will not compile with a modern Java compiler

—Java bytecode from the early 2000s will frequently run on a modern JVM

—Java bytecode & JVM from the early 2000s will almost always run on a modern OS

4

Digital forensics tools require constant maintenance: 
Cybersecurity is constantly changing and improving

DF keeps getting better!
 More complete implementations of today’s undocumented data structures
 More reliable, efficient implementations of today’s documented data structures.

DF is struggling to keep up!
 Compression standards (e.g. Snappy)
 New memory structures (e.g. Windows 10 memory structures)
 New image formats (e.g. HEIC)

DF software keeps improving
 Usability improvements, support for running in cloud, etc.

Cybersecurity standards keep improving
 New standards for evidence preservation, chain of custody, presentation

5

Digital forensics tools require constant maintenance: 
The O&M (operations and maintenance) tail

All software needs to be maintained

DF software is not any different
 Bugs reported in software

 Updates to secure hash algorithms (MD5 ❌; SHA-1❌; SHA-256 ✔)

 Updates to encryption algorithms (DES3 ❌; AES128 ❌; AES256 ✔)

6

Case Study: Updating bulk_extractor from 1.6 to 2.0

bulk_extractor:
 Open source DF tool developed between 2003 and 2014

—command-line tool: ~ 59K lines of C++98

—GUI: ~ 18K lines java

—Compiled with Autoconf toolchain

 Runs on macOS, Linux and Windows
 Multi-threaded carving and identity “extraction” tool
 Embedded in at least one commercial product
 User base: research, education, law enforcement,

defense

7

https://github.com/simsong/bulk_extractor

There were many reasons to update bulk_extractor

Maintenance Costs
 Autoconf-based system required modification for major OS releases

—BE uses threading, access file systems, etc.

 bulk_extractor support of out-of-date Python versions
—caused it to be banned from a Linux release!

Changes in CPU / IO / memory trade-off
 CPU cores are ~50-100% faster than in 2012
 Laptops and low-end workstations have 2x - 4x as many cores
 High-end servers: 64 cores in 2012; 96 cores in 2020; 224 in 2023

 Memory is 3x faster; everything is SSD → no seek time (seq. access still faster)

 Disk I/O and network drives are faster

Large parts of BE were single-threaded
 BE1 — 1 thread per 16MiB page. “Last page” could take 30-60 min to process
 Histogram processing: batch at the end of page processing, and single-threaded

8

The most important reason: Correctness

Most computer software implements specifications:
 Formal specifications — RFCs, end-user requirements, etc.
 Informal specifications — What’s in the programmer’s head
 Being able to read data written by the same program

Many digital forensics tools are based on reverse engineering.
 Read and decode data written by other programs.
 Authors of other programs may be unknown or unwilling to share technical details.

Many digital forensics tools crash or print warnings when they run.
 Bulk_extractor when processing nps-2009-domexusers.E01:

9

Update plan: objectives

1. Make the program easier to compile and maintain

2. Make it easier for others to contribute code

3. Removal experimental code & simplify the codebase

4. Decrease program’s runtime

10

Autoconf checks for differences between OS.
 Can only check for what it knows!
 Creates #define statement that need to be handled in your code with

#ifdef

C++11, C++14, C++17 standards
 Compiler flag to indicate which standard you want
 A standard set of #include files specified by the standard

 C++14 adds multi-threading → removed #ifdefs for POSIX and
Windows threads!

 C++17 adds file system operations → removed #ifdefs, code for dir
recursion, etc.

Be sure to check C++ compiler and library support!
 https://en.cppreference.com/w/cpp/compiler_support

Goal: BE easier to compile and maintain
Approach: Adopting C++17

11

https://en.cppreference.com/w/cpp/compiler_support

Goal: Improve reliability and make it easier for others to contribute code; Approach:
continuous integration

BE 1.6: No formal or ongoing testing; occasional End-to-End Testing
 Run the program and see if output looks right.
 (Common in digital forensics tools.)

BE 2.0: Systematic testing
 Unit tests & end-to-end regression tests.
 All automated as part of development and build process.
 Implemented with C++ test framework (Catch2)

Using C++ test framework
 Enable compiler instrumentation:

—Record test coverage
-fprofile-arcs -ftest-coverage

—AddressSanitizer to catch invalid/illegal memory references
-fsanitize=address -fsanitize-address-use-after-scope

—ThreadSanitizer to address multithreading issues
-fsanitize=thread

12

Automating Tests - Unit Tests

C++ instrumentation
 Unit tests for every forensic function
 Frequently required restructuring code

Example: Base64 identification

13

Expected result

1. Verify BASE64 recognition

2. Verify BASE64 recognition
 among other data.

3. Verify BASE64
 properly decoded

Automating Tests - End-to-End tests

Uses the same C++ instrumentation!
 Refactored main(argv, argc)) so that is now called

bulk_extractor(argv, argc)
 main() calls bulk_extractor()
 Unit tests can repeatedly call bulk_extractor() with different

arguments.

Advantages:
 Test program sets up runtime environment, calls

bulk_extractor(), and validates results.
 Makes it easier to catch errors involving resource management

(e.g. memory, file descriptors).
 Makes it possible to validate processing of command-line

parameters.
 Makes it possible to validate program restart logic.

14

Update plan: objectives

1. Make the program easier to compile and maintain ✔
2. Make it easier for others to contribute code
 Use Git “modules” for increased separation between components
 Use GitHub “Actions” for continuous integration tests on every commit & pull

request
 Display code coverage results of unit tests

3. Removal experimental code & simplify the codebase
4. Decrease program’s runtime

15

Split projects up into modules for improved maintainability.

bulk_extractor 1.0 consists of three git modules:
 github.com://simsong/bulk_extractor.git —CLI, GUI, data reader, scanners

 github.com://simsong/be13_api.git — Framework for scanner set, feature recorders

 github.com://simsong/dfxml.git — Digital Forensics XML writer.

For bulk_extractor 2.0:
 github.com://simsong/bulk_extractor.git

 github.com://simsong/be13_api.git

 https://github.com/dfxml-working-group/dfxml_cpp
—Created a GitHub “organization.”

—Separated DFXML C++ tools from DFXML Python tools

 https://github.com/simsong/BEViewer/
—Java GUI is now a separate module (simsong/bulk_extractor is a sub-module)

—Allows significant updates to C++ application without impact on Java GUI
16

github.com://simsong/bulk_extractor.git
github.com://simsong/be13_api.git
github.com://simsong/dfxml.git
github.com://simsong/bulk_extractor.git
github.com://simsong/be13_api.git
https://github.com/dfxml-working-group/dfxml_cpp
https://github.com/simsong/BEViewer/

GitHub Actions to combine unit tests with code coverage tools

17

Branch being tested

Tests on FreeBSD failing

Commit to “main” did
not cause any problems!

“codecov” tool integrates with GitHub Actions

18

19

20

Sorted by lines not covered

21

Completely Covered

Not covered

Partially Covered

Update plan: objectives

1. Make the program easier to compile and maintain ✔
2. Make it easier for others to contribute code ✔
3. Removal experimental code & simplify the codebase
 Experimental code:

—Removed bulk_extractor scanners written for specific research projects

 Simplify codebase:
—Moved more functionality from bulk_extractor.git to be13_api.git

—Removed features that were not widely used (e.g. writing to SQLite3)

—Removed support for obsolete operating systems

4. Decrease program’s runtime
22

Update plan: objectives

Make the program easier to compile and maintain ✔
Make it easier for others to contribute code ✔
Remove experimental code & simplify the codebase ✔
Decrease program runtime — a difficult goal!
 Run time depends on what’s being analyzed

—Run time increases when more scanners are activated

—Run time decreases when scanners decide not to analyze something

 Redesign internals to make it easier to measure:
—CPU time spent in each scanner (vs. recursively called scanners)

—CPU time spent at top-level analysis (vs. recursive analysis)

—CPU time spent analyzing new data

 Better reporting of runtime:
—Systematically capture runtime information in DFXML

 Refactoring measurement system led to more efficient analysis
—Measuring “time spent analyzing new data” → “only analyze new data” scanner flag.

—Moved speedups for individual scanners into architecture

23

Results: BE1 vs. BE2

Size
Compile-time (relevant for development)
Runtime
Analysis

24

BE1 vs. BE2:
BE2 is a lot smaller

Size

Compile-time (relevant for development)
Runtime
Analysis

25

BE1
files

BE2
files

BE1
lines

BE2
lines

C++ Code 274 221 191,779 178,848

Java Code 88 0 17,933 0

BE1 vs. BE2:
BE2 compiles faster

Size ✔
Compile-time (relevant for development)

Runtime
Analysis

26

BE1  
Mac mini 2018

BE2  
Mac mini 2018 Reason

configure 25 sec 16 sec less probing

make -j1 115 sec 121 sec Slightly harder
C++ compiles

make -j12 32 sec 32 sec parallelism!

BE1 vs. BE2:
BE2 ran a lot slower … but got getting faster

Built-in microbenchmarks allowed optimizing sections that mattered.

27

acmqueue | january-february 2023 22

tools

and 2011, and are hosted on the Digital Corpora website
(digitalcorpora.org).

Times for the nps-2009-ubnist1 and nps-2009-
domexusers are averages of three runs. The nps-2009-
ubnist1 and nps-2009-domexusers read and write to the
system SSD (solid-state drive), while the nps-2013-2tb
reads from the system SSD and writes to an external
USB3 hard drive because of storage considerations. BE1.6
speeds are reported for runs with the standard 30 default
scanners enabled: accts, aes, base64, elf, email, evtx,
exif, find, gps, gzip, hiberfile, httplogs, json, kml, msxml,
net, ntfsindx, ntfslogfile, ntfsmft, ntfsusn, pdf, rar, sqlite,
utmp, vcard, windirs, winlnk, winpe, winprefetch, and zip.
BE2 speeds are for runs with the standard 29 scanners

Scanners

29 30 + AES192

 Computer Disk Image (+ config) BE1.6 BE2 Throughput BE2 Throughput

MacBook Pro (Retina,
13 inch, late 2013)*

nps-2009-ubnist1 140s 109s 128% 120s 117%
nps-2009-domexusers 1420s 837s 170% 1208s 118%

Mac mini (2018)**
nps-2009-ubnist1 43s 35s 123% 33s 130%
nps-2009-domexusers 428s 319s 134% 428s 100%

MacBook Pro
(16-inch, 2021)†

nps-2009-ubnist1 20s 16s 125% 17s 118%
nps-2009-domexusers 221s 126s 175% 172s 128%
nps-2013-2tb 20142s 10944s 184% 11184s 180%

 * 2.8GHz Dual-core Intel Core i7; 16GB, 1600MHz DDR3;
two physical cores (four with hyperthreading); macOS 11.6.3

**3GHz 6-core i5; 2667 MHz DDR4; macOS 12.1
† Apple M1 Pro 10 core; 32GB RAM; macOS 12.1

TABLE 1: Clock time comparison of running BE1.6 and BE2

22 OF 28

BE1 vs. BE2:
BE2 is finding a lot of stuff that BE1 missed

Size ✔
Compile-time (relevant for development) ✔
Runtime ✔
Analysis

28

file BE16 BE2.0 Beta 4
alerts.txt 62 19

domain.txt 72,027 76,800
email.txt 8,757 8,751
ether.txt 5 1

ether_histogram_1.txt n/a 0
exif.txt 232 235

facebook.txt n/a 0
ip.txt 4 4,444

jpeg_carved.txt 43 1,767
json.txt 4 958
kml.txt 0 2

ntfsusn_carved.txt 2 1
rfc822.txt 4,240 4,219

tcp.txt n/a 56
tcp_histogram.txt n/a 0

telephone.txt 767 760
unzip_carved.txt 41 n/a

url.txt 108,352 112,754
winpe.txt 10,740 10,592

winpe_carved.txt 4 10,573
winprefetch.txt 124 0

zip.txt 5,196 10,193

1,724 additional JPEGs carved

10,569 windows executables carved!

Conclusion:  
What this means for digital forensics tools

New releases:
 Should be validated against previous releases in a systemic manner
 Results should be published in a machine-readable form.
 Clearly document:

—New data that is recovered from legacy datasets (compared to previous version)

—Data recovered from new datasets that previous version would miss

—Overcollection that has been eliminated

We need to set expectations for DF tools
 Complete rewrites are slow

—10 years to get from “Ethereal” to Wireshark 1.0 in 2008, 2.0 in 2015

—Volatility 2: 2.5 - October 2015; 2.6 - December 2016

—Volatility 3: v1.0.0 - Feb 01, 2021; v 1.0.1 - Feb 1, 2021

Unclear how to measure proprietary tools
29

30

How you can help!

You can make bulk_extractor better!

You can make a tutorial and put it on YouTube!

 You can use the materials digitalcorpora.org!
31

http://digitalcorpora.org

You can improve the test coverage of bulk_extractor or be2_api!

32

You can help us close some of the open issues on github!

33

Several issues are identified as “good student project”

34

You can work on one of our “enhancements”

35

