THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

Keeping Forensic
Tools Sharp

A Case Study of Updating bulk extractor 1.6 to 2.0&
Thursday, Feb 24

1:40 p.m. - 2:00 p.m. C14
Simson Garfinkel, PhD*

DISCLAIMER: The views expressed are those of the author and do not reflect the official policy or
position of the US Government, the Department of Homeland Security, the Department of Defense,
or the Department of Commerce.

These slides can be downloaded from https://simson.net/ref/2022/AAFS Keeping Tools Sharp.pdf

https://simson.net/ref/2022/AAFS_Keeping_Tools_Sharp.pdf

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

THE GEORGE

Overview for this talk (15 minutes) A

WASHINGTON, DC

Why digital forensics tools require continual updating

Case study: bulk_extractor

What this means for open-source digital forensics

THE GEORGE

Digital forensics tools require constant maintenance e

WASHINGTON, DC

OS Creep

Language Creep

Forensic Science Creep

O&M (operations & maintenance) “tail”

e S
&
¥ aw

o

oG TIR T T

S e S

N e

£ I's32 X ¥ I

-
- - - & . L
C R R e G i e gl £

A

e W, T

~ -
- pe-mo 3 B0

PUEE & W -
2 L Santh
oL $FPONV.LO 8y € i

& SR ik W o

-
5
.'

W o e & C) Or by OO EHee
- offs

.- iy R e s o AR
EEAT W e . ey

‘ F |
® e W -

A B

s w: ’,

o

AP R v %
-

https://pixabay.com/illustrations/hacker-computer-ghost-cyber-code-4031973/

THE GEORGE

Digital forensics tools require constant maintenance Wwewsy

WASHINGTON, DC

OS Creep

» Platforms being analyzed change over time
— Windows 95 = Windows NT — Windows XP — Windows 7 = Windows 10
—Feature Phones — iPhone & Android
— Tablets
» Forensics practitioners favor different operating systems over time.
—Linux / Windows / MacOS
= OS used for analysis must be upgraded
—OId apps may have bugs or security vulnerabilities
—Old apps may not run on new OS
—New versions of apps may not run on old gperating systems.

THE GEORGE

Digital forensics tools require constant maintenance e

WASHINGTON, DC

OS Creep v

Language Creep — Mostly a concern for open-source software
» Open-source software is typically distributed in source-code form

» Operating systems are better at preserving binary compatibility than source-code
compatibility

—ABI (Application Binary Interface) is very stable.
—High-level languages change — file names change, features are deprecated, etc.

= Example:
—dJava source code from the early 2000s will not compile with a modern Java compiler
—dJava bytecode from the early 2000s will frequently run on a modern JVM
—dJava bytecode & JVM from the early 2000s will almost always run on a modern OS

THE GEORGE

Digital forensics tools require constant maintenance Wwewsy

WASHINGTON, DC

OS Creep v
Language Creep v/

Digital forensics creep — DF science is constantly improving
= DF keeps getting better!
—More complete implementations of today’s undocumented data structures
—More reliable, efficient implementations of today’s documented data structures.

= DF is struggling to keep up!
—Compression standards (e.g. Snappy)
—New memory structures (e.g. Windows 10 memory structures)
—New image formats (e.g. HEIC)

» DF software keeps improving
— Usability improvements, support for running in cloud, etc.

THE GEORGE

Digital forensics tools require constant maintenance e

WASHINGTON, DC

OS Creep v
Language Creep v/
Forensic Science Creep v/

O&M (operations & maintenance) “tail”

= All software needs to be maintained
» DF software is not any different
—Bugs reported in software

—Updates to secure hash algorithms (MD5 X ; SHA-1X ; SHA-256 V)

THE GEORGE

Case Study: Updating bulk_extractor from 1.6 to 2.0 &wee

WASHINGTON, DC

bulk extractor:

» Open source DF tool developed between 2003 and 2014
—command-line tool: ~ 59K lines of C++98
—G@GUI: ~ 18K lines java
— Compiled with Autoconf toolchain

* Runs on macOS, Linux and Windows

» Multi-threaded carving and identity “extraction” tool

» Embedded in at least one commercial product

» User base: research, education, law enforcement, defense

About 3 Languages
& simsong / bulk_extractor Public ® Unwatch 64 ~
- This is the development tree. Production — I -
downloads are at: ® C++53.9% Shell 14.1%
<> Code () Issues 88 I1 Pull requests 1 Q) Discussions ~ ® Actions [0 wiki @ Security |2 ® Python12.8% ® C57%

¢ downloads.digitalcorpora.org/downloa...

® HTML 4.6% M4 3.2%
0 Readme
o Other 5.7%
¥ main ~ ¥’ 5branches © 18 tags Go to file Add file ~ &8 View license
Yr 572 stars
® 64 watching
e simsong Merge pull request #317 from simsong/slg-dev ... X 970bbel 17 days ago ‘(9 2,065 commits ¥ 136 fork
OrKs
B .github/workflows fixed codecov paths 17 days ago
B3 dfxml_schema @ f2a702e removed plugins (#266) 3 months ago Contributors 20
W doc fixed packaging so that all doc files are included in distribution. 2 months ago dilh @ ! . @ G
etc change build to run in /tmp 18 days ago

+ 9 contributors

https://github.com/simsong/bulk _extractor

There were many reasons to update bulk_extractor

Maintenance Costs
= Autoconf-based system required modification for major OS releases
—BE uses threading, access file systems, elc.
» bulk_extractor support of out-of-date Python versions
—caused it to be banned from a Linux release!

Changes in CPU / 10 / memory trade-off
» CPU cores are ~50% faster than in 2012
= Laptops and low-end workstations have 2x to 3x as many cores
= High-end servers: 64 cores in 2012; 96 cores in 2020
= Memory is 3x faster; SSDs are commonplace now — no seek time
» Disk I/0O and network drives are faster

Large parts of BE were single-threaded

= BE1 — 1 thread per 16MiB page. “Last page” could take 30-60 min to process.
= Histoaram processina: batch at end of paae processina. and sinale-threaded.

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

10

The most important reason: Correctness

THE GEORGE

WASHINGTON
UNIVERSITY

WASHINGTON, DC

Most computer software implements specifications:
* Formal specifications — RFCs, end-user requirements, etc.

» Informal specifications — What’s in the programmer’s head

» Being able to read data written by the same program

Many digital forensics tools are based on reverse engineering.
» Read and decode data written by other programs.

= Authors of other programs may be unknown or unwilling to share technical details.

Many digital forensics tools crash or print warnings when they run.
= Bulk_extractor when processing nps-2009-domexusers.E01:

11:33:51 Offset 486MB (1.13%) Done in 1:57:57 at 13:31:48
11:34:08 Offset 57@0MB (1.33%) Done in 2:02:19 at 13:36:27
11:34:25 Offset 654MB (1.52%) Done in 2:03:45 at 13:38:10

std: :exception Scanner:
std: :exception Scanner:
std: :exception Scanner:
std: :exception Scanner:

evtx Exception:
evtx Exception:
evtx Exception:
evtx Exception:

Error:
Error:
Error:
Error:

Read past end of sbuf sbuf.pos@:
Read past end of sbuf sbuf.pos@:
Read past end of sbuf sbuf.pos@:
Read past end of sbuf sbuf.pos@:

(661649934-HIBERFILE | 84582400) bufsize=4096
(721594368-HIBERFILE |144343296) bufsize=4096
(721594368-HIBERFILE |144351488) bufsize=4096
(721594368-HIBERFILE |144384256) bufsize=4096

11

THE GEORGE

Update plan: objectives Fled

WASHINGTON, DC

Make the program easier to compile and maintain

12

Goal: BE easier to compile and maintain T Ceonce

UNIVERSITY

Approach: Adopting C++17 e

Autoconf checks for differences between OS.

= Can only check for what it knows!
» Creates #define statement that need to be handled in your code with #ifdef

C++11, C++14, C++17 standards

= Compiler flag to indicate which standard you want
» A standard set of #include files specified by the standard
* C++14 adds multi-threading — removed #1fdefs for POSIX and Windows threads!

= C++17 adds file system operations — removed #1fdefs, code for dir recursion, etc.
Be sure to check C++ compiler and library support!
» https://en.cppreference.com/w/cpp/compiler support

C++17 core language features C++20 core language features
e = m I
o
B3 I
w = 4 w 4
- € a ° < € a e <
2 m | s & 3 2z | % 2 |m 5 B8 38 BRE =z
e (2 2 | 3 | 8 % e 5§ o 32% = o o z ¥ (8|8 (2(S|%5|02"% B
o] © L x 2 ° 3 &I 5 [Collapse] o 7 o = X | o |0 - 4 & | [Coll 1
a 3 < o ® a = 5 = oD 2 3 < o e a £ 8 R T
€ 8 | BB s b8 (PR ol & | & |8 (B2]0|%(2|%8% |2
E ° + ¥ 0 ¥ g0 a 3 8|+ |F|an|¥% Bn | &
] T [¥ E &
+ £ E + 2 B+
C++17 fe Paper(s) S o C++20 feature Paper(s) z B
] ~ ® =
ew auto rules for
19. Allow lambda-capture [=, this] |PO409R2 (& 8 6 19.22¢ 10.0.0* 5.1 20.7
direct.list- N3922 & 5 3.8 (20912), Yes | 4101 170 103 17.7 | 110 ool et i e =
initialization 8 (partial)*
VA_OPT POSOSRYE) 16 (partialys 9 19.25¢+ | 11.0.3* 5.1 20.7
tat t o . U . 3
sssssssss 6 25 | 19.10* | Yes | 412 180 10.3 177 | 110 P1042R1) 12
with no messag:
typename in 4.7 (partianyx| >0
template template N4051 & 5 35 (2]691'2)* Yes 4101 | 17.0 10.3 17.7 | Yes* Designated initializers P0329R4 (& (e ’ (partial)* 19.21* (partial)* 5.1 20.7
parameter 10
Removing template-parameter-list for =
A - P0428R2 A 8 9 19.22% 0.0* 5. 7
trigraphs N4086 & 5 35 16.0 Yes 5.0 10.3 191 11.0 generic lam o a 11.0.0% 5.1 20
eeeeeeeeeeeeeee S 2L SR IS0 ey o 8 6 19.25¢ 10.0.0° 5.1 20.7
P 6 3.6 (Update Yes | 412 @ 17.0 10.3 17.7 | 11.0 bit-fiel

* sz 2 " 1
3) Initializer list constructors in

Attrihntac far

13

https://en.cppreference.com/w/cpp/compiler_support

Goal: Improve reliability and make it easier for others to eseoree

WASHINGTON
UNIVERSITY

contribute code; Approach: continuous integration

BE 1.6: No formal or ongoing testing; occasional End-to-End Testing
» Run the program and see if output looks right.
= (Common in digital forensics tools.)

BE 2.0: Systematic testing
= Unit tests & end-to-end regression tests.
= All automated as part of development and build process.
* Implemented with C++ test framework (Catch2)

Using C++ test framework

* Enable compiler instrumentation:

—Record test coverage
-fprofile-arcs -ftest-coverage

—AddressSanitizer to catch invalid/illegal memory references
-fsanitize=address -fsanitize-address-use-after-scope

— ThreadSanitizer to address multithreading issues
-fsanitize=thread

14

THE GEORGE

Automating Tests - Unit Tests e

WASHINGTON, DC

C++ instrumentation

= Unit tests for every forensic function

_ _ Expected result
* Frequently required restructuring code

Example: Base64 identification

49 const std::string JSON2 {"[{\"1\": \"one@base64.com\"}, {\"2\": \"two@base64.com\"}, {\"3\": \"three@base64.com\"}]1\n"};
182 TEST_CASE("scan_base64_functions", " [support]"){

183 base64array_initialize();

184 sbuf_t sbufl("W3siMSI6ICIvbmVAYmFzZTYOLMNvbSI9LCB7IjIi0iAidHdvQGIhc2U2NC5)b201i");

185 bool found_equal = false;

186 REQUIRE (sbuf_line_is_base64(sbufl, @, sbufl.bufsize, found_equal) == true); 1. Verify BASE64 recognition
187 REQUIRE(found_equal == false);

188

189 sbuf_t sbuf2("W3siMSI6GICIvbmVAYmFzZTYOLmMNvbSI9LCB7IjIi0iAidHdvQGIhc2U2NC5jb2@i\n"

190 "fSwgeyIzIjogInRocmV1QGIhc2U2NC5jb20ifVeK");

191 REQUIRE(sbuf_line_is_base64(sbuf2, @, sbufl.bufsize, found_equal) == true);

192 REQUIRE(found_equal == false); 2 Verlfy BASE64 recognition
193

194 sbuf_t xsbuf3 = decode_base64(sbuf2, 0, sbuf2.bufsize); among other data.

195 REQUIRE(sbuf3 != nullptr);

196 REQUIRE(sbuf3->bufsize == 78);

197 REQUIRE(sbuf3->asString() == JSON2); 3. Verify BASEG4

1:: } galete SHUTS; properly decoded

15

Automating Tests - End-to-End tests

THE GEORGE

WASHINGTON
UNIVERSITY

WASHINGTON, DC

Uses the same C++ instrumentation!

» Refactored main(argv, argc)) so that is now called bulk_extractor(argv, argc)
» main() calls bulk_extractor()

= Unit tests can repeatedly call bulk_extractor() with different arguments.

Advantages:

= Test program sets up runtime environment, calls bulk_extractor(), and validates results.

» Makes it easier to catch errors involving resource management (e.g. memory, file

descriptors).

» Makes it possible to validate processing of command-line parameters.

= Makes it possible to validate program restart logic.

94
95
96
97
98
99
100

TEST_CASE("e2e-h", "[end-to-end]") {
/¥ Try the -h option x*/
const char xargv[] = {"bulk_extractor", "=h", nullptr};
std::stringstream ss;
int ret = run_be(ss, argv);
REQUIRE(ret==1); // =h now produces 1

16

THE GEORGE

Update plan: objectives S

WASHINGTON, DC

Make the program easier to compile and maintain ¢/

Make it easier for others to contribute code

= Use Git “modules” for increased separation between components
» Use GitHub “Actions” for continuous integration tests on every commit & pull request
= Display code coverage results of unit tests

17

Split projects up into modules for improved

WASHINGTON
UNIVERSITY

maintainability. T

bulk_extractor 1.0 consists of three git modules:

= github.com://simsong/bulk_extractor.git —CLI, GUI, data reader, scanners
= github.com://simsong/be13_api.git — Framework for scanner set, feature recorders
= github.com://simsong/dfxml.git — Digital Forensics XML writer.

For bulk extractor 2.0:

= github.com://simsong/bulk_extractor.qit
= github.com://simsong/be13_api.qit
= https://github.com/dfxml-working-group/dfxml_cpp
—Created a GitHub “organization.”
—Separated DFXML C++ tools from DFXML Python tools
= https://github.com/simsong/BEViewer/
—dJava GUI is now a separate module (simsong/bulk_extractor is a sub-module)
—Allows significant updates to C++ application without impact on Java GUI

18

github.com://simsong/bulk_extractor.git
github.com://simsong/be13_api.git
github.com://simsong/dfxml.git
github.com://simsong/bulk_extractor.git
github.com://simsong/be13_api.git
https://github.com/dfxml-working-group/dfxml_cpp
https://github.com/simsong/BEViewer/

GitHub Actions to combine unit tests with code

coverage tools

Pull requests Issues Marketplace Explore

O Search or jump to...

H simsong / be13_api Public
<> Code © Issues 8 i1 Pull requests 1) Discussions ® Actions f3 Projects
Workflows New workflow All workflows

Showing runs from all workflows
All workflows

Q. Filter workflow runs
?o BE13_API Cl (c++17)

‘Eo BE13_API CI (c++17) on Free... 541 workflow runs

© BE13_API CI (c++17) on FreeBSD
BE13_API Cl (c++17) on FreeBSD #59: Scheduled

@ BE13_APICI (c++17)
BE13_API CI (c++17) #289: by simsong

© BE13_API CI (c++17) on FreeBSD
BE13_API CI (c++17) on FreeBSD #58: Scheduled

@ fixed typos
BE13_API CI (c++17) #288: Commit 4aa30e5 pushed by simsong

© BE13_APICI (c++17)
BE13_API Cl (c++17) #287: by simsong

@ Slg dev (#76)
BE13_API Cl (c++17) #286: Commit 0e5079a pushed by simsong

@ merged in conflict
BE13_API Cl (c++17) #285: Commit 41e1f53 pushed by simsong

© resolved conflict

BE13_API CI (c++17) #284: Commit 8da6e24 pushed by
simsong

@ typ9o

& Unwatch 4

0 wiki

aws=-1linux

main

slg-dev

main

slg-dev

slg-dev

-

Event ~

% Fork 7

@ security

Status ~

¥¢ Star 9

[~ Insights

Branch ~

£ 2 days ago

© 23s

5 8 days ago

B 9 days ago

& 21s

B 9 days ago

®2m4s

5 9 days ago

@ m 21s

B 9 days ago
& 2m 10s

B 9 days ago
() 6m 27s

5 9 days ago
() 1m 28s

[:3 10 days ago

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

|_—Tests on FreeBSD failing

Branch being tested

Commit to “main” did
not cause any problems!

19

THE GEORGE

“codecoVv” tool integrates with GitHub Actions T

WASHINGTON, DC

O O () simsong/be13_api: API for bulk X +

“ C @ O B8 nhttps://github.com/simsong/be13_api w ® & In D ® H © @ B =
[word_and_context_list.h ran clang-format on all code 7 months ago
‘= README.md 4

be13_api

branch sig-dev: h

This is the framework for the bulk_extractor plug-in APL. It is called be13_apibecause the APl was
developed for Bulk_Extractor version 1.3. The API has been used without change in Bulk_Extractor
versions 1.4 and 1.5, and will be used without change in Bulk_Extractor version 2.0

The Bulk_Extractor APl is a plug-in API for bulk_extractor "scanners." Scanners are implemented as
extern "C" functions which are called from the bulk_extractor C++ framework. All bulk_extractor
scanners are implemented using the API. Scanners can either be compiled into the bulk_extractor
executable, or they can be loaded at run-time from the plug-ins directory. The directory contains
zero or more shared libraries (on Unix/Linux/MacOS) or DLLs (on Windows).

There is no differnece in functionality between scanners that are compiled into the program (e.g.
bulk_extractor or tcpflow) and those that are loaded at runtime.

20

THE GEORGE

WASHINGTON
UNIVERSITY

WASHINGTON, DC

O O A Codecov X +
— C @ O B nttps://app.codecov.io/gh/simsong/be13_api kg @ ¥ Ihn @O & lﬂ ®©@ ®@ B =
COVERAGE SUNBURST ® RECENT COMMITS
]‘ Merge remote-tracking branch 'origin/aws-linux' into HE
~. 8 i fixed typos
y ¢
I~ simsong
— 8 i Slg dev (#76)
y ¢
' simsong
$ merged in conflict

simsong <

(1 regex_vector.cpp

typ9o

simsong L -O-

21

A Codecov x +

C @ O B https://app.codecov.io/gh/simsong/be13_api Y In O ® lﬂ @ @ S8 GEORGE

SHINGTON

Files Coverage IVERSITY

HINGTON, DC
} scanner_set.cpp 60.00%
B pcap_fake.cpp 89 0 0 89 0.00%
B path_printer.cpp 170 83 0 87 48.82%
B sbufcpp 377 292 0 85 77.45%
[sbuf_stream.cpp 122 48 0 74 39.34%
3 unicode_escape.cpp 135 63 0 72 46.67%
[feature_recorder file.cpp 152 92 0 60 60.53%
B word_and_context_list.cpp 59 0 0 59 0.00%
B feature_recorder.cpp 148 102 0 46 68.92%
B sbufh 77 40 0 37 51.95%
B] threadpool.cpp 96 65 0 31 67.71%
B feature_recorder_set.cpp 89 58 0 31 65.17%
B utils.cpp 52 27 0 25 51.92%
B histogram_defh 51 30 0 21 58.82%
B scanner_params.cpp 24 5 0 19 20.83%
3 regex_vector.cpp 31 14 0 17 45.16%
@ atomic_map.h 70 54 0 16 77.14%
[histogram_def.cpp 36 20 0 16 55.56%
3 word_and_context_list.h 15 0 0 15 0.00%

Sorted by lines not covered

22

C

726
727
728
729
730
731
732

st
734

s
736

37
738
739
740
741
742
743
744
745
746
747
748
749
750

761
762
763
764

765

CP Codecov

@

f

X

e

QO B nhttps:/fapp.codecov.io/gh/simsong/be13_api/blob/main/scanner_set.cpp w ©® & N @O ® IR (O)C)

SouTp aepth

void scanner_set::record_work_start(const sbuf_t *sbufp)
| | Completely Covered
; chufrn-sdentt writer

writer->xmlout("debug:work_start","",

Formatter()

<<
<<
<<
<<
<<

"threadid='" << std::this_thread::get_id() << "'"

" pos@='" << dfxml_writer: :xmlescape(sbufp->pos@®.str()) << "'"
" pagesize='" << sbufp->pagesize << "'"

" bufsize='" << sbufp->bufsize << "'V

aftimer: :now_str(" t='""'"") true);

void scanner_set::record_work_start_posOstr(const std::string posOstr) pd()t (:()\/Eareacj

if (writer) {

void scanner_set::record_work_end(const sbuf_t *sbufp)

1 T

writer->xmlout("debug:work_start","",

Formatter() << "pos@='" << dfxml_writer::xmlescape(posOstr) << "'" true);

Partially Covered

debug_flags.debug_benchmark sbufp->deptt writer

writer->xmlout("debug:work_end", "",

Formatter()

<<
<<
<<
<<

"threadid='" << std::this_thread::get_id() << "' "

"pos@="'" << dfxml_writer::xmlescape(sbufp->pos@.str()) << "'"
"rc='" << sbufp->reference_count << "'"

aftimer: :now_str(" t='""'"") true);

GEORGE
SHINGTON
IVERSITY

HINGTON, DC

23

THE GEORGE

Update plan: objectives Hel

WASHINGTON, DC

Make the program easier to compile and maintain ¢/
Make it easier for others to contribute code v

Removal experimental code & simplify the codebase
= Experimental code:
—Removed bulk_extractor scanners written for specific research projects

» Simplify codebase:
—Moved more functionality from bulk_extractor.git to be13_api.git
—Removed features that were not widely used (e.q. writing to SQLite3)
—Removed support for obsolete operating systems

24

THE GEORGE

Update plan: objectives S

WASHINGTON, DC

Make the program easier to compile and maintain ¢/
Make it easier for others to contribute code v/
Removal experimental code & simplify the codebase v/

Decrease program runtime — a difficult goal!

* Run time depends on what’s being analyzed
—Run time increases when more scanners are activated
—Run time decreases when scanners decide not to analyze something

* Redesign internals to make it easier to measure:
—CPU time spent in each scanner (vs. recursively called scanners)
—CPU time spent at top-level analysis (vs. recursive analysis)
—CPU time spent analyzing new data

= Better reporting of runtime:
—Systematically capture runtime information in DFXML

» Refactoring measurement system led to more efficient analysis
—Measuring “time spent analyzing new data” = “only analyze new data” scanner flag.
—Moved speedups for individual scanners into architecture

25

THE GEORGE

Results: BE1 vs. BE2 HASHINGTON

WASHINGTON, DC

Size

26

BE1 vs. BEZ2:

BEZ2 is a lot smaller

Size

BE1 BE2 BE1 BE2

files files lines lines
C++ Code 274 221 191,779 178,848
Java Code 88 0 17,933 0

THE GEORGE
WASHINGTON
UNIVERSITY

27

BE1 vs. BE2: THE GEoRGE

WASHINGTON
UNIVERSITY

BE2 compiles faster

Size v
Compile-time (relevant for development)

BE1 BE2 REASON
Mac mini 2018 | Mac mini 2018
configure 25 sec 16 sec less probing

Slightly harder

make -j1 115 sec 121 sec .
C++ compiles

make -j12 32 sec 32 sec parallelism!

28

BE1 vs. BE2: THE GEORGE

WASHINGTON
UNIVERSITY

BEZ2 is finding a lot of stuff that BE1 missed oeTon o

Size v
Compile-time (relevant for development) v/

Runtime v
file BE16 BE2.0 Beta 4
AnaIySiS aler.ts.txt 62 19
domain.txt 72,027 76,800
email.txt 8,757 8,751
ether.txt 5 1
ether_histogram_1.txt n/a 0
exif.txt 232 235
facebook.txt n/a 0
ip.txt 4 4,444
jpeg_carved.txt 43 17671 1,724 additional JPEGs carved
json.txt 4 958
kml.txt 0 2
ntfsusn_carved.txt 2 1
rfc822.txt 4,240 4,219
tep.txt n/a 56
tcp_histogram.txt n/a 0
telephone.txt 767 760
unzip_carved.txt 41 n/a
url.txt 108,352 112,754
winpe.txt 10,740 10,592
winpe_carved.txt 4 10573| 10,569 windows executables carved!
winprefetch.txt 124 0
zip.txt 5,196 10,193

29

Conclusion:

WASHINGTON
UNIVERSITY

What this means for digital forensics tools

New releases:

» Should be validated against previous releases in a systemic manner
» Results should be published in a machine-readable form.
= Clearly document:

—New data that is recovered from legacy datasets (compared to previous version)
—Data recovered from new datasets that previous version would miss
—Qvercollection that has been eliminated

We need to set expectations for DF tools

= Complete rewrites are slow
— 10 yeatrs to get from “Ethereal” to Wireshark 1.0 in 2008, 2.0 in 2015
— Volatility 2: 2.5 - October 2015; 2.6 - December 2016
— Volatility 3: v1.0.0 - Feb 01, 2021; v 1.0.1 - Feb 1, 2021

Unclear how to measure proprietary tools

30

