
Keeping Forensic
Tools Sharp
A Case Study of Updating bulk_extractor 1.6 to 2.0

Thursday, Feb 24

1:40 p.m. - 2:00 p.m. C14

Simson Garfinkel, PhD*

These slides can be downloaded from https://simson.net/ref/2022/AAFS_Keeping_Tools_Sharp.pdf

DISCLAIMER: The views expressed are those of the author and do not reflect the official policy or
position of the US Government, the Department of Homeland Security, the Department of Defense,
or the Department of Commerce.

https://simson.net/ref/2022/AAFS_Keeping_Tools_Sharp.pdf

Hello!

2

Overview for this talk (15 minutes)

Why digital forensics tools require continual updating

Case study: bulk_extractor

What this means for open-source digital forensics

3

Digital forensics tools require constant maintenance

OS Creep
Language Creep
Forensic Science Creep
O&M (operations & maintenance) “tail”

4

https://pixabay.com/illustrations/hacker-computer-ghost-cyber-code-4031973/

Digital forensics tools require constant maintenance

OS Creep
! Platforms being analyzed change over time

—Windows 95 → Windows NT → Windows XP → Windows 7 → Windows 10
—Feature Phones → iPhone & Android
—Tablets

! Forensics practitioners favor different operating systems over time.
—Linux / Windows / MacOS

! OS used for analysis must be upgraded
—Old apps may have bugs or security vulnerabilities
—Old apps may not run on new OS
—New versions of apps may not run on old operating systems.

5

Digital forensics tools require constant maintenance

OS Creep ✔︎
Language Creep — Mostly a concern for open-source software
! Open-source software is typically distributed in source-code form
! Operating systems are better at preserving binary compatibility than source-code

compatibility
—ABI (Application Binary Interface) is very stable.
—High-level languages change — file names change, features are deprecated, etc.

! Example:
—Java source code from the early 2000s will not compile with a modern Java compiler
—Java bytecode from the early 2000s will frequently run on a modern JVM
—Java bytecode & JVM from the early 2000s will almost always run on a modern OS

6

Digital forensics tools require constant maintenance

OS Creep ✔︎
Language Creep ✔︎

Digital forensics creep — DF science is constantly improving
! DF keeps getting better!

—More complete implementations of today’s undocumented data structures
—More reliable, efficient implementations of today’s documented data structures.

! DF is struggling to keep up!
—Compression standards (e.g. Snappy)
—New memory structures (e.g. Windows 10 memory structures)
—New image formats (e.g. HEIC)

! DF software keeps improving
—Usability improvements, support for running in cloud, etc.

7

Digital forensics tools require constant maintenance

OS Creep ✔︎
Language Creep ✔︎
Forensic Science Creep ✔︎
O&M (operations & maintenance) “tail”
! All software needs to be maintained
! DF software is not any different

—Bugs reported in software
—Updates to secure hash algorithms (MD5 ❌ ; SHA-1❌ ; SHA-256 ✔︎)

8

Case Study: Updating bulk_extractor from 1.6 to 2.0

bulk_extractor:
! Open source DF tool developed between 2003 and 2014

—command-line tool: ~ 59K lines of C++98
—GUI: ~ 18K lines java
—Compiled with Autoconf toolchain

! Runs on macOS, Linux and Windows
! Multi-threaded carving and identity “extraction” tool
! Embedded in at least one commercial product
! User base: research, education, law enforcement, defense

9

https://github.com/simsong/bulk_extractor

There were many reasons to update bulk_extractor

Maintenance Costs
! Autoconf-based system required modification for major OS releases

—BE uses threading, access file systems, etc.
! bulk_extractor support of out-of-date Python versions

—caused it to be banned from a Linux release!

Changes in CPU / IO / memory trade-off
! CPU cores are ~50% faster than in 2012
! Laptops and low-end workstations have 2x to 3x as many cores
! High-end servers: 64 cores in 2012; 96 cores in 2020
! Memory is 3x faster; SSDs are commonplace now → no seek time
! Disk I/O and network drives are faster

Large parts of BE were single-threaded
! BE1 — 1 thread per 16MiB page. “Last page” could take 30-60 min to process.
! Histogram processing: batch at end of page processing, and single-threaded,

10

The most important reason: Correctness

Most computer software implements specifications:
! Formal specifications — RFCs, end-user requirements, etc.
! Informal specifications — What’s in the programmer’s head
! Being able to read data written by the same program

Many digital forensics tools are based on reverse engineering.
! Read and decode data written by other programs.
! Authors of other programs may be unknown or unwilling to share technical details.

Many digital forensics tools crash or print warnings when they run.
! Bulk_extractor when processing nps-2009-domexusers.E01:

11

Update plan: objectives

Make the program easier to compile and maintain

Make it easier for others to contribute code

Removal experimental code & simplify the codebase

Decrease program’s runtime

12

Goal: BE easier to compile and maintain
Approach: Adopting C++17
Autoconf checks for differences between OS.
! Can only check for what it knows!
! Creates #define statement that need to be handled in your code with #ifdef

C++11, C++14, C++17 standards
! Compiler flag to indicate which standard you want
! A standard set of #include files specified by the standard
! C++14 adds multi-threading → removed #ifdefs for POSIX and Windows threads!
! C++17 adds file system operations → removed #ifdefs, code for dir recursion, etc.

Be sure to check C++ compiler and library support!
! https://en.cppreference.com/w/cpp/compiler_support

13

https://en.cppreference.com/w/cpp/compiler_support

Goal: Improve reliability and make it easier for others to
contribute code; Approach: continuous integration
BE 1.6: No formal or ongoing testing; occasional End-to-End Testing
! Run the program and see if output looks right.
! (Common in digital forensics tools.)

BE 2.0: Systematic testing
! Unit tests & end-to-end regression tests.
! All automated as part of development and build process.
! Implemented with C++ test framework (Catch2)

Using C++ test framework
! Enable compiler instrumentation:

—Record test coverage
-fprofile-arcs -ftest-coverage

—AddressSanitizer to catch invalid/illegal memory references
-fsanitize=address -fsanitize-address-use-after-scope

—ThreadSanitizer to address multithreading issues
-fsanitize=thread

14

Automating Tests - Unit Tests

C++ instrumentation
! Unit tests for every forensic function
! Frequently required restructuring code

Example: Base64 identification

15

Expected result

1. Verify BASE64 recognition

2. Verify BASE64 recognition 
 among other data.

3. Verify BASE64  
 properly decoded

Automating Tests - End-to-End tests

Uses the same C++ instrumentation!
! Refactored main(argv, argc)) so that is now called bulk_extractor(argv, argc)
! main() calls bulk_extractor()
! Unit tests can repeatedly call bulk_extractor() with different arguments.

Advantages:
! Test program sets up runtime environment, calls bulk_extractor(), and validates results.
! Makes it easier to catch errors involving resource management (e.g. memory, file

descriptors).
! Makes it possible to validate processing of command-line parameters.
! Makes it possible to validate program restart logic.

16

Update plan: objectives

Make the program easier to compile and maintain ✔︎
Make it easier for others to contribute code
! Use Git “modules” for increased separation between components
! Use GitHub “Actions” for continuous integration tests on every commit & pull request
! Display code coverage results of unit tests

Removal experimental code & simplify the codebase
Decrease program’s runtime

17

Split projects up into modules for improved
maintainability.
bulk_extractor 1.0 consists of three git modules:
! github.com://simsong/bulk_extractor.git —CLI, GUI, data reader, scanners
! github.com://simsong/be13_api.git — Framework for scanner set, feature recorders
! github.com://simsong/dfxml.git — Digital Forensics XML writer.

For bulk_extractor 2.0:
! github.com://simsong/bulk_extractor.git
! github.com://simsong/be13_api.git
! https://github.com/dfxml-working-group/dfxml_cpp

—Created a GitHub “organization.”
—Separated DFXML C++ tools from DFXML Python tools

! https://github.com/simsong/BEViewer/
—Java GUI is now a separate module (simsong/bulk_extractor is a sub-module)
—Allows significant updates to C++ application without impact on Java GUI

18

github.com://simsong/bulk_extractor.git
github.com://simsong/be13_api.git
github.com://simsong/dfxml.git
github.com://simsong/bulk_extractor.git
github.com://simsong/be13_api.git
https://github.com/dfxml-working-group/dfxml_cpp
https://github.com/simsong/BEViewer/

GitHub Actions to combine unit tests with code
coverage tools

19

Branch being tested

Tests on FreeBSD failing

Commit to “main” did 
not cause any problems!

“codecov” tool integrates with GitHub Actions

20

21

22

Sorted by lines not covered

23

Completely Covered

Not covered

Partially Covered

Update plan: objectives

Make the program easier to compile and maintain ✔︎
Make it easier for others to contribute code ✔︎
Removal experimental code & simplify the codebase
! Experimental code:

—Removed bulk_extractor scanners written for specific research projects

! Simplify codebase:
—Moved more functionality from bulk_extractor.git to be13_api.git
—Removed features that were not widely used (e.g. writing to SQLite3)
—Removed support for obsolete operating systems

Decrease program’s runtime

24

Update plan: objectives

Make the program easier to compile and maintain ✔︎
Make it easier for others to contribute code ✔︎
Removal experimental code & simplify the codebase ✔︎
Decrease program runtime — a difficult goal!
! Run time depends on what’s being analyzed

—Run time increases when more scanners are activated
—Run time decreases when scanners decide not to analyze something

! Redesign internals to make it easier to measure:
—CPU time spent in each scanner (vs. recursively called scanners)
—CPU time spent at top-level analysis (vs. recursive analysis)
—CPU time spent analyzing new data

! Better reporting of runtime:
—Systematically capture runtime information in DFXML

! Refactoring measurement system led to more efficient analysis
—Measuring “time spent analyzing new data” → “only analyze new data” scanner flag.
—Moved speedups for individual scanners into architecture

25

Results: BE1 vs. BE2

Size
Compile-time (relevant for development)
Runtime
Analysis

26

BE1 vs. BE2:
BE2 is a lot smaller
Size

Compile-time (relevant for development)
Runtime
Analysis

27

BE1 
files

BE2 
files

BE1 
lines

BE2 
lines

C++ Code 274 221 191,779 178,848

Java Code 88 0 17,933 0

BE1 vs. BE2:
BE2 compiles faster
Size ✔︎
Compile-time (relevant for development)

Runtime
Analysis

28

BE1 
Mac mini 2018

BE2 
Mac mini 2018 Reason

configure 25 sec 16 sec less probing

make -j1 115 sec 121 sec Slightly harder
C++ compiles

make -j12 32 sec 32 sec parallelism!

BE1 vs. BE2:
BE2 is finding a lot of stuff that BE1 missed
Size ✔︎
Compile-time (relevant for development) ✔︎
Runtime ✔︎
Analysis

29

file BE16 BE2.0 Beta 4
alerts.txt 62 19

domain.txt 72,027 76,800
email.txt 8,757 8,751
ether.txt 5 1

ether_histogram_1.txt n/a 0
exif.txt 232 235

facebook.txt n/a 0
ip.txt 4 4,444

jpeg_carved.txt 43 1,767
json.txt 4 958
kml.txt 0 2

ntfsusn_carved.txt 2 1
rfc822.txt 4,240 4,219

tcp.txt n/a 56
tcp_histogram.txt n/a 0

telephone.txt 767 760
unzip_carved.txt 41 n/a

url.txt 108,352 112,754
winpe.txt 10,740 10,592

winpe_carved.txt 4 10,573
winprefetch.txt 124 0

zip.txt 5,196 10,193

1,724 additional JPEGs carved

10,569 windows executables carved!

Conclusion:  
What this means for digital forensics tools
New releases:
! Should be validated against previous releases in a systemic manner
! Results should be published in a machine-readable form.
! Clearly document:

—New data that is recovered from legacy datasets (compared to previous version)
—Data recovered from new datasets that previous version would miss
—Overcollection that has been eliminated

We need to set expectations for DF tools
! Complete rewrites are slow

—10 years to get from “Ethereal” to Wireshark 1.0 in 2008, 2.0 in 2015
—Volatility 2: 2.5 - October 2015; 2.6 - December 2016
—Volatility 3: v1.0.0 - Feb 01, 2021; v 1.0.1 - Feb 1, 2021

Unclear how to measure proprietary tools

30

