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Administrivia

• A04 graded - issues with solutions

• Academic paper research

• Comments on project proposals - several require resubmits

• No class next two weeks: 4/10 - Passover, 4/17 - Easter Break


Starting a cluster using the AWS Command Line Tool and specifying different 
parameters


Spark MLlib + ML


Hands-on Examples/Labs using both Pyspark and Scala on Jupyter


Agenda

 2

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



http://www.ec2instances.info/

Launch a cluster using the AWS CLI + bootstrap
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Spark component that provides the machine learning/data mining algorithms

• Pre-processing techniques

• Classification

• Clustering

• Itemset mining


MLlib API is divided into two packages

• org.apache.spark.mllib (original API - predates DataFrames)


—It contains the original APIs built on top of RDDs  
• org.apache.spark.ml (newer API)


—It provides higher-level API built on top of DataFrames for constructing ML pipelines 
—It is recommended because with DataFrames the API is more versatile and flexible  
—It provides the pipeline concept 

Spark MLlib
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Spark MLlib is based on a set of basic local and distributed data types

• Local vector

• Labeled point 

• Local matrix

• Distributed matrix


DataFrames for ML are built on top of these basic data types 
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Local org.apache.spark.mllib.linalg.Vector objects are used to store vectors 
of double values

• Both dense and sparse vectors are supported 


The MLlib algorithms works on vectors of double 

• Non double attributes/values must be mapped to double values  

Dense and sparse representations are supported 

• E.g., a vector (1.0, 0.0, 3.0) can be represented


—in dense format as [1.0, 0.0, 3.0]  
—or in sparse format as (3, [0, 2], [1.0, 3.0]) 
▪ where 3 is the size of the vector 
▪ [0,2] contains the indexes of the non-zero cells 
▪ [1.0, 3.0] contains the values of the non-zero cells  

Local vectors (RDD)
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The following Scala code shows how a vector can be created in Spark 

import org.apache.spark.mllib.linalg.Vector;

import org.apache.spark.mllib.linalg.Vectors; 

// Create a dense vector (1.0, 0.0, 3.0). Vector dv = Vectors.dense(1.0, 0.0, 3.0); 

// Create a sparse vector (1.0, 0.0, 3.0) by  
// specifying its indices and values corresponding // to non-zero entries  

Vector sv = Vectors.sparse(3, new int[] {0, 2}, 

new double[] {1.0, 3.0}); 

Local vectors (RDD)
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Local org.apache.spark.mllib.regression.LabeledPoint objects are local 
vector associated with a label 
The label is a double value 

For the classification problem, each class label is associated with an integer 
value ranging from 0 to C-1, where C is the number of distinct classes 

Both dense and sparse vectors associated with a label are supported 

In MLlib, labeled points are used by many supervised learning algorithms 

The following code shows how a LabeledPoint can be created in Spark 

import org.apache.spark.mllib.linalg.Vectors;  
import org.apache.spark.mllib.regression.LabeledPoint; 

// Create a labeled point with a positive label and // a dense feature vector.  
LabeledPoint pos = new LabeledPoint(1, 

Vectors.dense(1.0, 0.0, 3.0)); 

// Create a labeled point with a negative label and a sparse feature // vector.  
LabeledPoint neg = new LabeledPoint(0, Vectors.sparse(3, new int[] {0, 2}, new double[] 
{1.0, 3.0})); 

Labeled Points (RDD)
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Frequently the training data are sparse

• E.g., textual data are sparse. Each document contains only a subset of the possible words

• Hence, sparse vectors are used 


MLlib supports reading training examples stored in the LIBSVM format 

• It is a commonly used format that represents each document/record as a sparse vector 


The LIBSVM format 

• Is a text format in which each line represents a labeled sparse feature vector using the following 

format: 

• label index1:value1 index2:value2 ...


where 

• label is an integer associated with the class label

• the indexes are one-based (i.e., integer indexes starting from 1) representing the features

• the values are the (double) values of the features 

• After loading, the feature indexes are converted to zero-based (i.e., integer indexes starting from 

0) 


Sparse labeled data
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DataFrame 

• Spark ML uses DataFrames from Spark SQL as ML datasets, which can hold a variety of data 

types 

• DataFrame could have different columns storing text, feature vectors, (true) labels, and 

predictions 


Transformer 

• A Transformer is an algorithm which can transform one DataFrame into another DataFrame 

• A feature transformer might take a DataFrame, read a column (e.g., text), map it into a new 

column (e.g., feature vectors), and output a new DataFrame with the mapped column appended

• A classification model is a Transformer which can be applied on a DataFrame with features and 

transforms it into a DataFrame with also predictions  

Spark ML

 11

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals



Estimator 

• An Estimator is an algorithm which can be applied on a DataFrame to produce a Transformer (a 

model) 

• An Estimator implements a method fit(), which accepts a DataFrame and produces a Model of 

type Transformer 

• An Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on 

an input dataset and returns a model 

• A classification algorithm such as Logistic Regression is an Estimator, and calling fit() on it a 

Logistic Regression Model is built, which is a Model and hence a Transformer 


Pipeline 

• A Pipeline chains multiple Transformers and Estimators together to specify a Machine learning/

Data Mining workflow

• The output of a transformer/estimator is the input of the next one in the pipeline 


—a simple text document processing workflow aiming at building a classification model 
includes several steps  
▪ Split each document into a set of words  
▪ Convert each set of words into a numerical feature vector  
▪ Learn a prediction model using the feature vectors and the associated class labels  

Spark ML
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Parameter 

• All Transformers and Estimators share a common API for specifying parameters 


Summary

• In the new APIs of Spark MLlib the use of the pipeline approach is preferred 

• This approach is based on the following steps 


—The set of Transformers and Estimators that are  
needed are instantiated  

—A pipeline object is created and the sequence of transformers and estimators associated with 
the pipeline are specified  

—The pipeline is executed and model is created  
—(optional) The model is applied on new data  

Spark ML
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All the clustering algorithms available in Spark work only with numerical data

• Categorical values must be mapped to integer values (i.e, numerical values)  

Important!
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Logon on AWS console

Before you start the cluster, go to security groups for the ElasticMapReduce-
master and open port 8888

Start the cluster using the AWS CLI as shown or manually with both bootstrap 
actions (s3://gu-anly502/bootstrap2-ipyhton.sh and s3://gu-anly502/
bootstrap2-jupyter.sh.) Use m4.2xlarge instances, 1 master and 3 core nodes

Once cluster starts, ssh into master node

git clone https://github.com/jhlch/ds-for-telco

git clone https://github.com/pbugnion/s4ds

hadoop fs -mkdir telco

hadoop fs -put churn.all telco/
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s3://gu-anly502/bootstrap2-jupyter.sh
https://github.com/jhlch/ds-for-telco

