L.08: Just enough Scala for Spark

ANLY 502: Massive Data Fundamentals
Simson Garfinkel & Marck Vaisman
March 20, 2017

GEORGETOWN UNIVERSITY

Administrivia
« AO4 not graded yet
- A05 will be posted mid-week (hopefully)

Virtual Machine tools (useful for learning and playing with new tools)
- Vagrant
* Docker

Brief overview Functional programming concepts
Just Enough Scala for Spark

- Basic Scala data types
« Methods and Functions
« RDD Operations

Lab - play with the Dean Wampler's Spark Notebook and look at non-trivial Scala code
- Walk through steps involved in creating an inverted index

Time Permitting - Brief overview of PIG

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 2

INPUT X
v

FUNCTION f:

v
OUTPUT f(x)

https://codesachin.files.wordpress.com/2016/04/220px-function_machine2-svg.png

Functional programming

Technical functional code characteristics:

 immutable data
« first class functions
* tail call

Functional code is characterized by:

- the absence of side effects
* not relying on data outside the current function
* not changing the data outside of the current function

https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-
programming

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 5

No side effects...

This is an unfunctional function:

a=2>0

def increment():
global a
a +=1

This is a functional function:

def increment(a):
return a + 1

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 6

Don't iterate over lists, use map and reduce

name lengths = map(len, ["Mary", "Isla", "Sam"])

print name lengths
=> [4, 4, 3]

This is a2 map that squares every number in the passed collection:

squares = map(lambda x: x * x, [0, 1, 2, 3, 4])

print squares
#=> 1[0, 1, 4, 9, 16]

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 7

Rewrite as map

import random

names = ['Mary', 'Isla’', 'Sam']
code names = ['Mr. Pink', 'Mr. Orange', 'Mr. Blonde']

for i in range(len(names)):
names[i] = random.choice(code names)

print names
=> ['Mr. Blonde', 'Mr. Blonde', 'Mr. Blonde']

import random
names = ['Mary', 'Isla’', 'Sam']

secret names = map(lambda x: random.choice(['Mr. Pink',
'"Mr. Orange',
'"Mr. Blonde']),

names)

GEORGETOWN UNIVERSITY &

Massive DATA FUNDAMENTALS

Rewrite as reduce

This code counts how often the word 'sam' appears in a list of strings:

sentences = ['Mary read a story to Sam and Isla.’',
'Isla cuddled Sam.',
'Sam chortled. ']

sam _count = 0
for sentence in sentences:

sam count += sentence.count('Sam')

print sam count
=> 3

This is the same code written as a reduce:

sentences ['Mary read a story to Sam and Isla.’',
'Isla cuddled Sam.',

'Sam chortled. ']

sam _count = reduce(lambda a, x: a + x.count('Sam'),
sentences,
0)

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 9

Write declaratively, not imperatively

Imperative

from random import random from random import random
time = 5 def move cars():
car_positions = [1, 1, 1] for i, _ in enumerate(car positions):

if random() > 0.3:

while time: car_positions[i] += 1

decrease time o
def draw_car(car_position):

print '-' * car position

time -= 1
print '
for i in range(len(car positions)):
move car
if random() > 0.3:
car _positions[i] += 1

def run_step of race():
global time
time -= 1
move_cars()

def draw():
draw car print '
print '-' * car positions[i] for car position in car positions:

draw_car(car_position)

time = 5
car_positions = [1, 1, 1]

while time:

run_step of race()
- draw()

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 10

Remove state

This is a functional version of the car race code:

from random import random

def move cars(car_ positions):
return map(lambda x: x + 1 if random() > 0.3 else Xx,
car _positions)

def output car(car_position):

return * car position

def run_step of race(state):
return {'time': state['time'] - 1,
'car_positions': move_cars(state['car positions'])}

def draw(state):

print
print '\n'.join(map(output car, state['car positions']))

def race(state):
draw(state)
if state['time’']:
race(run_step of race(state))

race({'time': 5,
'car positions': [1, 1, 11})

The code is still split into functions, but the functions are functional. There are
three signs of this. First, there are no longer any shared variables. time and
car positions get passed straight into race(). Second, functions take
parameters. Third, no variables are instantiated inside functions. All data changes
are done with return values. race() recurses’ with the result of
run_step of race(). Each time a step generates a new state, it is passed
immediately into the next step.

Massive DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY 11

Why Scala?

Non-Technical
Spark is written in Scala

- Most new features will be available trough the Scala API first before Python or R

There Is industry demand

Technical

Statically typed

Mixed paradigm - object oriented programming
Mixed paradigm - functional programming
Sophisticated type system

Succinct, elegant, flexible syntax

Scalable

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 13

References used for this lecture

OREILLY"

Programming

Scala

SCALABILITY = FUNCTIONAL
PROGRAMMING + OBJECTS

Dean Wampler & Alex Payne

www.tutorialspoint.com

0 e — 3 ttpsi//ewi

https://www.youtube.com/watch?v=LBoSgiLV_NQ

https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-
programming

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 14

Basics of OOP (like Python)

Everything in Scala is an object

« Objects have states and behaviors. An object is an instance of a class

—Objects have types, the type determines what we can do with the object.

—Example: numbers, strings, files, digital images
« A Class can be defined as a template/blueprint that describes the behavior/state of an object.
« A Method is a behavior. A Class can contain many methods.

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 15

Scala Data Types

Scala has all the same data types as Java, with the same memory footprint and precision.
Following is the table giving details about all the data types available in Scala:

Data Type Description
Byte 8 bit signed value. Range from -128 to 127
Short 16 bit signed value. Range -32768 to 32767
Int 32 bit signed value. Range -2147483648 to 2147483647
Long 64 bit signed value. -9223372036854775808 to
9223372036854775807
Float 32 bit IEEE 754 single-precision float
Double 64 bit IEEE 754 double-precision float
Char 16 bit unsigned Unicode character. Range from U+0000 to
U+FFFF
String A sequence of Chars
Boolean Either the literal true or the literal false
Unit Corresponds to no value
Null null or empty reference
Nothing The subtype of every other type; includes no values
Any The supertype of any type; any object is of type Any
AnyRef The supertype of any reference type

All the data types listed above are objects. There are no primitive types like in Java. This
means that you can call methods on an Int, Long, etc.

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 16

Variables

val - iImmutable variable

scala> val array: Array[String] = new Array(5)
array: Array[String] = Array(null, null, null, null, null)

scala> array = new Array(2)
<console>:8: error: reassignment to val
array = new Array(2)

val m = 17
m = 18 // error!

scala> array(0) = "Hello"

scala> array
resl: Array[String] = Array(Hello, null, null, null, null)

var - mutable variable (but can only be reassigned with another value of same
type)

scala> var stockPrice: Double = 100.0 var m : Int = 17

stockPrice: Double = 100.0 m = 18 // ok

m = "seventeen" // error!

scala> stockPrice = 200.0 m = 18.0 // error!

stockPrice: Double = 200.0

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 17

Define a "Person' class with immutable and mutable parts

// src/main/scala/progscala2/typelessdomore/person.sc

scala> class Person(val name: String, var age: Int)
defined class Person

scala> val p = new Person("Dean Wampler", 29)
p: Person = Person@165a128d

scala> p.name
res@: String = Dean Wampler // Show the value of firstName.

scala> p.age
res2: Int = 29 // Show the value of age.

scala> p.name = "Buck Trends"
<console>:9: error: reassignment to val // Disallowed!

p.name = "Buck Trends"
A

scala> p.age = 30
p.age: Int = 30 // Okay!

The var and val keywords only specify whether the reference can be
changed to refer to a different object (var) or not (val). They don’t
specify whether or not the object they reference is mutable.

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 18

scala> 1 to 10 // Int range inclusive, interval of 1, (1 to 10)
res@: scala.collection.immutable.Range.Inclusive =
Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> 1 until 10 // Int range exclusive, interval of 1, (1 to 9)
resl: scala.collection.immutable.Range = Range(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> 1 to 10 by 3 // Int range inclusive, every third.
res2: scala.collection.immutable.Range = Range(1, 4, 7, 10)

scala> 10 to 1 by -3 // Int range inclusive, every third, counting down.
res2: scala.collection.immutable.Range = Range(10, 7, 4, 1)

scala> 1L to 10L by 3 // Long
res3: scala.collection.immutable.NumericRange[Long] = NumericRange(1, 4, 7, 10)

scala> 1.1f to 10.3f by 3.1f // Float with an interval I= 1

res4: scala.collection.immutable.NumericRange[Float] =
NumericRange(1.1, 4.2, 7.2999997)

scala> 1.1f to 10.3f by 0.5Ff //Float with an interval < 1
res5: scala.collection.immutable.NumericRange[Float] =
NumericRange(1.1, 1.6, 2.1, 2.6, 3.1, 3.6, 4.1, 4.6, 5.1, 5.6, 6.1, 6.6,
7.1, 7.6, 8.1, 8.6, 9.1, 9.6, 10.1)

scala> 1.1 to 10.3 by 3.1 // Double
res6: scala.collection.immutable.NumericRange[Double] =

NumericRange(1.1, 4.2, 7.300000000000001)

scala> 'a' to 'g' by 3 // Char
res7: scala.collection.immutable.NumericRange[Char] = NumericRange(a, d, g)

scala> BigInt(1) to BigInt(10) by 3
res8: scala.collection.immutable.NumericRange[BigInt] =
NumericRange(1, 4, 7, 10)

scala> BigDecimal(1.1) to BigDecimal(10.3) by 3.1
res9: scala.collection.immutable.NumericRange.Inclusive[scala.math.BigDecimal]
= NumericRange(1.1, 4.2, 7.3)

Massive DATA FUNDAMENTALS

GEORGETOWN ‘UNIVERSITY 19

Statically typed languages can be very verbose. Consider this typical declaration in Java, before Java 7:

import ;

ﬁashMap<Integer, String> intToStringMap = new HashMap<Integer, String>();

We have to specify the type parameters <Integer, String> twice. Scala uses the term fype annotations for explicit type declarations like HashMap<Integer, String>.
Java 7 introduced the diamond operator to infer the generic types on the righthand side, reducing the verbosity a bit:

HashMap<Integer, String> intToStringMap = new HashMap<>();

We’ve already seen some examples of Scala’s support for type inference. The compiler can discern quite a bit of type information from the context, without explicit type
notations. Here’s the same declaration rewritten in Scala, with inferred type information:

val intToStringMap: HashMap[Integer, String] = new HashMap
If we specify HashMap[Integer, String] on the righthand side of the equals sign, it’s

even more concise:

val intToStringMap2 = new HashMap|Integer, String]

Some functional programming languages, like Haskell, can infer almost all types, be— cause they can perform global type inference. Scala can’t do this, in part because
Scala has to support subtype polymorphism (inheritance), which makes type inference much harder.

Here is a summary of the rules for when explicit t

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 20

Integer - type Int

Floating Point - type Float

Character - single character, single quote

String - sequence of characters,
double quote

Multi Line Strings

Massive DATA FUNDAMENTALS

0

035

21
OXFFFFFFFF
0777L

0.0
le3ef
3.14159f
1.0e100
.1

‘\uoee4l’

"\t

"Hello, \nWorld!"

"This string contains a \"

charac

ter."

GEORGETOWN UNIVERSITY

Literal Values

oy

Multiple assignments

Tuples combine a fixed number of items together so that they can be passed
around as a whole. Unlike an array or list, a tuple can hold objects of different

types but they are immutable.

The following is an example of a tuple holding an integer, a string, and the console.

val t = (1, "hello"”, Console)

Which is syntactic sugar (shortcut) for the following:

val t = new Tuple3(1, "hello", Console)

Accessing tuple elements

val t = (4,3,2,1)

To access elements of a tuple t, you can use method t._1 to access the first element, t._2 to
access the second, and so on. For example, the following expression computes the sum of all
elements of t.

val sum = t._ 1 + t._ 2 + t. 3 + t._4

GEORGETOWN_ UNIVERSITY

Massive DATA FUNDAMENTALS

by

What is an RDD

An immutable, partitioned collection of elements that can be operated on in parallel. This
class contains the basic operations available on all RDDs,

such as map, filter, and persist. In addition, PairRDDFunctions contains operations
available only on RDDs of key-value pairs, such as groupByKey and join;
DoubleRDDFunctions contains operations available only on RDDs of Doubles; and
SequenceFileRDDFunctions contains operations available on RDDs that can be saved as
SequenceFiles. All operations are automatically available on any RDD of the right type (e.g.
RDD[(Int, Int)] through implicit.

Internally, each RDD is characterized by five main properties:

- A list of partitions - A function for computing each spilit - A list of dependencies on other
RDDs - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-
partitioned) - Optionally, a list of preferred locations to compute each split on (e.g. block
locations for an HDFS file)

All of the scheduling and execution in Spark is done based on these methods, allowing
each RDD to implement its own way of computing itself. Indeed, users can implement
custom RDDs (e.g. for reading data from a new storage system) by overriding these
functions. Please refer to the Spark paper for more details on RDD internals.

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 23

RDDs support many of the operations supported by native Scala collections
RDDs are immutable

- Cannot change an RDD once created. All operations create new RDDs or other Scala objects

RDDs are lazy

« Unlike native Scala collections, RDD operations are only evaluated when needed. (In the REPL
any operation on a collection prints the values of the new collection to screen.

Transformations on RDDs: create new RDD from current one. Lazy evaluation

Actions on RDDs: force the evaluation of an RDD and normally return a Scala
object rather than an RDD. Actions are evaluated immediately.

List of Transformations and Actions

Massive DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY 24

http://spark.apache.org/docs/latest/programming-guide.html#rdd-operations

Some Scala Examples

nttps://qist.github.com/mmakowski/379028
nttps://qist.github.com/mmakowski/379031
nttps://github.com/dcsobral/ConwaylLife

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 25

https://gist.github.com/mmakowski/379028
https://gist.github.com/mmakowski/379031
https://github.com/dcsobral/ConwayLife

Inverted Index Example (from Spark Notebook)

val iiFirstPassl sc.wholeTextFiles(shakespeare.toString).
flatMap § location_contents_tuple2 =>
val words location_contents_tuple2. 2.split("""\W+""")
val fileName location_contents_tuple2._1l.split(File.separator).last
words.map(word => ((word, fileName), 1))

reduceByKey((countl, count2) => countl + count2).
map § word_file_count_tup3 =>
(word_file_count_tup3._1._1, (word_file_count_tup3._1._2, word_file_count_tup3._2))

Fo-
groupByKey.
sortByKey(ascending true).
mapValues § iterable =>
val vect iterable.toVector.sortBy § file_count_tup2 =>
(-file_count_tup2._2, file_count_tup2._1)
3

vect.mkString(",")

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 26

Coming Up

AO05 - Due Friday 3/31
Q07 and Q08

Project proposals due 3/22
LO9 - Scalable Machine Learning

Massive DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY 27

Apache Pig

Started at Yahoo! Research

 Easier approach for MapReduce
« Procedural language

 PiglLatin scripts interpreted and run as
MapReduce jobs.

Pig Advantages:
- Easier to program than MapReduce.

« Declarative statements directly describe
data transformations.

« Optimizer makes efficient decisions.
- Debugging operators:

—DESCRIBE, EXPLAIN, ILLUSTRATE
« Can run “locally” or on Hadoop.

Pig Disadvantages:

- Simple statements may generate many
MapReduce jobs.

+ Can be hard to debug.
- Keywords are case insensitive

—LOAD, USING, AS, GROUR BY, ...

* Functions, relations, fields are case
sensitive:

—PigStorage, COUNT,

Massive DATA FUNDAMENTALS

GEORGETOWN ‘UNIVERSITY 29

Pig Latin: A Not-So-Foreign Language for Data Processing

Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience

Pig reference materials in Readings/L.o5 Databases

. * I i . t
Christopher Olston Benjamin Reed Utkarsh Srivastava Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, i
Yahoo! Research Yahoo! Research Yahoo! Research Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed, Plg Latln Reference Manual 2
. § R | Santhosh Srinivasan, Utkarsh Srivastava
Ravi Kumar Andrew Tomkins

Yahoo! Research

ABSTRACT
There is a growing need for ad-hoc analysis of extremely
large data sets, especially at internet companies where inno-
vation eritically depends on being able to analyze terabyt

Yahoo! Research

1. INTRODUCTION

At a growing number of organizations, innovation revolves
around the collection and analysis of enormous data sets
such as web crawls, search logs, and click streams. Inter-
net companies such as Amazon, Google, Microsoft, and Ya-

Yahoo!, Inc.”

ABSTRACT

Increasingly, organi

ations capture, transform and anal;
enormous data sets. Prominent examples include internet
companies and e-science. The Map-Reduce scalable dataflow
paradigm has become popular for these applications. Its

records; extracted entity-relationship models). The proc
ing combines generic relational-style operations (
ter; join; count) with specialized domain-specific operations
(e.g., part-of-speech tagging; face detection). A similar sit-
uation arises in e-science, national intelligence, and other

®
o

by
Table of contents

of data collected every day. Parallel database products, e. ’ v for | i s domains. .

Teradata, offer a solution, but are usually prohibitively e: h}uo!‘ are pri.:mlnxmn})l‘of AxmlL i of this data mmlm u}l‘,nh ::i::]lg‘l\mtp::;t dataflow lxr](]:iggx]:mv]v:i:lx\g model is favored by "The popular Map-Reduce 8] scalable data processing frame- 1 Overview

pensive at this le. Besides, many of the people who ana- the innermost loop of the product improvement cycle. For . B N o . Ve s S e realiza ca

i\'zo this data are entrenched procedural prgma{mmus. who example, the engineers who develop search engine ranking SQL. On the other hand, the extreme simplicity of Map- :‘ll:t :Ziféld?’lnd 0;;;; j”;',:f;f;”:;ﬁ?{f,"‘f"]ﬂri?éfﬁu'lz 2 Data Types and More 4

find the declarative, SQL style to be unnatural. The suc algorithms spend much of their time analyzing search logs Reduce leads to much low-level hacking to deal with the model that appeals to many users. However, in practice, the 3 Arithmetic Operators and More 30

of the more procedural map-reduce programming model, and looking for exploitable trends. many-step, branching dataflows that arise in practice. More- extreme simplicity of the Map-Reduce programming model R

its scalable i fons on ity hard- The sheer size of these data sets dictates that it be stored over, users must repeatedly code standard operations such Toads to s t i g’“ © r‘* “‘ :‘ ‘] prog ' di f’]' ode 4 Relational Operator: 47

e, is evidence of the above. However, the map-reduce and processed on highly parallel systems, such as shared- as join by hand. These practices waste time, introduce bugs, ot comon N oo dntaflosrs. aehich ofton atice it ran J .

et o o vel und id, o b (o oo dead nothing chaers. Parallel database products, o Toradata, harm readability and impede optimizations port complox Nt dataflows, whih often arise in prac, 5 Diagnostic Operator 84
tom user code that is hard to maintain, and reuse Oracle RAC, Netezza, offer a solution by providing a simple Pig is a high-level dataflow system that aims at a sweet tm. e e o i M-‘pvp(fr.t 0 other dnt 6 UDF S 91
- describe a new language called Pig Latin that we have SQL query interface and hiding the complexity of the phy spot between SQL and Map-Reduce. Pig offers SQL-style g of "‘l“l“"l“ data ”,“]*‘ (g v and ;‘“}”{ d“‘j‘

designed to fit in a sweet spot between the declarative styl ical cluster. These products however, can be prohibitively high-level data manipulation constructs, which can be as- matching opors -wv:]), @ erucial aspect of knovledg discov- 7 Eval Functions 08

of SQL, and the low-level, procedural style of map-reduc expensive at web scale. Besides, they wrench programmers sembled in an explicit dataflow and interleaved with custom l“‘k‘ ﬁ-l':” _>v”'”1”"“ y"_""“‘ “"d‘t“ a ;:‘?;“}“fh“i;f“ I“"“‘_" ;)‘* ;

The accompanying system, Pig, is fully implemented away from their preferred method of analyzing data, namely Map- and Reduce-style functions or Pig pro- ike Bltcring, nggrogation and top-k thresholding must be 8 Load/Store Functions 110

compiles Pig Latin into physical plans that are executed writing imperative scripts or code, toward writing declara- grams are compiled into sequences of Map-Reduce jobs, and coced By nanc. . : ! R

over Hadoop, an open-source, map-reduce at tive queries in SQL, which they often find unnatural, and executed in the Hadoop Map-Reduce environment. Both Pig Consequently, users end up stitching togother Map-Reduce 9 Math Functions 114

We give a few examples of how engineers at Yahoo! are using overly restrictive. and Hadoop are open-source projects administered by the dataflows by hand, hacking multi-input flows, and repeat- 10 String Functions 124

Pig to dramatically reduce the time required for the develop- As evidence of the above, programmers have been flock- Apache Software Foundation. edly implementing standard operations inside black-box func- ring

ment and exccution of their data analysis tasks, compared to g to the more procedural map-reduce [4] programming This paper describes the challenges we faced in develop- ons. These practices slow down data analysis, introduce 11 Bag and Tuple Function: 131

using Hadoop directly. We also report on a novel debugging model. A map-reduce program essentially performs a group- ing Pig, and reports performance comparisons between Pig s ?‘k“' make data processing programs difficult to read, °

environment that comes integrated with Pig, that can lead by-aggregation in parallel over a cluster of machines. The execution and raw Map-Reduce execution. and impede automated optimization 12 File Command 133

to oven higher productivity gains. Pig is an open-sourc programmer provides & map function that dictates how the Our Pig system [4] offers composable high-level data ma-

Apache-incubator project, and available for general use. grouping is performed, and a reduce function that performs nipulation constructs in the spirit of SQL, while at the same 13 Shell Command 141

the aggregation. What is appealing to programmers about 1. INTRODUCTION time retaining the properties of Map-Reduce -
Categories and Subject Descriptor: this model is that there are only two high-level declarative Organizations increasingly rely on ultra-large-scale data, make them attractive for certain users, data type 14 Utility Command 142

H.2.3 Database Management: Languages

General Terms: Languages.

*olston@yahoo-inc. com
Threedeyahoo-inc. com
futkarsheyahoo-inc. con
¥ ravikuna@yahoo-inc . com

Yatonkinsoyahoo-inc. con

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, o
republish, to post on servers or to redistribute to lsts, requires prior specific
permission and/or a fee.

SIGMOD'08, June 9-12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

primitives (map and reduce) to enable parallel processing,
but the rest of the code, i.e., the map and reduce functions,
can be written in any programming language of choice, and
without worrying about parallelism.
Unfortunately, the map-reduce model has its own set of
one-input, two-stage data flow is extremely
sks having a different data flow -
joins or n stages, inelegant workarounds have to be devised
Also, custom code has to be written for even the most com-
mon operations, e.g., projection and filtering. These factors
lead to code that is difficult to reuse and maintain, and in
which the semantics of the analysis task are obscured. More-
over, the opaque nature of the map and reduce functions
impedes the ability of the system to perform optimizations
We have developed a new language called Pig Latin that
combines the best of both worlds: high-level declarative
querying in the spirit of SQL, and low-level, procedural pro-
gramming & la map-reduce.

processing in their day-to-day operations. For example,
modern internet companies routinely process petabytes of
web content and usage logs to populate search indexes and
perform ad-hoc mining tasks for research purposes. The
data includes unstructured elements (e.g., web page text;
images) as well as structured elements (c.g., web page click

*Author email addresses: {gates, olgan, shubhamc,
pradeepk, shravanm, olston, breed, sms, utkarsh
@yahoo-inc. com.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

———

workloads. In particular, as with Map-Reduce, Pig pro-
grams encode explicit dataflow graphs, as opposed to im-
plicit dataflow as in SQL. As one user from Adobe put it

“Pig scems to give the ne parallel pro-
gramming constructs (FOREACH, FLATTEN,
COGROUP ... etc) and also give sufficient control
back to the programmer (which a purely declara-
tive approach like [SQL on top of Map-Reduce]"
d

Pig dataflows can interleave built-in relational-s
tions like filter and join, with user-provided executables
ripts or pre-compiled binaries) that perform custom pro-
cessing. Schemas for the relational-style operations can be
supplied at the last minute, which is convenient when work-
ing with temporary data for which system-managed meta-
data is more of a burden than a benefit. For data used

oftware project removed.

Nlctnn 20NK Pin

Gates 2009 The Pig Experience PigLatin Reference Manu

Massive DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY 30

Famous example:

Pig program to find top 5 websites for Twitter users age 18-25

Users =
Filtered =
25;
Pages
Joined
user;
Grouped
Summed

Sorted =
Top5s =
store Top5

load 'users' as (name, age);
filter Users by age >= 18 and age <=

load 'pages' as (user, url);
joln Filtered by name, Pages by

group Joined by url;

foreach Grouped generate group,
count(Joined) as clicks;

order Summed by clicks desc;

= limit Sorted 5;

into "topb5sites’;

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY

31

java.io.IOException;
java.util . ArrayList;
java.util.Iterator;
java.util.List;

org.apache.hadoop.£s.Path;
org.apache.hadoop.io.LongWritable;
org.apache.hadoop.io.Text;
org.apache.hadoop.io.Writable;
org.apache.hadoop.io.WritableComparable;
org.apache.hadoop.mapred.FileInputFormat;
org.apache.hadoop.mapred.FileQutputFormat;
org.apache.hadoop.mapred.JobConf ;
org.apache.hadoop.mapred.KeyValueTextInputFormat;
org.apache.hadoop.mapred.Mapper;
org.apache.hadoop.mapred.MapReduceBase;
org.apache.hadoop.mapred.OutputCollector;
org.apache.hadoop.mapred.RecordReader;
org.apache.hadoop.mapred.Reducer;
org.apache.hadoop.mapred.Reporter;
org.apache.hadoop.mapred.SequenceFileInputFormat;
org.apache.hadoop.mapred.SequenceFileQutputFormat;
org.apache.hadoop.mapred.Text InputFormat;
org.apache.hadoop.mapred. jobcontrol.Job;
org.apache.hadoop.mapred. jobcentrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
public static class LoadPages extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text val,

OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {

// Pull the key out

String line = val.toString();

int firstComma = line.indexOf(',');

String key = line.substring(0, firstComma);

String value = line.substring(firstComma + 1);

Text cutKey = new Text(key);

// Prepend an index to the value so0 we know which file

// it came from.

Text outVal = new Text("1" + value);

oc.collect (outKey, outvVal);

}

}
public static class LoadAndFilterUsers extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text wval,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// Pull the key out
String line = val.toString();
int firstComma = line.indexOf(',');
String value = line.substring(firstComma + 1);
int age = Integer.parselnt(value);
if (age < 1B || age > 25) return;
String key = line.substring(0, firstComma);
Text ocutKey = new Text(key);
// Prepend an index to the value so0 we know which file
/f it came from.
Text cutVal = new Text("2" + value);
oc.collect(outKey, outVal);

}

}

public static class Join extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {

public void reduce(Text key,
Iterator<Text> iter,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// For each value, figure out which file it's from and
store it
// accordingly.
List<String> first = new ArrayList<String>()
(

List<String> second = new ArrayList<String>();

while (iter asNext()) |
Text t = iter.next();
String value = t.toSt)
if (value.charAt(0) ==)
first.add(value.substring(l));
else second.add(value.substring(l));

Massive DATA FUNDAMENTALS

reporter.setStatus("O0K");

}
// Do the cross product and collect the values
for (String sl : first) {
for (String =22 : second) {
String outval = key + *," + 31 + "," 4+ 82;

oc.collect(null, new Text(outval));
reporter.setStatus("0K");

¥

}

public static class LoadJoined extends MapReduceBase
implements Mapper<Text, Text, Text, LongWritable> {

public void map(

Text X,

Text val,

OutputCollector<Text, LongWritable> oc,

Reporter reporter) throws IOException {
// Find the url
String line = val.toString();
int firstComma = line.indexOf("’
int secondCo: = line.indexOf(',', firstComma);
String key = line.substring(firstComma, secondComma);

// drop the rest of the record, I don't need it anymore,

// just pass a 1 for the combiner/reducer to sum instead.

Text outKey = new Text(key);
ce.collect(cutKey, new LongWritable(1L));
}
)}
public static class ReduceUrls extends MapReduceBase
implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

public void reduce(
Text key,
Iterator<LongWritable> iter,
OutputCollector<WritableComparable, Writable> oc,
Reporter reporter) throws IOException
// Add up all the values we see

leng sum = 0;
while (iter.hasNext()) {
sum += iter.next().get()
reporter.setStatus("OK")

}

oc.collect(key, new LongWritable(sum));
}
)

public static class LoadClicks extends MapReduceBase

implements Mapper<WritableComparable, Writable, LongWritable,

Text> {

public void map(
WritableComparable key,
Writable val,
OutputCellector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

oc.collect((LongWritable)val, (Text)key);
¥
)}

public static class LimitClicks extends MapReduceBase
implements Reducer<LongWritable, Text, LongWritable, Text>

int count = 0;

public void reduce(
LongWritable key,
Iterator<Text> iter,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

// Only output the first 100 records

while (count < 100 && iter.hasNext()) {
oc.collect(key, iter.next());
count++;

}

)

public static void main(String[) args) throws IOException {
JobConf lp = new JobConf (MRExample.class);
lp.setJobName(“"Load Pages”);
lp.setInputFormat (TextInputFormat.class);

{

Equivalent MapReduce program (in Java)

lp.setOutputKeyClass(Text.class);

1p.setOutputValueClass (Text.class);

lp.setMapperClass(LoadPages.class);

FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages”));

FileOutputFormat.setOutputPath(lp,

new Path("/user/gates/tmp/indexed pages"));
lp.setNumReduceTasks(0);
Job loadPages = new Job(lp);

JobConf 1fu = new JobConf(MRExample.class);
1fu.setJobName("Load and Filter Users");
1fu.setInputFormat(TextInputFormat.class);
1fu.setOutputKeyClass (Text.class);
1fu.setOutputValueClass(Text.class);
1fu.setMapperClass(LoadAndFilterUsers.class);
FileInputFormat.addInputPath(lfu, new
Path("/user/gates/users"));
FileOutputFormat.setOutputPath(lfu,
new Path(”/user/gates/tmp/filtered users"));
1fu.setNumReduceTasks(0);
Job loadUsers = new Job(lfu);

JobConf join = new JobConf(MRExample.class);
join.setJobName("Join Users and Pages");
join.setInputFormat (KeyValueTextInputFormat.class);
join.setOutputKeyClass (Text.class);
join.setOutputValueClass (Text.class);
jein.setMapperClass(IdentityMapper.class);
join.setReducerClass(Join.class);
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed pages"));
FileInputFormat.addInputPath(
Path("/user/gates/tmp/filtered users”));
FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined”));
join.setNumReduceTasks (50);
Job joindeb = new Job(join);
jeinJob.addDependingJob(loadPages);
joinJob.addDependingJob(loadUsers);

JebConf group = new JobConf(MRExample.class);
group.setJobName("Group URLs");
group.setInputFormat (KeyValueTextInputFormat.class);
group.setOutputKeyClass(Text.class);
group.setOutputValueClass(LongWritable.class);
group.setOutputFormat (SequenceFileOutputFormat.class);
group.setMapperClass(LoadJoined.class);
group.setCombinerClass (ReduceUrls.class);
group.setReducerClass (ReduceUrls.class);
FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined”));
FileQutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped”®));
group.setNumReduceTasks (50);
Jeb groupJob = new Job(group);
groupJob.addDependingJob(joinJob);

JobConf topl00 = new JobConf(MRExample.class);
topl00.2etJobName("Top 100 sites");
topl00.setInputFormat (SequenceFileInputFormat.class);
topl00.setOutputKeyClass (LongWritable.class);
topl00.setOutputValueClass(Text.class);
topl00.setOutputFormat (SequenceFileOutputFormat.class);
topl00.setMapperClass (LoadClicks.class);
topl00.setCombinerClass(LimitClicks.class);
topl00.2etReducerClass (Limit ks.class);
FileInputFormat.addInputPath(topl00, new
Path("/user/gates/tmp/grouped”));
FileQutputFormat.setOutputPath(topld0, new
Path("/user/gates/toplO0sitesforuserslBto2s"));
topl00.setNumReduceTasks(1);
Job limit = new Job(topl00);
limit.addDependingJeb(groupdeb);

JobControl jc = new JobContreol(*Find top 100 sites for users

18 to 25");
jec.addJob(loadPages);
je.addJob(loadUsers);
jec.addJob(joinJob);
je.addJob(groupJeb) ;
je.addJob(limit);
je.run();

ORGETOWN_ UNIVERSITY

Pig takes your program and compiles it into a Hadoop job.

| Parser
Building a High-Level Dataflow System | l
on top of Map-Reduce: The Pig Experience " . L)
‘ Logical Optimizer
Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, L
Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed,

Santhosh Srinivasan, Utkarsh Srivastava

Yahoo!, Inc. l Map-Reduce Compiler

!

urls = LOAD ‘dataset’ AS (url, category, pagerank);

groups = GROUP urls BY category; ‘ Map'REduce Optimizer /
bigGroups = FILTER groups BY COUNT (urls)>1000000; l
result = FOREACH bigGroups GENERATE

group, toplO(urls); ‘ Hadoop Job Manager
STORE result INTO ‘myQOutput’; \

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 33

Pig builds a "data flow" model from your program.

Pig Latin Logical Plan
|ﬁ LOAD | (x,vy,2) .
A = LOAD ‘filel’ AS (x, v, 2); ! _ LOAD | (t,u,v)

B = LOAD ‘file2’ AS (t, u, v); | FILTER | (x v, 2)
C=FILTERA byy >0;) <

D =JOIN CBY x, B BY u;
JOIN | {x,y,2,t,u,v)

E =GROUP D BY z; >
F = FOREACH E GENERATE p \
group, COUNT(D); ‘ GROUP | {group, {(x, v, z, t, u, v)})
STORE F INTO ‘output’; ,L
~ FOREACH J (group, count)
¥

[STORE][gmup,munt}

Figure 2: Pig Latin to logical plan translation.

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 34

The data flow is translated into a series of MapReduce steps.

Logical Plan

.f

[LOAD :{x, W) . | Map] Map

1 LOAD | (t,u,v) N) x
i) ’ ’ Local Sort Local Sort ‘
lw —¢—J J——
p S . Combine Combine ‘

JOIN | (x,y,2,1,u,V) ' =

x | Shuffle |
‘x GROUP | (group, {(x, v, 2, t, u, v)})

-é H i
=y - =

. Jﬂ . | Merge/ # Merge/
‘ FOREACH J (group, count) . Combine _ Combine
[STORE] (group, count) | Reduce | Reduce

Pig Latin to logical plan translation.

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 35

Which are translated to an efficient Map Reduce Plan.

Map Reduce Plan

Logical Plan Physical Plan |
e 1] MAP | FILTER * |
' LoAD ‘\| LOAD * | C AAR 2| | !
I LOAD * ..

L. — (3.\ "\
4 [oAb [FILTER :J | LOCALREARRANGE * |
FILTER 2| ﬂ \. I ~

[LOCAL REARRANGE “J

[JOIN 4) v __ ; REDUCE |\ PACKAGE 4| .'
— T | GLOBAL REARRANGE * | T T
") 1‘_ - } | 4
; > FOREACH
GROUP "~ | PACKAGE *| \ y,
¥ — — | !
FOREACH E’J [FOREACH * (MAP
R — — , -
STORE | | LOCAL REARRANGE ° | | (_LOCALREARRANGE)
z \ :)
| GLOBAL REARRANGE ° | (REDUCE ¢)
v \ | PACKAGE ° |
PACKAGE ° |
T) L 4 .
b]
T o A
STORE |

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 36

Pig Latin Program — Basic Program Design

Basic Pig Latin program: « A = LOAD filename [USING function] [AS

- LOAD data from a file system (HDFS or S3) schemal;
- Transform the data.
- STORE to file system or DUMP to output. €.d..
- A =LOAD 'file';
- A = LOAD filename USING BinStorage();

* A = LOAD filename USING
PigStorage(field_delimiter);

- A = LOAD filename USING PigStorage() AS
(field_desc);

Pig Data Loading Functions:

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY

37

Pig Latin Program — Basic Program Design

Basic Pig Latin program:

- LOAD data from a file system (HDFS or S3) - FILTER
B = FILTER A BY $1 == 1;
» Transform the data. B = FILTER A BY date ==
. : “1980-01-01";
STORE to file system or DUMP to output. 8 - FILTER ABY $1 > 50
- ORDER BY
C = ORDER B BY %9;
C = ORDER B BY date;
« LIMIT
D = LIMIT B 30;
- JOIN
D = JOIN C BY $1, B BY $1;
D = JOIN C BY ipaddress, D BY
ipaddress;

Pig transformation examples:

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY

Pig Latin Program — Basic Program Design

Basic Pig Latin program:

- LOAD data from a file system (HDFS or S3) - STORE
STORE A INTO 'outputfile’;
» Transform the data. STORE A INTO 'outputfile.gz';

« STORE to file system or DUMP to output.

-- Store UTF-8:
STORE A INTO 'output' USING PigDump();

-- Store in Binary
STORE A INTO ‘'output' USING
BinStorage();

--- Store with delimiters:

STORE A INTO 'output' USING
PigStorage('*');

Pig Storage examples:

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 39

Pig can run locally or on MapReduce

Which version am | running?

$ pig -help

Pig modes of operation:

Warning: EMR has problems with pig -x local

Local Mode MapReduce Mode
Interactive
S pig -x local S pig -x mapreduce
Batch iq -
S pig -xX local filename.pig ii?;gamz 2jg?educe

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 40

Pig Latin statements work with relations.

A = LOAD 'foo.txt' A 1s a relation.
A relation is a "bag."

* A bag is a collection of tuples.
« A tuple is an ordered set of fields

Example (from reference guide)

* A field is a piece of data. A = LOAD 'student' USING
PigStorage()
AS (name:chararray,
_ age:int, gpa:float);
Pig Data Types: DUMP A;
] (John,18,4.0F)
- Scalar types: int, long, double, chararray (Mary,19,3.8F)
 map — An “associative array” (like a (Bill,2e,3.9F)
o (Joe,18,3.8F)
python dictionary)
chararray : anytype First Field SecondField Third Field
—e.q.
“{-gir‘st” . “George” Data Type chararray int float
“last” : “Washington” Positional
“born” . 1732 nons,r;r?:f 30 $1 $2
- tuple Possible name age gpa
(vo, vl, v2, ...) name
: Field value John 18 4.0
* bag — a collection of tuples
((aJ b: C)) 1 |
(d. e f) It's best to use nhames!
)

Massive DATA FUNDAMENTALS

GEORGETOWN UNIVERSITY 41

Pig Latin FOREACH ... GENERATE

FOREACH ... GENERATE creates
new relations from old ones.

Example (from reference guide): Simple data types:

Simple Data Types Description Example
A = LOAD 'student' USING Scalars
PigStorage()
AS (name:chararray, age:int, int Signed 32-bit integer 10
glpjl\a/";fioat) ; long Signed 64-bit integer Data: 10L or 101
) Display: 10L
(John,18,4.0F)
(Mary,19,3.8F) float 32-bit floating point Data: 10.5F or 10.5f or 10.5¢2f
(Bill,20,3.9F) or 10-5E2F
(Joe.18.3.8F) Display: 10.5F or 1050.0F
J J °

double 64-bit floating point Data: 10.5 or 10.5¢2 or 10.5E2
Display: 10.5 or 1050.0

X = FOREACH A GENERATE name, $2;

DUMP X; Arrays

(JOhn,4.@F) chararra aracter array (string) in Unicode = hello wor

(Ma I"y, 3 . 8F) " ’ [CJ}'}F-8tf0rmaty(tring) in U de | bell d
Bill,3.9F

E Joe) é .8F)) bytearray Byte array (blob)

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 42

Pig is a complete data flow programming language

Functions:
e+ - %/, %,
NULL.:

« Operations can return NULL;
NULL is ignored by AVG(), MIN(),
MAX(), SUM(), COUNTY)

Conditions:
==, 15,5, <, >, <=

Conditionals:

* NO IF STATEMENT!
« conditional ? if-true : if-false

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 43

Pig is a complete data flow programming language

Functions:
« + -, %/, %,
NULL.:

 Operations can return NULL; Example from Pig Latin Reference Manual:
NULL is ignored by AVG(), Ma = 1,0aD 'data' AS (£l:int,
MAX(), SUM(), COUNT() £2:int, :bag{T:tuple(tl:int,t2:int)});

Conditions: DUMP A;
e e s < Se em (10,1,{(2,3),(4,6)})
T T T e (10,3,{(2,3),(4,6)})
COndItlonaIS (10,6,{(2,3),(4,6),(5,7)})
* NO IF STATEMENT! X = FOREACH A GENERATE f1l, f2, f1%f2;
- conditional ? if-true : if-false DUMP X;
(10,1,0)
(10,3,1)
(10,6,4)

X = FOREACH A GENERATE f2, (£f2==1?1:COUNT(B));
DUMP X;
(1,1L)
(3,2L)
(6,3L)

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 43

Word Count with Pig

lines = LOAD 's3://gu-anly502/ps@2/tobe.txt' as (line:chararray);
words = FOREACH lines generate flatten(TOKENIZE(line)) as word;
grouped = GROUP words by word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

dump wordcount;

LOAD — Loads the data

FOREACH — TOKENIZEs each line. Creates a "words" alias where each tuple
Is a "word"

GROUP — combines words that have the same word
FOREACH — counts the number of words in each group.
DUMP — sends to standard output.

Note:

 Put spaces around the equals sign (=) !

- Most Pig words are case-sensitive. (Exception: built-in statements like LOAD, FOREACH,
GROUP and GENERATE).

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 44

grunt> — the Pig command line

grunt> help
Commands:
<pig latin statement>; - See the PiglLatin manual for details: http://hadoop.apache.org/pig
File system commands:
fs <fs arguments> - Equivalent to Hadoop dfs command: http://hadoop.apache.org/common/docs/current/hdfs_shell.html
Diaghostic commands:
describe <alias>[::<alias] - Show the schema for the alias. Inner aliases can be described as A::B.
explain [-script <pigscript>] [-out <path>] [-brief] [-dot|-xml] [-param <param_name>=<param_value>]
[-param_file <file name>] [<alias>] - Show the execution plan to compute the alias or for entire script.
-script - Explain the entire script.
-out - Store the output into directory rather than print to stdout.
-brief - Don't expand nested plans (presenting a smaller graph for overview).
-dot - Generate the output in .dot format. Default is text format.
-xml - Generate the output in .xml format. Default is text format.
-param <param_name - See parameter substitution for details.
-param_file <file name> - See parameter substitution for details.
alias - Alias to explain.
dump <alias> - Compute the alias and writes the results to stdout. n n
Utilitprommands: P Always aSk for help
exec [-param <param_name>=param_value] [-param_file <file_name>] <script> -
Execute the script with access to grunt environment including aliases.
-param <param_name - See parameter substitution for details. 1
-param_file <file name> - See parameter substitution for de’cails.AIways read the documentatlon
script - Script to be executed.
run [-param <param_name>=param_value] [-param file <file name>] <script> -
Execute the script with access to grunt environment.
-param <param_name - See parameter substitution for details.
-param_file <file name> - See parameter substitution for details.
script - Script to be executed.
sh <shell command> - Invoke a shell command.
kill <job_id> - Kill the hadoop job specified by the hadoop job id.
set <key> <value> - Provide execution parameters to Pig. Keys and values are case sensitive.
The following keys are supported:
default parallel - Script-level reduce parallelism. Basic input size heuristics used by default.
debug - Set debug on or off. Default is off.
job.name - Single-quoted name for jobs. Default is PiglLatin:<script name>
job.priority - Priority for jobs. Values: very low, low, normal, high, very high. Default is normal
stream.skippath - String that contains the path. This is used by streaming.
any hadoop property.
help - Display this message.
history [-n] - Display the list statements in cache.
-n Hide line numbers.
quit - Quit the grunt shell.
grunt>

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 45

Grunt supports many Unix commands:

Is, cat,

grunt> 1s s3://gu-anly502/

16/02/15 15:48:52 INFO s3n.S3NativeFileSystem: listStatus s3://gu-anly502/
with recursive false

s3://gu-anly502/bootstrap.sh<r 1> 936

s3://gu-anly502/gutenberg <dir>

s3://gu-anly502/ps02 <dir>
s3://gu-anly502/ps03 <dir>
s3://gu-anly502/pso4 <dir>
grunt>

grunt> 1ls s3://gu-anly502/ps02/

16/02/15 15:49:01 INFO s3n.S3NativeFileSystem: listStatus s3://gu-anly502/
ps@2 with recursive false

s3://gu-anly502/ps@2/hamlet.txt<r 1> 1644
s3://gu-anly502/ps02/tobe.txt<r 1> 43

grunt>

grunt> cat s3://gu-anly502/ps02/tobe.txt

16/02/15 15:49:05 INFO s3n.S3NativeFileSystem: Opening 's3://gu-anly502/
ps@2/tobe.txt’ for reading

To be, or not to be- that is the question:

grunt>

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 46

To minimize Pig output — lower the warning level

Pig uses log4j to log. Make a copy of the existing log4|.properties file and edit
It:
$ cp /etc/pig/conf.dist/log4dj.properties log4j WARN

—set these lines:
*¥*kx*k* Set root logger level to DEBUG and its only appender to A.
log4j.rootLogger=ERROR, A
log4j.logger.org.apache.pig=warn,A
log4j.logger.org.apache.hadoop=warn,A

When you run pig, type:
$ pig -4 logdj WARN

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 47

Hadoop Word Count in Pig

$ pig -4 log4j WARN
grunt> lines = load 's3://gu-anly502/ps@2/tobe.txt’' as (line:chararray);

grunt> dump lines;

(To be, or not to be-)
(that is the question:)
grunt>

grunt> words = FOREACH lines generate flatten(TOKENIZE(line)) as word;

grunt> grouped = GROUP words by word;

grunt> wordcount = FOREACH grouped GENERATE group, COUNT(words);

grunt> dump wordcount;

68560 [JobControl] WARN org.apache.hadoop.mapreduce.JobResourceUploader - No job jar file
set. User classes may not be found. See Job or Job#setJar(String).

68560 [JobControl] WARN org.apache.hadoop.mapreduce.JobResourceUploader - No job jar file
set. User classes may not be found. See Job or Job#setJar(String).

68934 [DataStreamer for file /tmp/hadoop-yarn/staging/hadoop/.staging/job 1455488005182 0020/
job.xml block BP-1229375385-172.31.42.104-1455487984302:blk 1073742532 7091] INFO
amazon.emr.metrics.MetricsSaver - 1 aggregated HDFSWriteDelay 113 raw values into 1
aggregated values, total 1

(To,1)

(be,1)

(is,1)

(or,1)

(to,1)

(be':l)

(not,1)

(the,1)

(that,1)

(question:,1)

grunt>

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 48

Sorting the output...

grunt> dump wordcount;

68560 [JobControl] WARN org.apache.hadoop.mapreduce.JobResourceUploader - No job jar file
set. User classes may not be found. See Job or Job#setJar(String).

68560 [JobControl] WARN org.apache.hadoop.mapreduce.JobResourceUploader - No job jar file
set. User classes may not be found. See Job or Job#setJar(String).

68934 [DataStreamer for file /tmp/hadoop-yarn/staging/hadoop/.staging/

job 1455488005182 0020/job.xml block

BP-1229375385-172.31.42.104-1455487984302:blk 1073742532 7091] INFO
amazon.emr.metrics.MetricsSaver - 1 aggregated HDFSWriteDelay 113 raw values into 1
aggregated values, total 1

(To,1)

(be, 1)

(is,1)

(or,1)

(to,1)

(be—,l)

(not,1)

(the,1)

(that,1)

(question:,1)

grunt> sorted_wordcount = ORDER wordcount by $0;
grunt> dump sorted_wordcount;
(To,1)

(be,1)

(be—,l)

(is,1)

(not,1)

(or,1)

(question:,1)

(that,1)

(the,1)

(to,1)

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 49

Working with a larger data set — use LIMIT to limit output.

grunt> hamlet = LOAD 's3://gu-anly502/ps02/hamlet.txt' AS (line:chararray);
grunt> words = foreach hamlet generate flatten(TOKENIZE(line)) as word;
grunt> grouped = GROUP words by word;

grunt> wordcount = FOREACH grouped GENERATE group, COUNT(words);
grunt> sorted_words = ORDER wordcount BY $1 DESC;

grunt> sorted words20 = limit sorted _words 20;

grunt> dump sorted_words20;

(of,14)

(the,14)

(to,9)

(and,7)

(The, 6)

(a,5)

(To,5)

(And,5)

(that,4)

(we,4)

(bear, 3)

(That, 3)

(us,3)

(in,3)

(make, 2)

(end, 2)

(makes,2)

(all,?2)

(For,2)

(have, 2)

grunt>

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 50

Pig Latin scripts can be put in files and run from the command line

(like mrjob).

$ cat top20.pig

hamlet = LOAD 's3://gu-anly502/ps@2/hamlet.txt' AS (line:chararray);
words = foreach hamlet generate flatten(TOKENIZE(line)) as word;
grouped = GROUP words by word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

sorted words = ORDER wordcount BY $1 DESC;

sorted words20 = limit sorted words 20;

dump sorted words20;

quit;

$ pig top20.pig -stop-on-failure

Egﬁé}ﬂ) h -stop-on-failure is recommended

(to,9)
(and,7)
(The,6)
(a,5)
(To,5)
(And,5)
(that,4)
(we,4)
(bear,3)
(That, 3)
(us,3)
(in,3)
(make, 2)
(end,2)
(makes, 2)
(all,2)
(For,2)
(have,2)
$

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 51

Pig Status — don't just ignore it.

Use store lines into 'outputfile’; to write output to a file.
4064342 [main] INFO org.apache.pig.tools.pigstats.mapreduce.SimplePigStats - Script Statistics:

HadoopVersion PigVersion UserId StartedAt FinishedAt Features

2.7.1-amzn-0 0.14.0-amzn-0 hadoop 2016-02-15 17:10:13 2016-02-15 17:10:34
UNKNOWN

Success!

Job Stats (time in seconds):

JobId Maps Reduces MaxMapTime MinMapTime AvgMapTime MedianMapTime

MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias

Feature Outputs

job 1455488005182 0036 1 0 6 6 6 6 0
%) %) %) lines MAP_ONLY hdfs://ip-172-31-42-104.ec2.internal:

8020/user/hadoop/outputfile,

Input(s):

Successfully read 2 records (356 bytes) from: "s3://gu-anly502/ps@2/tobe.txt"

Output(s):

Successfully stored 2 records (44 bytes) in: "hdfs://ip-172-31-42-104.ec2.internal:8020/user/

hadoop/outputfile”

Counters:

Total records written : 2

Total bytes written : 44

Spillable Memory Manager spill count : ©
Total bags proactively spilled: ©

Total records proactively spilled: ©

Job DAG:
job 1455488005182 0036

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 52

16/02/15 17:10:34 INFO mapreduce.SimplePigStats: Script Statistics:

HadoopVersion PigVersionUserlId StartedAt FinishedAtFeatures
2.7.1-amzn-0 0.14.0-amzn-9 hadoop 2016-02-15 17:10:13 2016-02-15 17:10:34
UNKNOWN

Success!

Job Stats (time in seconds):

JobId Maps Reduces MaxMapTimeMinMapTimeAvgMapTimeMedianMapTime
MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias
Feature Outputs
job 1455488005182 0036 1 0 6 6 6 6 0
5 0 0 lines MAP_ONLY hdfs://

ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile,

Input(s):
Successfully read 2 records (356 bytes) from: "s3://gu-anly502/ps@2/tobe.txt"

Output(s):
Successfully stored 2 records (44 bytes) in: "hdfs://ip-172-31-42-104.ec2.internal:8020/
user/hadoop/outputfile”

Counters:

Total records written : 2

Total bytes written : 44

Spillable Memory Manager spill count : ©
Total bags proactively spilled: ©

Total records proactively spilled: ©

Job DAG:
job 1455488005182 0036

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 53

16/02/15 17:10:34 INFO mapreduce.SimplePigStats: Script Statistics:

HadoopVersion PigVersionUserlId StartedAt FinishedAtFeatures
2.7.1-amzn-0 0.14.0-amzn-9 hadoop 2016-02-15 17:10:13 2016-02-15 17:10:34
UNKNOWN

Success!

Job Stats (time in seconds):

JobId Maps Reduces MaxMapTimeMinMapTimeAvgMapTimeMedianMapTime
MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias
Feature Outputs
job 1455488005182 0036 1 0 6 6 6 6 0
5 0 0 lines MAP_ONLY hdfs://

ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile,

Input(s):
Successfully read 2 records (356 bytes) from: "s3://gu-anly502/ps02/tobe.txt"

Output(s):
Successfully stored 2 records (44 bytes) in: "hdfs://ip-172-31-42-104.ec2.internal:8020/
user/hadoop/outputfile”

gagiﬂ:émﬁsvwiUEn . grunt> cat hdfs:///user/hadoop/output
Total bytes written : 44 cat hdfs:///user/hadoop/outputfile

Spillable Memory Manager spill count : @ To be, or not to be-

Total bags proactively spilled: © that 1s the question:
Total records proactively spilled: © grunt>
Job DAG:

job_1455488005182_ 0036

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 53

Grunt built-in commands:

Was expecting one of: "\\1i" ...
<EOF> "run”
"cat" ... "exec" ...
"clear" ... "scriptDone”
"fs" ... "
"sh" ... "
"cd" ... <EOL> ...
"cp" ... e
"copyFromLocal™
"copyTolLocal" ... grunt> describe lines
"dump" ... describe lines
"\\d" - 16/02/15 17:14:10 INFO
"describe” ... Describe and lllustrate Configuration.deprecation:
"\\de" ... show the structure of fs.default.name is deprecated.
"aliasgs" e relations. Ipstead, use fs.defaultFS
"explain" ... lines: {line: chararray}
"\\e"
"help" ... grunt> illustrate lines;
"history"” ... e e e e mm—m————-e-
"kill" ... - -
"Is" ... | lines | line:chararray
"mv" ... |
"mkdir" ... e e oo
"pwd" ... - -
"quit" ... | | that is the question:
“\\q"
"register” ... e e e — -
"rm" ... - -
"rmf" ... grunt>
"set" ...
"illustrate”

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 54

Pig User Defined Functions (UDFs)

UDFs expand Pig's functionality.
« Parse input lines
« Perform complex operations.
« Example — a UDF could search the MaxMind IP address geolocation database
—provided that the database is on each node.

Coding Options:
« Write in Java — import as registered jar files.
- Write in jython — (Python that generates jar files) — import as registered jar files.
« Write in python — Access with "pig streaming API" (similar to Hadoop streaming)

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 55

Pig can process any tab-delimited data.

How do you process data that aren't tab-delimited? (e.g. Apache log files)

Piggybank — a collection of algorithms for pig.

« CommonLoglLoader —
- https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CommonLogloader.html

« CombinedLogloader:

- https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CombinedlLoglLoader.html

raw = LOAD 'combined log' USING
org.apache.pig.piggybank.storage.apachelog.CombinedLoglLoader AS (remoteAddr,
remoteLogname, user, time, method, uri, proto, status, bytes, referer, userAgent);

- Note: | was not able to get CombinedLoglLoader to work with the ForensicsWiki logs!

| used REGEX_EXTRACT to extract the log file entries:
logs base =
FOREACH
raw_logs
GENERATE
FLATTEN (EXTRACT(line,
"AOWSH) (A\S+) (AN\S+) ANLCL\\w/]+) s (\\d{2}:\\d{2}:\\d{2}) [+\\-]\\d{4}\\] "(\
\S+) §\>S+) }\S+" (\\S+) (\\S+) "([~"]*)" "([~"]*)"°
AS
host: chararray, identity: chararray, user: chararray, date: chararray, time:
chararray, verb: chararray, url: chararray, request: chararray, status: int,
size: chararray, referrer: chararray, agent: chararray

)s

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 56

https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CommonLogLoader.html
https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CombinedLogLoader.html

Pig program to produce hits-by-day

DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT();
raw_logs = load 's3://gu-anly502/ps@3/forensicswiki.2012.txt’' as (line:chararray);

logs base =
FOREACH raw_logs GENERATE FLATTEN (
EXTRACT(line,
AMONSH) (\N\S+H) (\N\S+) ANLCD\N\w/ J+) s (\\d{2} :\\d{2}:\\d{2}) [+\\-]\\d{4}\\]
TS (s WS+ (Wst) (Wsn) (119" (1)
AS

host: chararray, identity: chararray, user: chararray, date: chararray, time:
chararray, verb: chararray, url: chararray, request: chararray, status: int,
size: chararray, referrer: chararray, agent: chararray

)
by date = GROUP logs base BY (date);
date_counts = FOREACH by date GENERATE
group as date, -- the key you grouped on

COUNT (logs_base); -- the number of log lines wiht this date

dump date_counts;

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 57

Pig output

$ pig parse_apache.pig

16/02/21 20:18:47 INFO pig.ExecTypeProvider: Trying ExecType : LOCAL

16/02/21 20:18:47 INFO pig.ExecTypeProvider: Trying ExecType : MAPREDUCE
16/02/21 20:18:47 INFO pig.ExecTypeProvider: Picked MAPREDUCE as the ExecType
45 [main] INFO org.apache.pig.Main - Apache Pig version 0.14.0-amzn-0 (r:
unknown) compiled Jan 14 2016, ©2:55:53

16/02/21 20:18:47 INFO pig.Main: Apache Pig version 0.14.0-amzn-0 (r: unknown)
compiled Jan 14 2016, ©2:55:53

16/02/21 20:23:09 INFO util.MapRedUtil: Total input paths to process : 5
(01/Jul/2012,35039)
(01/Sep/2012,33272)
(02/Jul/2012,46445)
(02/Sep/2012,36225)
(03/Jul/2012,43922)
(03/Sep/2012,40703)
(04/Jul/2012,38576)

(30/Jul/2012,45488)

30/Sep/2012,37817

E31§3u5;2@12j48353g 266 seconds to process 4GB file!
263298 [main] INFO org.apache.pig.Main - Pig script completed in 4 minutes, 23
seconds and 386 milliseconds (263386 ms)
16/02/21 20:23:10 INFO pig.Main: Pig script completed in 4 minutes, 23 seconds and
386 milliseconds (263386 ms)

[20:23:11 last: 266s][~/ANLY502/L05]
$

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 58

Parse the date as a "datetime" and create a new relation with just the

desired fields.
Old regular expression:

New:

logs base =
FOREACH raw_logs GENERATE FLATTEN (

EXTRACT(1line,

"AONSH) (\N\S+) (\\S+) \NLCON\\Ww/1+) s (\\d{2}:\\d{2}:\\d{2}) [+\\-]1\\d{4}\\]
TNSH (N85 WS+t (Wsw) (W) (1" (1)

) AS

host: chararray, identity: chararray, user: chararray, date: chararray, time:
chararray, verb: chararray, url: chararray, request: chararray, status: int,

size: chararray, referrer: chararray, agent: chararray);

logs base =
FOREACH
raw_logs
GENERATE
FLATTEN (EXTRACT(1line,
AONSH) (ANSH) (AN\SH) ANLCLANTTIENNT "(\N\S+) (AN\S+) \\S+" (\\S+) (\\S+)
B R D B G R LD R
)) AS (
host: chararray, identity: chararray, user: chararray, datetime_str:
chararray, verb: chararray, url: chararray, request: chararray, status: int,
size: int, referrer: chararray, agent: chararray

)5 "schema"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 59

"describe" and "explain"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Describe logs:
logs: {date: datetime,host: chararray,url: chararray,size: int}

Explain logs:

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 60

"describe" and "explain"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Describe logs:
logs: {date: datetime,host: chararray,url: chararray,size: int}

Explain logs:

New Logical Plan:
fogs: (Name: LOStore Schema: date#58:datetime,host#46:chararray,url#5l:chararray,size#54:int)
:---logs: (Name: LOForEach Schema: date#58:datetime,host#46:chararray,url#5l:chararray,size#54:int)
: zName: LOGenerate[false, false, false,false] Schema: date#58:datetime,host#46:chararray,url#5l:chararray,size#5
Uids=[51, 54, 58, 46]
l] }Name: UserFunc(org.apache.pig.builtin.ToDate2ARGS) Type: datetime Uid: 58)
:---datetime_str:(Name: Project Type: chararray Uid: 49 Input: @ Column: (x))
:———(Name: Constant Type: chararray Uid: 57)

|
|
|
|
|
| |

| host:(Name: Project Type: chararray Uid: 46 Input: 1 Column: (x))
|

|

|

|

|

|
url: (Name: Project Type: chararray Uid: 51 Input: 2 Column: (x))

|
size:(Name: Project Type: int Uid: 54 Input: 3 Column: (%))

|-—-(Name: LOInnerLoad[3] Schema: datetime_str#49:chararray)

|
|-——(Name: LOInnerLoad[@] Schema: host#46:chararray)

|
|-——(Name: LOInnerLoad[5] Schema: url#51:chararray)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |-—-(Name: LOInnerLoad[8] Schema: size#54:int)

|
|-—-1logs_base: (Name: LOForEach Schema: host#74:chararray,identity#75:chararray,user#76:chararray,datetime_str#77
rray,status#81:int,size#82:int,referrer#83:chararray,agent#84:chararray)

| (Name: LOGenerate[true] Schema: host#74:chararray,identity#75:chararray,user#76:chararray,datetime_str#77
rray,status#81:int,size#82:int,referrer#83:chararray,agent#84:chararray)

| | |
(Name: UserFunc(org.apache.pig.piggybank.evaluation.string.EXTRACT) Type: tuple Uid: 73)

|
|---(Name: Cast Type: chararray Uid: 17)

|
|
|
[

| | |---1line: (Name: Project Type: bytearray Uid: 17 Input: @ Column: (*))
|

|

|

|

|
|-——(Name: Constant Type: chararray Uid: 72)
-——(Name: LOInnerLoad[@] Schema: line#17:bytearray)

-—-raw_logs: (Name: LOLoad Schema: line#17:bytearray)RequiredFields:null

ical Plan"

GEORGETOWN ‘UNIVERSITY 60

"describe" and "explain"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Describe logs:
logs: {date: datetime,host: chararray,url: chararray,size: int}

Explain logs:

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 60

"describe" and "explain"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Describe logs:
logs: {date: datetime,host: chararray,url: chararray,size: int}

Explain logs:

: Grohe e
fogs: Store(fakefile:org.;;;;;;j;;;t;;;{;;;?;;;;torage) - scope-18
I———logs: New For Each(false,false,false,false) [bag] - scope-17
I LOUserFunc(org.apache.pig.builtin.ToDateZARGS)[datetime] - scope-9
:———Project[chararray][3] - scope-7
:———Constant(dd/MMM/yyyy:HH:mm:ss Z) - scope-8

|
|
|
|
|
| |

| Project[chararray] [8] - scope-11
|

|

|

|

|

|

Project[chararray] [5] - scope-13

|
Project[int] [8] - scope-15

---logs_base: New For Each(true) [bag] - scope-6

| I
POUserFunc(org.apache.pig.piggybank.evaluation.string.EXTRACT) [tuple] - scope-4

|---Cast[chararray] - scope-2

|
|
|
| | |

| | |---Project[bytearray] [8] - scope-1

| |

| |-—=Constant(~(\S+) (\S+) (\S+) \[C([*\J1+)\] "(\S+) (\S+) \S+" (\S+) (\S+) "([*"]%)" "([~"]*)") - scope-3
|

|

—-——raw_logs: Load(s3://qu-anly502/ps@3/forensicswiki.2012-01.unzipped/access.log.2012-01-01:0rg.apache.pig.builtin.PigStorage) - scope-0

Explain Physical Plan

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 60

"describe" and "explain"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Describe logs:
logs: {date: datetime,host: chararray,url: chararray,size: int}

Explain logs:

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 60

"describe" and "explain"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Describe logs:
logs: {date: datetime,host: chararray,url: chararray,size: int}

Explain logs:

F— - _—
Map Reduce Plan
p - — — — — — —
MapReduce node scope-19
Map Plan
logs: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-18
|
|---logs: New For Each(false,false,false, false)[bag] - scope-17
| |
POUserFunc(org.apache.pig.builtin.ToDate2ARGS) [datetime] - scope-9
|
|-——-Project[chararray] [3] - scope-7
|
|-—-Constant(dd/MMM/yyyy:HH:mm:ss Z) - scope-8

|
|
|
|
|
| |

| Project[chararray] [8] - scope-11
|

|

|

|

|

I —

Project[chararray] [5] - scope-13

|
Project[int] [8] - scope-15

--logs_base: New For Each(true)[bag] - scope-6

| |
POUserFunc(org.apache.pig.piggybank.evaluation.string.EXTRACT) [tuple] - scope-4

|

|-—-Cast[chararray] - scope-2

|
|
|
| | |

| | |-——-Project[bytearray] [8] - scope-1

| |

| |-——Constant(~(\S+) (\S+) (\S+) \[C[™\11+)\] "(\S+) (\S+) \S+" (\S+) (\S+) "([~"]*)" "([*"]*)") - scope-3
|

|

-——raw_logs: Load(s3://gu-anly502/ps@3/forensicswiki.2012-01.unzipped/access.l0g.2012-01-01:0rg.apache.pig.builtin.PigStorage) - scope-@————————

Explain Map Reduce Plan

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 60

"describe" and "explain"

logs = FOREACH logs base GENERATE ToDate(datetime_str, 'dd/MMM/yyyy:HH:mm:ss Z') AS
date, host, url, size;

Describe logs:
logs: {date: datetime,host: chararray,url: chararray,size: int}

Explain logs:

Massive DAatA FUNDAMENTALS GEORGETOWAN UNIVERSITY 60

Final demo: list of forensicswiki hits by date:

Program:
raw_logs = load 's3://gu-anly502/ps@3/forensicswiki.2012.txt' as (line:chararray);
logs base =
FOREACH
raw_logs
GENERATE
FLATTEN (EXTRACT(line,
"([A"i:§}§5+) (\N\S+) (\N\SH) ANLCIMNNTTENNT "(\N\S+) (A\\S+) A\\S+" (\\S+) (\\S+) "([~"]*)"
)) AS (
host: chararray, identity: chararray, user: chararray, datetime_str: chararray, verb:
chararray, url: chararray, request: chararray, status: int,
size: int, referrer: chararray, agent: chararray

)5

by date = GROUP logs BY (date);
date_counts = FOREACH by_date GENERATE

group as date, -- the key you grouped on
COUNT(logs _base); -- the number of log lines wiht this date
dump date_counts;
Output:
(,0)

(2012-01-01T00:00:00.000Z,29116)
(2012-01-02T00:00:00.000Z,38188)

(2012-12-31T00:00:00.000Z,36631)
(2013-01-01T00:00:00.000Z,1283
329255 [main] INFO org.apac
milliseconds (329337 ms)
16/02/22 00:43:57 INFO pig.Ma
milliseconds (329337 ms)

- Pig script completed in 5 minutes, 29 seconds and 337

331 seconds! (4x faster that mgg?)

: Pig script completed in 5 minutes, 29 seconds an

[00:43:58 last: 331s][~/ANLY502/L05]
$

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 61

A little cleaner — (2012-12-31T00:00:00.0007Z,36631) -> (2012-12-31,36631)

Add a second GENERATE:

logs = FOREACH logs base GENERATE ToDate(SUBSTRING(datetime str,0,11), 'dd/MMM/
yyyy') AS date, host, url, size;

logs2 = FOREACH logs GENERATE SUBSTRING(ToString(date),9,10) AS date, host,
url, size;

by date = GROUP logs2 BY (date);
date_counts = FOREACH by date GENERATE
group AS date, -- the key you grouped on
COUNT (logs2); -- the number of log lines wiht this date

date counts _sorted = ORDER date counts BY date;
dump date counts_sorted;

And run...
(2012-12-28,39090)
(2012-12-29,54360)
(2012-12-30,40828)
(2012-12-31,36631)
(2013-01-01,1283)
368896 [main] INFO org.apache.pig.Main - Pig script completed in 6 minutes, 8
seconds and 977 milliseconds (368977 ms)
16/02/22 01:21:35 INFO pig.Main: Pig script completed in 6 minutes, 8 seconds and
977 milliseconds (368977 ms)
[hadoop@ip-172-31-37-188 LO5]% %

368 seconds (up from 331)

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 62

MaxMind Join with the Forensicswiki Data

DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT();

raw_logs = load 's3://gu-anly502/ps@3/forensicswiki.2012.txt’' as (line:chararray);

maxmind

load 's3://gu-anly502/ps@3/maxmind' as (ipaddr:chararray, country:chararray);

logs base =
FOREACH
raw_logs
GENERATE
FLATTEN (EXTRACT(1line,
"]’;g\\5+) (\N\SH) (\N\SH) ANLCIMNNTTEANNT "ON\S+) (A\S+) A\\S+" (\\S+) (\\S+) "“([*"]1*)"
)) AS (
host: chararray, identity: chararray, user: chararray, datetime str: chararray, verb:
chararray, url: chararray, request: chararray, status: int,
size: int, referrer: chararray, agent: chararray

)5

geolocated logs = JOIN logs base BY host, maxmind BY ipaddr;
geolocated 50 = LIMIT geolocated logs 50;
dump geolocated 50;

(180.76.5.67,-,-,01/Jan/2012:13:02:39 -0800,GET, /wiki/Special:WhatLinksHere/User_talk:Marc_VYu,
200,3799,-,Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/
spider.html),180.76.5.67,China)

(180.76.5.89,-,-,01/Jan/2012:02:27:53 -0800,GET, /wiki/Special:RecentChangesLinked/Libvshadow,
200,4391,-,Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/
spider.html),180.76.5.89,China)

(180.76.5.89,-,-,01/Jan/2012:21:47:55 -0800,GET, /images/7/79/?C=S;0=D, 200,553, -,Mozilla/5.0
(compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html),180.76.5.89,China)

Massive DAatA FUNDAMENTALS GEORGETOWN UNIVERSITY 63

