
L08: Just enough Scala for Spark

ANLY 502: Massive Data Fundamentals

Simson Garfinkel & Marck Vaisman

March 20, 2017

1

1Name of Section

08

visual identity guidelines

08

Administrivia

• A04 not graded yet

• A05 will be posted mid-week (hopefully)

Virtual Machine tools (useful for learning and playing with new tools)

• Vagrant

• Docker

Brief overview Functional programming concepts

Just Enough Scala for Spark

• Basic Scala data types

• Methods and Functions

• RDD Operations

Lab - play with the Dean Wampler's Spark Notebook and look at non-trivial Scala code

• Walk through steps involved in creating an inverted index

Time Permitting - Brief overview of PIG

Agenda

 2

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

3

4

https://codesachin.files.wordpress.com/2016/04/220px-function_machine2-svg.png

Technical functional code characteristics:

• immutable data

• first class functions

• tail call

Functional code is characterized by:

• the absence of side effects

• not relying on data outside the current function

• not changing the data outside of the current function

Functional programming

 5

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-
programming

No side effects...

 6

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Don't iterate over lists, use map and reduce

 7

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Rewrite as map

 8

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Rewrite as reduce

 9

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Write declaratively, not imperatively

 10

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Imperative

Remove state

 11

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

12

Non-Technical
Spark is written in Scala

• Most new features will be available trough the Scala API first before Python or R

There is industry demand

Technical
Statically typed

Mixed paradigm - object oriented programming

Mixed paradigm - functional programming

Sophisticated type system

Succinct, elegant, flexible syntax

Scalable

Why Scala?

 13

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

References used for this lecture

 14

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://www.youtube.com/watch?v=LBoSgiLV_NQ

https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-
programming

Everything in Scala is an object

• Objects have states and behaviors. An object is an instance of a class

—Objects have types, the type determines what we can do with the object.
—Example: numbers, strings, files, digital images

• A Class can be defined as a template/blueprint that describes the behavior/state of an object.

• A Method is a behavior. A Class can contain many methods.

Basics of OOP (like Python)

 15

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Scala Data Types

 16

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

val - immutable variable

var - mutable variable (but can only be reassigned with another value of same
type)

Variables

 17

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Define a "Person" class with immutable and mutable parts

 18

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Ranges

 19

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

 20

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Statically typed languages can be very verbose. Consider this typical declaration in Java, before Java 7:

import java.util.HashMap; 
... 
HashMap<Integer, String> intToStringMap = new HashMap<Integer, String>();

We have to specify the type parameters <Integer, String> twice. Scala uses the term type annotations for explicit type declarations like HashMap<Integer, String>.

Java 7 introduced the diamond operator to infer the generic types on the righthand side, reducing the verbosity a bit:

HashMap<Integer, String> intToStringMap = new HashMap<>();

We’ve already seen some examples of Scala’s support for type inference. The compiler can discern quite a bit of type information from the context, without explicit type an-
notations. Here’s the same declaration rewritten in Scala, with inferred type information:

val intToStringMap: HashMap[Integer, String] = new HashMap  
If we specify HashMap[Integer, String] on the righthand side of the equals sign, it’s

even more concise:

val intToStringMap2 = new HashMap[Integer, String]

Some functional programming languages, like Haskell, can infer almost all types, be- cause they can perform global type inference. Scala can’t do this, in part because
Scala has to support subtype polymorphism (inheritance), which makes type inference much harder.

Here is a summary of the rules for when explicit t

Integer - type Int

Floating Point - type Float

Character - single character, single quote

String - sequence of characters, 
double quote

Multi Line Strings

Literal Values

 21

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Multiple assignments

Tuples combine a fixed number of items together so that they can be passed
around as a whole. Unlike an array or list, a tuple can hold objects of different
types but they are immutable.

Accessing tuple elements

Tuples

 22

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

An immutable, partitioned collection of elements that can be operated on in parallel. This
class contains the basic operations available on all RDDs,

such as map, filter, and persist. In addition, PairRDDFunctions contains operations
available only on RDDs of key-value pairs, such as groupByKey and join;
DoubleRDDFunctions contains operations available only on RDDs of Doubles; and
SequenceFileRDDFunctions contains operations available on RDDs that can be saved as
SequenceFiles. All operations are automatically available on any RDD of the right type (e.g.
RDD[(Int, Int)] through implicit.

Internally, each RDD is characterized by five main properties:

- A list of partitions - A function for computing each split - A list of dependencies on other
RDDs - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-
partitioned) - Optionally, a list of preferred locations to compute each split on (e.g. block
locations for an HDFS file)

All of the scheduling and execution in Spark is done based on these methods, allowing
each RDD to implement its own way of computing itself. Indeed, users can implement
custom RDDs (e.g. for reading data from a new storage system) by overriding these
functions. Please refer to the Spark paper for more details on RDD internals.

What is an RDD

 23

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

RDDs support many of the operations supported by native Scala collections

RDDs are immutable

• Cannot change an RDD once created. All operations create new RDDs or other Scala objects

RDDs are lazy

• Unlike native Scala collections, RDD operations are only evaluated when needed. (In the REPL

any operation on a collection prints the values of the new collection to screen.

Transformations on RDDs: create new RDD from current one. Lazy evaluation

Actions on RDDs: force the evaluation of an RDD and normally return a Scala
object rather than an RDD. Actions are evaluated immediately.

List of Transformations and Actions 

RDDs

 24

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://spark.apache.org/docs/latest/programming-guide.html#rdd-operations

https://gist.github.com/mmakowski/379028

https://gist.github.com/mmakowski/379031

https://github.com/dcsobral/ConwayLife

Some Scala Examples

 25

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://gist.github.com/mmakowski/379028
https://gist.github.com/mmakowski/379031
https://github.com/dcsobral/ConwayLife

Inverted Index Example (from Spark Notebook)

 26

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

A05 - Due Friday 3/31

Q07 and Q08

Project proposals due 3/22

L09 - Scalable Machine Learning

Coming Up

 27

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Apache Pig
28

Started at Yahoo! Research

• Easier approach for MapReduce

• Procedural language

• PigLatin scripts interpreted and run as

MapReduce jobs.

Pig Advantages:

• Easier to program than MapReduce.

• Declarative statements directly describe

data transformations.

• Optimizer makes efficient decisions.

• Debugging operators:

—DESCRIBE, EXPLAIN, ILLUSTRATE
• Can run “locally” or on Hadoop.

Pig Disadvantages:

• Simple statements may generate many

MapReduce jobs.

• Can be hard to debug.

• Keywords are case insensitive

—LOAD, USING, AS, GROUP, BY, ...
• Functions, relations, fields are case

sensitive:

—PigStorage, COUNT,

Apache Pig

 29

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Pig reference materials in Readings/L05 Databases

 30

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience

Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath,
Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed,

Santhosh Srinivasan, Utkarsh Srivastava

Yahoo!, Inc.
⇤

ABSTRACT
Increasingly, organizations capture, transform and analyze
enormous data sets. Prominent examples include internet
companies and e-science. The Map-Reduce scalable dataflow
paradigm has become popular for these applications. Its
simple, explicit dataflow programming model is favored by
some over the traditional high-level declarative approach:
SQL. On the other hand, the extreme simplicity of Map-
Reduce leads to much low-level hacking to deal with the
many-step, branching dataflows that arise in practice. More-
over, users must repeatedly code standard operations such
as join by hand. These practices waste time, introduce bugs,
harm readability, and impede optimizations.

Pig is a high-level dataflow system that aims at a sweet
spot between SQL and Map-Reduce. Pig o↵ers SQL-style
high-level data manipulation constructs, which can be as-
sembled in an explicit dataflow and interleaved with custom
Map- and Reduce-style functions or executables. Pig pro-
grams are compiled into sequences of Map-Reduce jobs, and
executed in the Hadoop Map-Reduce environment. Both Pig
and Hadoop are open-source projects administered by the
Apache Software Foundation.

This paper describes the challenges we faced in develop-
ing Pig, and reports performance comparisons between Pig
execution and raw Map-Reduce execution.

1. INTRODUCTION
Organizations increasingly rely on ultra-large-scale data

processing in their day-to-day operations. For example,
modern internet companies routinely process petabytes of
web content and usage logs to populate search indexes and
perform ad-hoc mining tasks for research purposes. The
data includes unstructured elements (e.g., web page text;
images) as well as structured elements (e.g., web page click

⇤Author email addresses: {gates, olgan, shubhamc,
pradeepk, shravanm, olston, breed, sms, utkarsh}
@yahoo-inc.com.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Very Large Data

Base Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permission from the

publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

records; extracted entity-relationship models). The process-
ing combines generic relational-style operations (e.g., fil-
ter; join; count) with specialized domain-specific operations
(e.g., part-of-speech tagging; face detection). A similar sit-
uation arises in e-science, national intelligence, and other
domains.

The popular Map-Reduce [8] scalable data processing frame-
work, and its open-source realization Hadoop [1], cater to
these workloads and o↵er a simple dataflow programming
model that appeals to many users. However, in practice, the
extreme simplicity of the Map-Reduce programming model
leads to several problems. First, it does not directly sup-
port complex N -step dataflows, which often arise in prac-
tice. Map-Reduce also lacks explicit support for combined
processing of multiple data sets (e.g., joins and other data
matching operations), a crucial aspect of knowledge discov-
ery. Lastly, frequently-needed data manipulation primitives
like filtering, aggregation and top-k thresholding must be
coded by hand.

Consequently, users end up stitching together Map-Reduce
dataflows by hand, hacking multi-input flows, and repeat-
edly implementing standard operations inside black-box func-
tions. These practices slow down data analysis, introduce
mistakes, make data processing programs di�cult to read,
and impede automated optimization.

Our Pig system [4] o↵ers composable high-level data ma-
nipulation constructs in the spirit of SQL, while at the same
time retaining the properties of Map-Reduce systems that
make them attractive for certain users, data types, and
workloads. In particular, as with Map-Reduce, Pig pro-
grams encode explicit dataflow graphs, as opposed to im-
plicit dataflow as in SQL. As one user from Adobe put it:

“Pig seems to give the necessary parallel pro-
gramming constructs (FOREACH, FLATTEN,
COGROUP .. etc) and also give su�cient control
back to the programmer (which a purely declara-
tive approach like [SQL on top of Map-Reduce]1

doesn’t).”

Pig dataflows can interleave built-in relational-style op-
erations like filter and join, with user-provided executables
(scripts or pre-compiled binaries) that perform custom pro-
cessing. Schemas for the relational-style operations can be
supplied at the last minute, which is convenient when work-
ing with temporary data for which system-managed meta-
data is more of a burden than a benefit. For data used

1Reference to specific software project removed.

Gates 2009 The Pig Experience

Pig Latin: A Not-So-Foreign Language for Data Processing

Christopher Olston
⇤

Yahoo! Research
Benjamin Reed

†

Yahoo! Research
Utkarsh Srivastava

‡

Yahoo! Research

Ravi Kumar
§

Yahoo! Research
Andrew Tomkins

¶

Yahoo! Research

ABSTRACT
There is a growing need for ad-hoc analysis of extremely
large data sets, especially at internet companies where inno-
vation critically depends on being able to analyze terabytes
of data collected every day. Parallel database products, e.g.,
Teradata, o↵er a solution, but are usually prohibitively ex-
pensive at this scale. Besides, many of the people who ana-
lyze this data are entrenched procedural programmers, who
find the declarative, SQL style to be unnatural. The success
of the more procedural map-reduce programming model, and
its associated scalable implementations on commodity hard-
ware, is evidence of the above. However, the map-reduce
paradigm is too low-level and rigid, and leads to a great deal
of custom user code that is hard to maintain, and reuse.

We describe a new language called Pig Latin that we have
designed to fit in a sweet spot between the declarative style
of SQL, and the low-level, procedural style of map-reduce.
The accompanying system, Pig, is fully implemented, and
compiles Pig Latin into physical plans that are executed
over Hadoop, an open-source, map-reduce implementation.
We give a few examples of how engineers at Yahoo! are using
Pig to dramatically reduce the time required for the develop-
ment and execution of their data analysis tasks, compared to
using Hadoop directly. We also report on a novel debugging
environment that comes integrated with Pig, that can lead
to even higher productivity gains. Pig is an open-source,
Apache-incubator project, and available for general use.

Categories and Subject Descriptors:

H.2.3 Database Management: Languages

General Terms: Languages.

⇤olston@yahoo-inc.com
†breed@yahoo-inc.com
‡utkarsh@yahoo-inc.com
§ravikuma@yahoo-inc.com
¶atomkins@yahoo-inc.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1. INTRODUCTION
At a growing number of organizations, innovation revolves

around the collection and analysis of enormous data sets
such as web crawls, search logs, and click streams. Inter-
net companies such as Amazon, Google, Microsoft, and Ya-
hoo! are prime examples. Analysis of this data constitutes
the innermost loop of the product improvement cycle. For
example, the engineers who develop search engine ranking
algorithms spend much of their time analyzing search logs
looking for exploitable trends.

The sheer size of these data sets dictates that it be stored
and processed on highly parallel systems, such as shared-
nothing clusters. Parallel database products, e.g., Teradata,
Oracle RAC, Netezza, o↵er a solution by providing a simple
SQL query interface and hiding the complexity of the phys-
ical cluster. These products however, can be prohibitively
expensive at web scale. Besides, they wrench programmers
away from their preferred method of analyzing data, namely
writing imperative scripts or code, toward writing declara-
tive queries in SQL, which they often find unnatural, and
overly restrictive.

As evidence of the above, programmers have been flock-
ing to the more procedural map-reduce [4] programming
model. A map-reduce program essentially performs a group-
by-aggregation in parallel over a cluster of machines. The
programmer provides a map function that dictates how the
grouping is performed, and a reduce function that performs
the aggregation. What is appealing to programmers about
this model is that there are only two high-level declarative
primitives (map and reduce) to enable parallel processing,
but the rest of the code, i.e., the map and reduce functions,
can be written in any programming language of choice, and
without worrying about parallelism.

Unfortunately, the map-reduce model has its own set of
limitations. Its one-input, two-stage data flow is extremely
rigid. To perform tasks having a di↵erent data flow, e.g.,
joins or n stages, inelegant workarounds have to be devised.
Also, custom code has to be written for even the most com-
mon operations, e.g., projection and filtering. These factors
lead to code that is di�cult to reuse and maintain, and in
which the semantics of the analysis task are obscured. More-
over, the opaque nature of the map and reduce functions
impedes the ability of the system to perform optimizations.

We have developed a new language called Pig Latin that
combines the best of both worlds: high-level declarative
querying in the spirit of SQL, and low-level, procedural pro-
gramming à la map-reduce.

Olston 2008 Pig

Pig Latin Reference Manual 2

by

Table of contents
1 Overview..2
2 Data Types and More...4
3 Arithmetic Operators and More... 30
4 Relational Operators.. 47
5 Diagnostic Operators..84
6 UDF Statements... 91
7 Eval Functions... 98
8 Load/Store Functions... 110
9 Math Functions.. 114
10 String Functions... 124
11 Bag and Tuple Functions..131
12 File Commands.. 133
13 Shell Commands.. 141
14 Utility Commands.. 142

Copyright © 2007 The Apache Software Foundation. All rights reserved.

PigLatin Reference Manual V2

Users				=	load	'users'	as	(name,	age);	
Filtered	=	filter	Users	by	age	>=	18	and	age	<=	
25;		
Pages				=	load	'pages'	as	(user,	url);	
Joined			=	join	Filtered	by	name,	Pages	by	
user;	
Grouped		=	group	Joined	by	url;	
Summed			=	foreach	Grouped	generate	group,		
											count(Joined)	as	clicks;	
Sorted			=	order	Summed	by	clicks	desc;	
Top5					=	limit	Sorted	5;	
store	Top5	into	'top5sites';

Famous example:
Pig program to find top 5 websites for Twitter users age 18-25

 31

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Equivalent MapReduce program (in Java)

 32

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Pig takes your program and compiles it into a Hadoop job.

 33

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience

Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath,
Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed,

Santhosh Srinivasan, Utkarsh Srivastava

Yahoo!, Inc.
⇤

ABSTRACT
Increasingly, organizations capture, transform and analyze
enormous data sets. Prominent examples include internet
companies and e-science. The Map-Reduce scalable dataflow
paradigm has become popular for these applications. Its
simple, explicit dataflow programming model is favored by
some over the traditional high-level declarative approach:
SQL. On the other hand, the extreme simplicity of Map-
Reduce leads to much low-level hacking to deal with the
many-step, branching dataflows that arise in practice. More-
over, users must repeatedly code standard operations such
as join by hand. These practices waste time, introduce bugs,
harm readability, and impede optimizations.

Pig is a high-level dataflow system that aims at a sweet
spot between SQL and Map-Reduce. Pig o↵ers SQL-style
high-level data manipulation constructs, which can be as-
sembled in an explicit dataflow and interleaved with custom
Map- and Reduce-style functions or executables. Pig pro-
grams are compiled into sequences of Map-Reduce jobs, and
executed in the Hadoop Map-Reduce environment. Both Pig
and Hadoop are open-source projects administered by the
Apache Software Foundation.

This paper describes the challenges we faced in develop-
ing Pig, and reports performance comparisons between Pig
execution and raw Map-Reduce execution.

1. INTRODUCTION
Organizations increasingly rely on ultra-large-scale data

processing in their day-to-day operations. For example,
modern internet companies routinely process petabytes of
web content and usage logs to populate search indexes and
perform ad-hoc mining tasks for research purposes. The
data includes unstructured elements (e.g., web page text;
images) as well as structured elements (e.g., web page click

⇤Author email addresses: {gates, olgan, shubhamc,
pradeepk, shravanm, olston, breed, sms, utkarsh}
@yahoo-inc.com.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Very Large Data

Base Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permission from the

publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

records; extracted entity-relationship models). The process-
ing combines generic relational-style operations (e.g., fil-
ter; join; count) with specialized domain-specific operations
(e.g., part-of-speech tagging; face detection). A similar sit-
uation arises in e-science, national intelligence, and other
domains.

The popular Map-Reduce [8] scalable data processing frame-
work, and its open-source realization Hadoop [1], cater to
these workloads and o↵er a simple dataflow programming
model that appeals to many users. However, in practice, the
extreme simplicity of the Map-Reduce programming model
leads to several problems. First, it does not directly sup-
port complex N -step dataflows, which often arise in prac-
tice. Map-Reduce also lacks explicit support for combined
processing of multiple data sets (e.g., joins and other data
matching operations), a crucial aspect of knowledge discov-
ery. Lastly, frequently-needed data manipulation primitives
like filtering, aggregation and top-k thresholding must be
coded by hand.

Consequently, users end up stitching together Map-Reduce
dataflows by hand, hacking multi-input flows, and repeat-
edly implementing standard operations inside black-box func-
tions. These practices slow down data analysis, introduce
mistakes, make data processing programs di�cult to read,
and impede automated optimization.

Our Pig system [4] o↵ers composable high-level data ma-
nipulation constructs in the spirit of SQL, while at the same
time retaining the properties of Map-Reduce systems that
make them attractive for certain users, data types, and
workloads. In particular, as with Map-Reduce, Pig pro-
grams encode explicit dataflow graphs, as opposed to im-
plicit dataflow as in SQL. As one user from Adobe put it:

“Pig seems to give the necessary parallel pro-
gramming constructs (FOREACH, FLATTEN,
COGROUP .. etc) and also give su�cient control
back to the programmer (which a purely declara-
tive approach like [SQL on top of Map-Reduce]1

doesn’t).”

Pig dataflows can interleave built-in relational-style op-
erations like filter and join, with user-provided executables
(scripts or pre-compiled binaries) that perform custom pro-
cessing. Schemas for the relational-style operations can be
supplied at the last minute, which is convenient when work-
ing with temporary data for which system-managed meta-
data is more of a burden than a benefit. For data used

1Reference to specific software project removed.

exclusively in non-relational operations, schemas need not
be described at all.

Pig compiles these dataflow programs, which are written
in a language called Pig Latin [15], into sets of Hadoop Map-
Reduce jobs, and coordinates their execution. By relying
on Hadoop for its underlying execution engine, Pig benefits
from its impressive scalability and fault-tolerance properties.
On the other hand, Pig currently misses out on optimized
storage structures like indexes and column groups. There
are several ongoing e↵orts to add these features to Hadoop.

Despite leaving room for improvement on many fronts, Pig
has been widely adopted in Yahoo, with hundreds of users
and thousands of jobs executed daily, and is also gaining
traction externally with many successful use cases reported.
This paper describes the challenges we faced in developing
Pig, including implementation obstacles as well as challenges
in transferring the project from a research team to a devel-
opment team and converting it to open-source. It also re-
ports performance measurements comparing Pig execution
and raw Hadoop execution.

1.1 Related Work
For the most part, Pig is merely a combination of known

techniques that fulfills a practical need. That need appears
to be widespread, as several other systems are emerging that
also o↵er high-level languages for Map-Reduce-like environ-
ments: DryadLINQ [20], Hive [3], Jaql [5], Sawzall [16] and
Scope [6]. With the exception of Sawzall, which provides
a constrained filter-aggregate abstraction on top of a single
Map-Reduce job, these systems appear to have been devel-
oped after or concurrently with Pig. Some of these systems
adopt SQL syntax (or a close variant), whereas others in-
tentionally depart from SQL, presumably motivated by sce-
narios for which SQL was not deemed the best fit.

1.2 Outline
Rather than trying to be comprehensive, this paper fo-

cuses on aspects of Pig that are somewhat non-standard
compared to conventional SQL database systems. After giv-
ing an overview of the system, we describe Pig’s type sys-
tem (including nested types, type inference and lazy cast-
ing), generation, optimization and execution of query plans
in the Map-Reduce context, and piping data through user-
supplied executables (“streaming”). We then present per-
formance numbers, comparing Pig execution against hand-
coded Map-Reduce execution. At the end of the paper, we
describe some of our experiences building and deploying Pig,
and mention some of the ways Pig is being used (both inside
and outside of Yahoo).

2. SYSTEM OVERVIEW
The Pig system takes a Pig Latin program as input, com-

piles it into one or more Map-Reduce jobs, and then exe-
cutes those jobs on a given Hadoop cluster. We first give
the reader a flavor of Pig Latin through a quick example,
and then describe the various steps that are carried out by
Pig to execute a given Pig Latin program.

Example 1. Consider a data set urls: (url, category,
pagerank). The following Pig Latin program finds, for each
su�ciently large category, the top ten urls in that category
by pagerank.

Figure 1: Pig compilation and execution stages.

urls = LOAD ‘dataset’ AS (url, category, pagerank);
groups = GROUP urls BY category;
bigGroups = FILTER groups BY COUNT(urls)>1000000;
result = FOREACH bigGroups GENERATE

group, top10(urls);
STORE result INTO ‘myOutput’;

Some of the salient features of Pig Latin as demonstrated
by the above example include (a) a step-by-step dataflow
language where computation steps are chained together
through the use of variables, (b) the use of high-level trans-
formations, e.g., GROUP, FILTER, (c) the ability to specify
schemas as part of issuing a program, and (d) the use of user-
defined functions (e.g., top10) as first-class citizens. More
details about Pig Latin and the motivations for its design
are given in [15].

Pig allows three modes of user interaction:

1. Interactive mode: In this mode, the user is pre-
sented with an interactive shell (called Grunt), which
accepts Pig commands. Plan compilation and exe-
cution is triggered only when the user asks for out-
put through the STORE command. (This practice en-
ables Pig to plan over large blocks of program logic.
There are no transactional consistency concerns, be-
cause Hadoop data is immutable.)

2. Batch mode: In this mode, a user submits a pre-
written script containing a series of Pig commands,
typically ending with STORE. The semantics are iden-
tical to interactive mode.

3. Embedded mode: Pig is also provided as a Java li-
brary allowing Pig Latin commands to be submitted
via method invocations from a Java program. This
option permits dynamic construction of Pig Latin pro-
grams, as well as dynamic control flow, e.g. looping for
a non-predetermined number of iterations, which is not
currently supported in Pig Latin directly.

In interactive mode, two commands are available to help
the user reason about the program she is using or creating:
DESCRIBE and ILLUSTRATE. The DESCRIBE command displays
the schema of a variable (e.g. DESCRIBE urls, DESCRIBE
bigGroups). The ILLUSTRATE command displays a small
amount of example data for a variable and the variables in

Pig builds a "data flow" model from your program.

 34

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Figure 2: Pig Latin to logical plan translation.

3.2 Lazy Conversion of Types
When Pig does need to cast a bytearray to another type

because the program applies a type-specific operator, it de-
lays that cast to the point where it is actually necessary.
Consider this example:

students = LOAD ‘data’ USING BinStorage
AS (name, status, possiblePoints, earnedPoints);

paid = FILTER students BY status == ‘paid’;
gpa = FOREACH paid GENERATE name,

earnedPoints / possiblePoints;

In this example, status will need to be cast to a chararray
(since it is compared to constant of type chararray), and
earnedPoints and possiblePoints will need to be cast to
double since they are operands of the division operator.
However, these casts will not be done when the data is
loaded. Instead, they will be done as part of the comparison
and division operations, which avoids casting values that are
removed by the filter before the result of the cast is used.

4. COMPILATION TO MAP-REDUCE
This section describes the process of translating a logical

query plan into a Map-Reduce execution plan. We describe
each type of plan, and then explain how Pig translates be-
tween them and optimizes the Map-Reduce plan.

4.1 Logical Plan Structure
Recall from Section 2 that a Pig Latin program is trans-

lated in a one-to-one fashion to a logical plan. Figure 2
shows an example. Each operator is annotated with the
schema of its output data, with braces indicating a bag of
tuples.2 With the exception of nested plans (Section 5.1.1)
and streaming (Section 6), a Pig logical query plan resem-
bles relational algebra with user-defined functions and ag-
gregates.

Pig currently performs a limited suite of logical optimiza-
tions to transform the logical plan, before the compilation
into a Map-Reduce plan. We are currently enriching the
set of optimizations performed, to include standard System-

2Note that the keyword “group” is used both as a com-
mand (as in “GROUP D BY ...”) and as the automatically-
assigned field name of the group key in the output of a group-
by expression (as in “FOREACH E GENERATE group, ...”).

Figure 3: Map-Reduce execution stages.

R-style heuristics like filter pushdown, among others. Join
ordering does not appear to be an important issue in the
Pig/Hadoop context, because data is generally kept in non-
normalized form (after all, it is read-only); in practice Pig
programs seldom perform more than one join. On the other
hand, due to the prevalence of “wide” data tables, we do
expect to encounter optimization opportunities of the form
studied in the column-store context (e.g. deferred stitching),
once column-wise storage structures are added to Hadoop.

4.2 Map-Reduce Execution Model
A Hadoop Map-Reduce job consists of a series of execution

stages, shown in Figure 3. The map stage processes the
raw input data, one data item at a time, and produces a
stream of data items annotated with keys. A subsequent
local sort stage orders the data produced by each machine’s
map stage by key. The locally-ordered data is then passed
to an (optional) combiner stage for partial aggregation by
key.

The shu✏e stage then redistributes data among machines
to achieve a global organization of data by key (e.g. globally
hashed or ordered). All data received at a particular ma-
chine is combined into a single ordered stream in the merge
stage. If the number of incoming streams is large (relative
to a configured threshold), a multi-pass merge operation is
employed; if applicable, the combiner is invoked after each
intermediate merge step. Lastly, a reduce stage processes
the data associated with each key in turn, often performing
some sort of aggregation.

4.3 Logical-to-Map-Reduce Compilation
Pig first translates a logical plan into a physical plan, and

then embeds each physical operator inside a Map-Reduce
stage to arrive at a Map-Reduce plan.3

3Pig can also target platforms other than Map-Reduce. For
example, Pig supports a “local” execution mode in which
physical plans are executed in a single JVM on one machine
(the final physical-to-Map-Reduce phase is not performed in
this case). A student at UMass Amherst extended Pig to
execute in the Galago [19] parallel data processing environ-
ment.

The data flow is translated into a series of MapReduce steps.

 35

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Figure 2: Pig Latin to logical plan translation.

3.2 Lazy Conversion of Types
When Pig does need to cast a bytearray to another type

because the program applies a type-specific operator, it de-
lays that cast to the point where it is actually necessary.
Consider this example:

students = LOAD ‘data’ USING BinStorage
AS (name, status, possiblePoints, earnedPoints);

paid = FILTER students BY status == ‘paid’;
gpa = FOREACH paid GENERATE name,

earnedPoints / possiblePoints;

In this example, status will need to be cast to a chararray
(since it is compared to constant of type chararray), and
earnedPoints and possiblePoints will need to be cast to
double since they are operands of the division operator.
However, these casts will not be done when the data is
loaded. Instead, they will be done as part of the comparison
and division operations, which avoids casting values that are
removed by the filter before the result of the cast is used.

4. COMPILATION TO MAP-REDUCE
This section describes the process of translating a logical

query plan into a Map-Reduce execution plan. We describe
each type of plan, and then explain how Pig translates be-
tween them and optimizes the Map-Reduce plan.

4.1 Logical Plan Structure
Recall from Section 2 that a Pig Latin program is trans-

lated in a one-to-one fashion to a logical plan. Figure 2
shows an example. Each operator is annotated with the
schema of its output data, with braces indicating a bag of
tuples.2 With the exception of nested plans (Section 5.1.1)
and streaming (Section 6), a Pig logical query plan resem-
bles relational algebra with user-defined functions and ag-
gregates.

Pig currently performs a limited suite of logical optimiza-
tions to transform the logical plan, before the compilation
into a Map-Reduce plan. We are currently enriching the
set of optimizations performed, to include standard System-

2Note that the keyword “group” is used both as a com-
mand (as in “GROUP D BY ...”) and as the automatically-
assigned field name of the group key in the output of a group-
by expression (as in “FOREACH E GENERATE group, ...”).

Figure 3: Map-Reduce execution stages.

R-style heuristics like filter pushdown, among others. Join
ordering does not appear to be an important issue in the
Pig/Hadoop context, because data is generally kept in non-
normalized form (after all, it is read-only); in practice Pig
programs seldom perform more than one join. On the other
hand, due to the prevalence of “wide” data tables, we do
expect to encounter optimization opportunities of the form
studied in the column-store context (e.g. deferred stitching),
once column-wise storage structures are added to Hadoop.

4.2 Map-Reduce Execution Model
A Hadoop Map-Reduce job consists of a series of execution

stages, shown in Figure 3. The map stage processes the
raw input data, one data item at a time, and produces a
stream of data items annotated with keys. A subsequent
local sort stage orders the data produced by each machine’s
map stage by key. The locally-ordered data is then passed
to an (optional) combiner stage for partial aggregation by
key.

The shu✏e stage then redistributes data among machines
to achieve a global organization of data by key (e.g. globally
hashed or ordered). All data received at a particular ma-
chine is combined into a single ordered stream in the merge
stage. If the number of incoming streams is large (relative
to a configured threshold), a multi-pass merge operation is
employed; if applicable, the combiner is invoked after each
intermediate merge step. Lastly, a reduce stage processes
the data associated with each key in turn, often performing
some sort of aggregation.

4.3 Logical-to-Map-Reduce Compilation
Pig first translates a logical plan into a physical plan, and

then embeds each physical operator inside a Map-Reduce
stage to arrive at a Map-Reduce plan.3

3Pig can also target platforms other than Map-Reduce. For
example, Pig supports a “local” execution mode in which
physical plans are executed in a single JVM on one machine
(the final physical-to-Map-Reduce phase is not performed in
this case). A student at UMass Amherst extended Pig to
execute in the Galago [19] parallel data processing environ-
ment.

Figure 2: Pig Latin to logical plan translation.

3.2 Lazy Conversion of Types
When Pig does need to cast a bytearray to another type

because the program applies a type-specific operator, it de-
lays that cast to the point where it is actually necessary.
Consider this example:

students = LOAD ‘data’ USING BinStorage
AS (name, status, possiblePoints, earnedPoints);

paid = FILTER students BY status == ‘paid’;
gpa = FOREACH paid GENERATE name,

earnedPoints / possiblePoints;

In this example, status will need to be cast to a chararray
(since it is compared to constant of type chararray), and
earnedPoints and possiblePoints will need to be cast to
double since they are operands of the division operator.
However, these casts will not be done when the data is
loaded. Instead, they will be done as part of the comparison
and division operations, which avoids casting values that are
removed by the filter before the result of the cast is used.

4. COMPILATION TO MAP-REDUCE
This section describes the process of translating a logical

query plan into a Map-Reduce execution plan. We describe
each type of plan, and then explain how Pig translates be-
tween them and optimizes the Map-Reduce plan.

4.1 Logical Plan Structure
Recall from Section 2 that a Pig Latin program is trans-

lated in a one-to-one fashion to a logical plan. Figure 2
shows an example. Each operator is annotated with the
schema of its output data, with braces indicating a bag of
tuples.2 With the exception of nested plans (Section 5.1.1)
and streaming (Section 6), a Pig logical query plan resem-
bles relational algebra with user-defined functions and ag-
gregates.

Pig currently performs a limited suite of logical optimiza-
tions to transform the logical plan, before the compilation
into a Map-Reduce plan. We are currently enriching the
set of optimizations performed, to include standard System-

2Note that the keyword “group” is used both as a com-
mand (as in “GROUP D BY ...”) and as the automatically-
assigned field name of the group key in the output of a group-
by expression (as in “FOREACH E GENERATE group, ...”).

Figure 3: Map-Reduce execution stages.

R-style heuristics like filter pushdown, among others. Join
ordering does not appear to be an important issue in the
Pig/Hadoop context, because data is generally kept in non-
normalized form (after all, it is read-only); in practice Pig
programs seldom perform more than one join. On the other
hand, due to the prevalence of “wide” data tables, we do
expect to encounter optimization opportunities of the form
studied in the column-store context (e.g. deferred stitching),
once column-wise storage structures are added to Hadoop.

4.2 Map-Reduce Execution Model
A Hadoop Map-Reduce job consists of a series of execution

stages, shown in Figure 3. The map stage processes the
raw input data, one data item at a time, and produces a
stream of data items annotated with keys. A subsequent
local sort stage orders the data produced by each machine’s
map stage by key. The locally-ordered data is then passed
to an (optional) combiner stage for partial aggregation by
key.

The shu✏e stage then redistributes data among machines
to achieve a global organization of data by key (e.g. globally
hashed or ordered). All data received at a particular ma-
chine is combined into a single ordered stream in the merge
stage. If the number of incoming streams is large (relative
to a configured threshold), a multi-pass merge operation is
employed; if applicable, the combiner is invoked after each
intermediate merge step. Lastly, a reduce stage processes
the data associated with each key in turn, often performing
some sort of aggregation.

4.3 Logical-to-Map-Reduce Compilation
Pig first translates a logical plan into a physical plan, and

then embeds each physical operator inside a Map-Reduce
stage to arrive at a Map-Reduce plan.3

3Pig can also target platforms other than Map-Reduce. For
example, Pig supports a “local” execution mode in which
physical plans are executed in a single JVM on one machine
(the final physical-to-Map-Reduce phase is not performed in
this case). A student at UMass Amherst extended Pig to
execute in the Galago [19] parallel data processing environ-
ment.

Which are translated to an efficient Map Reduce Plan.

 36

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Figure 4: Logical plan to physical plan translation.

Figure 4 shows our example logical plan translated to a
physical plan. For clarity each logical operator is shown with
an id. Physical operators that are produced by the transla-
tion of a logical operator are shown with the same id. For
the most part, each logical operator becomes a correspond-
ing physical operator.

The logical (CO)GROUP operator becomes a series of three
physical operators: local rearrange, global rearrange, and
package. Rearrange is a term that stands for either hashing
or sorting by key. The combination of local and global rear-
range results in the data being arranged such that all tuples
having the same group-by key wind up on the same machine
and adjacent in the data stream. In the case of cogrouping
multiple incoming streams, the local rearrange operator first
annotates each tuple in a way that indicates its stream of
origin. The package operator places adjacent same-key tu-
ples into a single-tuple “package,” which consists of the key
followed by one bag of tuples per stream of origin.

The JOIN operator is handled in one of two ways: (1)
rewrite into COGROUP followed by a FOREACH operator to per-
form “flattening” (see [15]), as shown in Figure 4, which
yields a parallel hash-join or sort-merge join, or (2) fragment-
replicate join [10], which executes entirely in the map stage
or entirely in the reduce stage (depending on the surround-
ing operations). The choice of join strategy is controlled
via syntax (a future version of Pig may o↵er the option to
automate this choice).

Having constructed a physical plan, Pig assigns physical
operators to Hadoop stages (Section 4.2), with the goal of
minimizing the number of reduce stages employed. Figure 5
shows the assignment of physical operators to Hadoop stages
for our running example (only the map and reduce stages are
shown). In the Map-Reduce plan, the local rearrange opera-
tor simply annotates tuples with keys and stream identifiers,

Figure 5: Physical plan to map reduce plan transla-

tion.

and lets the Hadoop local sort stage do the work. Global
rearrange operators are removed because their logic is im-
plemented by the Hadoop shu✏e and merge stages. Load
and store operators are also removed, because the Hadoop
framework takes care of reading and writing data.

4.3.1 Branching Plans

If a Pig Latin program contains more than one STORE com-
mand, the generated physical plan contains a SPLIT physical
operator. The following program contains a logical SPLIT
command and ends with two STORE commands, one for each
branch of the split:

clicks = LOAD ‘clicks’
AS (userid, pageid, linkid, viewedat);

SPLIT clicks INTO
pages IF pageid IS NOT NULL,
links IF linkid IS NOT NULL;

cpages = FOREACH pages GENERATE userid,
CanonicalizePage(pageid) AS cpage,
viewedat;

clinks = FOREACH links GENERATE userid,
CanonicalizeLink(linkid) AS clink,
viewedat;

STORE cpages INTO ‘pages’;
STORE clinks INTO ‘links’;

The Map-Reduce plan for this program is shown in Figure 6
(in this case, we have a “Map-only” plan, in which the Re-
duce step is disabled). Pig physical plans may contain nested
sub-plans, as this example illustrates. Here, the split opera-
tor feeds a copy of its input to two nested sub-plans, one for
each branch of the logical split operation. (The reason for
using a nested operator model for split has to do with flow
control during execution, as discussed later in Section 5.1.)

Figure 4: Logical plan to physical plan translation.

Figure 4 shows our example logical plan translated to a
physical plan. For clarity each logical operator is shown with
an id. Physical operators that are produced by the transla-
tion of a logical operator are shown with the same id. For
the most part, each logical operator becomes a correspond-
ing physical operator.

The logical (CO)GROUP operator becomes a series of three
physical operators: local rearrange, global rearrange, and
package. Rearrange is a term that stands for either hashing
or sorting by key. The combination of local and global rear-
range results in the data being arranged such that all tuples
having the same group-by key wind up on the same machine
and adjacent in the data stream. In the case of cogrouping
multiple incoming streams, the local rearrange operator first
annotates each tuple in a way that indicates its stream of
origin. The package operator places adjacent same-key tu-
ples into a single-tuple “package,” which consists of the key
followed by one bag of tuples per stream of origin.

The JOIN operator is handled in one of two ways: (1)
rewrite into COGROUP followed by a FOREACH operator to per-
form “flattening” (see [15]), as shown in Figure 4, which
yields a parallel hash-join or sort-merge join, or (2) fragment-
replicate join [10], which executes entirely in the map stage
or entirely in the reduce stage (depending on the surround-
ing operations). The choice of join strategy is controlled
via syntax (a future version of Pig may o↵er the option to
automate this choice).

Having constructed a physical plan, Pig assigns physical
operators to Hadoop stages (Section 4.2), with the goal of
minimizing the number of reduce stages employed. Figure 5
shows the assignment of physical operators to Hadoop stages
for our running example (only the map and reduce stages are
shown). In the Map-Reduce plan, the local rearrange opera-
tor simply annotates tuples with keys and stream identifiers,

Figure 5: Physical plan to map reduce plan transla-

tion.

and lets the Hadoop local sort stage do the work. Global
rearrange operators are removed because their logic is im-
plemented by the Hadoop shu✏e and merge stages. Load
and store operators are also removed, because the Hadoop
framework takes care of reading and writing data.

4.3.1 Branching Plans

If a Pig Latin program contains more than one STORE com-
mand, the generated physical plan contains a SPLIT physical
operator. The following program contains a logical SPLIT
command and ends with two STORE commands, one for each
branch of the split:

clicks = LOAD ‘clicks’
AS (userid, pageid, linkid, viewedat);

SPLIT clicks INTO
pages IF pageid IS NOT NULL,
links IF linkid IS NOT NULL;

cpages = FOREACH pages GENERATE userid,
CanonicalizePage(pageid) AS cpage,
viewedat;

clinks = FOREACH links GENERATE userid,
CanonicalizeLink(linkid) AS clink,
viewedat;

STORE cpages INTO ‘pages’;
STORE clinks INTO ‘links’;

The Map-Reduce plan for this program is shown in Figure 6
(in this case, we have a “Map-only” plan, in which the Re-
duce step is disabled). Pig physical plans may contain nested
sub-plans, as this example illustrates. Here, the split opera-
tor feeds a copy of its input to two nested sub-plans, one for
each branch of the logical split operation. (The reason for
using a nested operator model for split has to do with flow
control during execution, as discussed later in Section 5.1.)

Basic Pig Latin program:

• LOAD data from a file system (HDFS or S3)

• Transform the data.

• STORE to file system or DUMP to output.

Pig Data Loading Functions:

• A = LOAD filename [USING function] [AS
schema];

e.g.:

• A = LOAD 'file';

• A = LOAD filename USING BinStorage();

• A = LOAD filename USING

PigStorage(field_delimiter);

• A = LOAD filename USING PigStorage() AS

(field_desc);

Pig Latin Program — Basic Program Design

 37

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Basic Pig Latin program:

• LOAD data from a file system (HDFS or S3)

• Transform the data.

• STORE to file system or DUMP to output.

Pig transformation examples:

• FILTER

B	=	FILTER	A	BY	$1	==	1;	
B	=	FILTER	A	BY	date	==	
“1980-01-01”;	
B	=	FILTER	A	BY	$1	>	50;	

• ORDER BY

C	=	ORDER	B	BY	$0;	
C	=	ORDER	B	BY	date;	

• LIMIT

D	=	LIMIT	B	30;	

• JOIN

D	=	JOIN	C	BY	$1,	B	BY	$1;	
D	=	JOIN	C	BY	ipaddress,	D	BY	
ipaddress;

Pig Latin Program — Basic Program Design

 38

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Basic Pig Latin program:

• LOAD data from a file system (HDFS or S3)

• Transform the data.

• STORE to file system or DUMP to output.

Pig Storage examples:

• STORE

STORE	A	INTO	'outputfile';	
STORE	A	INTO	'outputfile.gz';	

--	Store	UTF-8:	
STORE	A	INTO	'output'	USING	PigDump();		

--	Store	in	Binary	
STORE	A	INTO	'output'	USING	
BinStorage();		

---	Store	with	delimiters:	
STORE	A	INTO	'output'	USING	
PigStorage('*');	

Pig Latin Program — Basic Program Design

 39

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Which version am I running?

$	pig	-help	

Pig modes of operation:

Pig can run locally or on MapReduce

 40

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Local Mode MapReduce Mode
Interactive

$ pig -x local $ pig -x mapreduce

Batch
$ pig -x local filename.pig

$ pig -x mapreduce
filename.pig

Warning: EMR has problems with pig -x local

A relation is a "bag."

• A bag is a collection of tuples.

• A tuple is an ordered set of fields

• A field is a piece of data.

Pig Data Types:

• Scalar types: int, long, double, chararray

• map — An “associative array” (like a

python dictionary)

chararray	:	anytype	

—e.g.
“first”	:	“George”	
“last”		:	“Washington”	
“born”		:	1732	

• tuple

(v0,	v1,	v2,	...)	

• bag — a collection of tuples

((a,	b,	c),	
	(d,	e,	f),	
	...	
)	

Example (from reference guide)

A	=	LOAD	'student'	USING	
PigStorage()	 
									AS	(name:chararray,	
age:int,	gpa:float);	
DUMP	A;	
(John,18,4.0F)	
(Mary,19,3.8F)	
(Bill,20,3.9F)	
(Joe,18,3.8F)	

Pig Latin statements work with relations.
A = LOAD 'foo.txt' A is a relation.

 41

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

First Field SecondField Third Field

Data Type chararray int float

Positional
notation

$0 $1 $2

Possible
name

name age gpa

Field value John 18 4.0

It's best to use names!

FOREACH ... GENERATE creates
new relations from old ones.

Example (from reference guide):

A	=	LOAD	'student'	USING	
PigStorage()	 
AS	(name:chararray,	age:int,	
gpa:float);	
DUMP	A;	
(John,18,4.0F)	
(Mary,19,3.8F)	
(Bill,20,3.9F)	
(Joe,18,3.8F)	

X	=	FOREACH	A	GENERATE	name,$2;	
DUMP	X;	
(John,4.0F)	
(Mary,3.8F)	
(Bill,3.9F)	
(Joe,3.8F)	

Pig Latin FOREACH ... GENERATE

 42

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

(1,4,7) (3,7,5)
(2,5,8) (9,5,8)

A = LOAD 'data' AS (t1:tuple(t1a:int,
t1b:int,t1c:int),t2:tuple(t2a:int,t2b:int,t2c:int));

DUMP A;
((3,8,9),(4,5,6))
((1,4,7),(3,7,5))
((2,5,8),(9,5,8))

X = FOREACH A GENERATE t1.t1a,t2.$0;

DUMP X;
(3,4)
(1,3)
(2,9)

2.2. Data Types

2.2.1. Simple and Complex

Simple Data Types Description Example

Scalars

int Signed 32-bit integer 10

long Signed 64-bit integer Data: 10L or 10l

Display: 10L

float 32-bit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data: 10.5 or 10.5e2 or 10.5E2

Display: 10.5 or 1050.0

Arrays

chararray Character array (string) in Unicode
UTF-8 format

hello world

Pig Latin Reference Manual 2

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Simple data types:

bytearray Byte array (blob)

Complex Data Types

tuple An ordered set of fields. (19,2)

bag An collection of tuples. {(19,2), (18,1)}

map A set of key value pairs. [open#apache]

Note the following general observations about data types:
• Use schemas to assign types to fields. If you don't assign types, fields default to type

bytearray and implicit conversions are applied to the data depending on the context in
which that data is used. For example, in relation B, f1 is converted to integer because 5 is
integer. In relation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

A = LOAD 'data' AS (f1,f2,f3);
B = FOREACH A GENERATE f1 + 5;
C = FOREACH A generate f1 + f2;

• If a schema is defined as part of a load statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

• If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE (int)name;

This will cause an error …

• If Pig cannot resolve incompatible types through implicit casts, an error will occur. For
example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE name + gpa;

Pig Latin Reference Manual 2

Page 8
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Functions:

• +, -, *, /, %,

NULL:

• Operations can return NULL;  

NULL is ignored by AVG(), MIN(),  
MAX(), SUM(), COUNT()

Conditions:

• ==, !=, >, <, >=, <=

Conditionals:

• NO IF STATEMENT!

• conditional ? if-true : if-false

Pig is a complete data flow programming language

 43

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Functions:

• +, -, *, /, %,

NULL:

• Operations can return NULL;  

NULL is ignored by AVG(), MIN(),  
MAX(), SUM(), COUNT()

Conditions:

• ==, !=, >, <, >=, <=

Conditionals:

• NO IF STATEMENT!

• conditional ? if-true : if-false

Pig is a complete data flow programming language

 43

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

A = LOAD 'data' AS (f1:int,
f2:int, :bag{T:tuple(t1:int,t2:int)});
DUMP A;
(10,1,{(2,3),(4,6)})
(10,3,{(2,3),(4,6)})
(10,6,{(2,3),(4,6),(5,7)})

X = FOREACH A GENERATE f1, f2, f1%f2;
DUMP X;
(10,1,0)
(10,3,1)
(10,6,4)

X = FOREACH A GENERATE f2, (f2==1?1:COUNT(B));
DUMP X;
(1,1L)
(3,2L)
(6,3L)

Example from Pig Latin Reference Manual:

lines					=	LOAD	's3://gu-anly502/ps02/tobe.txt'	as	(line:chararray);	
words					=	FOREACH	lines	generate	flatten(TOKENIZE(line))	as	word;	
grouped			=	GROUP	words	by	word;	
wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
dump	wordcount;	

LOAD — Loads the data

FOREACH — TOKENIZEs each line. Creates a "words" alias where each tuple
is a "word"

GROUP — combines words that have the same word

FOREACH — counts the number of words in each group.

DUMP — sends to standard output.

Note:

• Put spaces around the equals sign (=) !

• Most Pig words are case-sensitive. (Exception: built-in statements like LOAD, FOREACH,

GROUP and GENERATE).

Word Count with Pig

 44

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

grunt>	help	
Commands:	
<pig	latin	statement>;	-	See	the	PigLatin	manual	for	details:	http://hadoop.apache.org/pig	
File	system	commands:	
				fs	<fs	arguments>	-	Equivalent	to	Hadoop	dfs	command:	http://hadoop.apache.org/common/docs/current/hdfs_shell.html	
Diagnostic	commands:	
				describe	<alias>[::<alias]	-	Show	the	schema	for	the	alias.	Inner	aliases	can	be	described	as	A::B.	
				explain	[-script	<pigscript>]	[-out	<path>]	[-brief]	[-dot|-xml]	[-param	<param_name>=<param_value>]	
								[-param_file	<file_name>]	[<alias>]	-	Show	the	execution	plan	to	compute	the	alias	or	for	entire	script.	
								-script	-	Explain	the	entire	script.	
								-out	-	Store	the	output	into	directory	rather	than	print	to	stdout.	
								-brief	-	Don't	expand	nested	plans	(presenting	a	smaller	graph	for	overview).	
								-dot	-	Generate	the	output	in	.dot	format.	Default	is	text	format.	
								-xml	-	Generate	the	output	in	.xml	format.	Default	is	text	format.	
								-param	<param_name	-	See	parameter	substitution	for	details.	
								-param_file	<file_name>	-	See	parameter	substitution	for	details.	
								alias	-	Alias	to	explain.	
				dump	<alias>	-	Compute	the	alias	and	writes	the	results	to	stdout.	
Utility	Commands:	
				exec	[-param	<param_name>=param_value]	[-param_file	<file_name>]	<script>	-		
								Execute	the	script	with	access	to	grunt	environment	including	aliases.	
								-param	<param_name	-	See	parameter	substitution	for	details.	
								-param_file	<file_name>	-	See	parameter	substitution	for	details.	
								script	-	Script	to	be	executed.	
				run	[-param	<param_name>=param_value]	[-param_file	<file_name>]	<script>	-		
								Execute	the	script	with	access	to	grunt	environment.		
								-param	<param_name	-	See	parameter	substitution	for	details.	
								-param_file	<file_name>	-	See	parameter	substitution	for	details.	
								script	-	Script	to	be	executed.	
				sh		<shell	command>	-	Invoke	a	shell	command.	
				kill	<job_id>	-	Kill	the	hadoop	job	specified	by	the	hadoop	job	id.	
				set	<key>	<value>	-	Provide	execution	parameters	to	Pig.	Keys	and	values	are	case	sensitive.	
								The	following	keys	are	supported:		
								default_parallel	-	Script-level	reduce	parallelism.	Basic	input	size	heuristics	used	by	default.	
								debug	-	Set	debug	on	or	off.	Default	is	off.	
								job.name	-	Single-quoted	name	for	jobs.	Default	is	PigLatin:<script	name>	
								job.priority	-	Priority	for	jobs.	Values:	very_low,	low,	normal,	high,	very_high.	Default	is	normal	
								stream.skippath	-	String	that	contains	the	path.	This	is	used	by	streaming.	
								any	hadoop	property.	
				help	-	Display	this	message.	
				history	[-n]	-	Display	the	list	statements	in	cache.	
								-n	Hide	line	numbers.		
				quit	-	Quit	the	grunt	shell.	
grunt>	

grunt> — the Pig command line

 45

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Always ask for "help"

Always read the documentation

grunt>	ls	s3://gu-anly502/	
16/02/15	15:48:52	INFO	s3n.S3NativeFileSystem:	listStatus	s3://gu-anly502/	
with	recursive	false	
s3://gu-anly502/bootstrap.sh<r	1>	 936	
s3://gu-anly502/gutenberg	 <dir>	
s3://gu-anly502/ps02	 <dir>	
s3://gu-anly502/ps03	 <dir>	
s3://gu-anly502/ps04	 <dir>	
grunt>	

grunt>	ls	s3://gu-anly502/ps02/	
16/02/15	15:49:01	INFO	s3n.S3NativeFileSystem:	listStatus	s3://gu-anly502/
ps02	with	recursive	false	
s3://gu-anly502/ps02/hamlet.txt<r	1>	 1644	
s3://gu-anly502/ps02/tobe.txt<r	1>	 43	
grunt>	

grunt>	cat	s3://gu-anly502/ps02/tobe.txt	
16/02/15	15:49:05	INFO	s3n.S3NativeFileSystem:	Opening	's3://gu-anly502/
ps02/tobe.txt'	for	reading	
To	be,	or	not	to	be-	that	is	the	question:	
grunt>		

Grunt supports many Unix commands:
ls, cat,

 46

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Pig uses log4j to log. Make a copy of the existing log4j.properties file and edit
it:

$	cp	/etc/pig/conf.dist/log4j.properties	log4j_WARN	

—set these lines:
#	*****	Set	root	logger	level	to	DEBUG	and	its	only	appender	to	A.	
log4j.rootLogger=ERROR,	A	
log4j.logger.org.apache.pig=warn,A	
log4j.logger.org.apache.hadoop=warn,A	

When you run pig, type:

$	pig	-4	log4j_WARN	

To minimize Pig output — lower the warning level

 47

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

$	pig	-4	log4j_WARN	
grunt>	lines	=	load	's3://gu-anly502/ps02/tobe.txt'	as	(line:chararray);	
...	
grunt>	dump	lines;	
...	
(To	be,	or	not	to	be-)	
(that	is	the	question:)	
grunt>	
...	
grunt>	words	=	FOREACH	lines	generate	flatten(TOKENIZE(line))	as	word;	
grunt>	grouped	=	GROUP	words	by	word;	
grunt>	wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
grunt>	dump	wordcount;	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	
set.		User	classes	may	not	be	found.	See	Job	or	Job#setJar(String).	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	
set.		User	classes	may	not	be	found.	See	Job	or	Job#setJar(String).	
68934	[DataStreamer	for	file	/tmp/hadoop-yarn/staging/hadoop/.staging/job_1455488005182_0020/
job.xml	block	BP-1229375385-172.31.42.104-1455487984302:blk_1073742532_7091]	INFO		
amazon.emr.metrics.MetricsSaver		-	1	aggregated	HDFSWriteDelay	113	raw	values	into	1	
aggregated	values,	total	1	
(To,1)	
(be,1)	
(is,1)	
(or,1)	
(to,1)	
(be-,1)	
(not,1)	
(the,1)	
(that,1)	
(question:,1)	
grunt>		

Hadoop Word Count in Pig

 48

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

grunt>	dump	wordcount;	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	
set.		User	classes	may	not	be	found.	See	Job	or	Job#setJar(String).	
68560	[JobControl]	WARN		org.apache.hadoop.mapreduce.JobResourceUploader		-	No	job	jar	file	
set.		User	classes	may	not	be	found.	See	Job	or	Job#setJar(String).	
68934	[DataStreamer	for	file	/tmp/hadoop-yarn/staging/hadoop/.staging/
job_1455488005182_0020/job.xml	block	
BP-1229375385-172.31.42.104-1455487984302:blk_1073742532_7091]	INFO		
amazon.emr.metrics.MetricsSaver		-	1	aggregated	HDFSWriteDelay	113	raw	values	into	1	
aggregated	values,	total	1	
(To,1)	
(be,1)	
(is,1)	
(or,1)	
(to,1)	
(be-,1)	
(not,1)	
(the,1)	
(that,1)	
(question:,1)	

grunt>	sorted_wordcount	=	ORDER	wordcount	by	$0;	
grunt>	dump	sorted_wordcount;	
(To,1)	
(be,1)	
(be-,1)	
(is,1)	
(not,1)	
(or,1)	
(question:,1)	
(that,1)	
(the,1)	
(to,1)

Sorting the output...

 49

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

grunt>	hamlet	=	LOAD	's3://gu-anly502/ps02/hamlet.txt'	AS	(line:chararray);	
grunt>	words	=	foreach	hamlet	generate	flatten(TOKENIZE(line))	as	word;	
grunt>	grouped	=	GROUP	words	by	word;	
grunt>	wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
grunt>	sorted_words	=	ORDER	wordcount	BY	$1	DESC;	
grunt>	sorted_words20	=	limit	sorted_words	20;	
grunt>	dump	sorted_words20;	
(of,14)	
(the,14)	
(to,9)	
(and,7)	
(The,6)	
(a,5)	
(To,5)	
(And,5)	
(that,4)	
(we,4)	
(bear,3)	
(That,3)	
(us,3)	
(in,3)	
(make,2)	
(end,2)	
(makes,2)	
(all,2)	
(For,2)	
(have,2)	
grunt>		

Working with a larger data set — use LIMIT to limit output.

 50

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

$	cat	top20.pig	
hamlet	=	LOAD	's3://gu-anly502/ps02/hamlet.txt'	AS	(line:chararray);	
words	=	foreach	hamlet	generate	flatten(TOKENIZE(line))	as	word;	
grouped	=	GROUP	words	by	word;	
wordcount	=	FOREACH	grouped	GENERATE	group,	COUNT(words);	
sorted_words	=	ORDER	wordcount	BY	$1	DESC;	
sorted_words20	=	limit	sorted_words	20;	
dump	sorted_words20;	
quit;	
$	pig	top20.pig	-stop-on-failure	
...	
(of,14)	
(the,14)	
(to,9)	
(and,7)	
(The,6)	
(a,5)	
(To,5)	
(And,5)	
(that,4)	
(we,4)	
(bear,3)	
(That,3)	
(us,3)	
(in,3)	
(make,2)	
(end,2)	
(makes,2)	
(all,2)	
(For,2)	
(have,2)	
$	

Pig Latin scripts can be put in files and run from the command line
(like mrjob).

 51

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

-stop-on-failure is recommended

4064342	[main]	INFO		org.apache.pig.tools.pigstats.mapreduce.SimplePigStats		-	Script	Statistics:		

HadoopVersion	PigVersion	UserId	 StartedAt	 FinishedAt	Features	
2.7.1-amzn-0	 0.14.0-amzn-0	 hadoop	 2016-02-15	17:10:13	 2016-02-15	17:10:34	
UNKNOWN	

Success!	

Job	Stats	(time	in	seconds):	
JobId	 Maps	 Reduces	 MaxMapTime	MinMapTime	AvgMapTime	MedianMapTime	
MaxReduceTime	MinReduceTime	 AvgReduceTime	 MedianReducetime	 Alias	
Feature	 Outputs	
job_1455488005182_0036	 1	 0	 6	 6	 6	 6	 0
	 0	 0	 0	 lines	 MAP_ONLY	 hdfs://ip-172-31-42-104.ec2.internal:
8020/user/hadoop/outputfile,	

Input(s):	
Successfully	read	2	records	(356	bytes)	from:	"s3://gu-anly502/ps02/tobe.txt"	

Output(s):	
Successfully	stored	2	records	(44	bytes)	in:	"hdfs://ip-172-31-42-104.ec2.internal:8020/user/
hadoop/outputfile"	

Counters:	
Total	records	written	:	2	
Total	bytes	written	:	44	
Spillable	Memory	Manager	spill	count	:	0	
Total	bags	proactively	spilled:	0	
Total	records	proactively	spilled:	0	

Job	DAG:	
job_1455488005182_0036	

...

Pig Status — don't just ignore it.
Use store lines into 'outputfile'; to write output to a file.

 52

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

16/02/15	17:10:34	INFO	mapreduce.SimplePigStats:	Script	Statistics:		

HadoopVersion	 PigVersion	UserId	 StartedAt	FinishedAt	Features	
2.7.1-amzn-0	0.14.0-amzn-0	 hadoop	 2016-02-15	17:10:13	2016-02-15	17:10:34	
UNKNOWN	

Success!	

Job	Stats	(time	in	seconds):	
JobId	 Maps	 Reduces	 MaxMapTime	MinMapTime	AvgMapTime	MedianMapTime	
MaxReduceTime	 MinReduceTime	 AvgReduceTime	 MedianReducetime	 Alias
	 Feature	 Outputs	
job_1455488005182_0036	1	 0	 6	 6	 6	 6	 0
	 0	 0	 0	 lines	 MAP_ONLY	 hdfs://
ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile,	

Input(s):	
Successfully	read	2	records	(356	bytes)	from:	"s3://gu-anly502/ps02/tobe.txt"	

Output(s):	
Successfully	stored	2	records	(44	bytes)	in:	"hdfs://ip-172-31-42-104.ec2.internal:8020/
user/hadoop/outputfile"	

Counters:	
Total	records	written	:	2	
Total	bytes	written	:	44	
Spillable	Memory	Manager	spill	count	:	0	
Total	bags	proactively	spilled:	0	
Total	records	proactively	spilled:	0	

Job	DAG:	
job_1455488005182_0036

 53

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

16/02/15	17:10:34	INFO	mapreduce.SimplePigStats:	Script	Statistics:		

HadoopVersion	 PigVersion	UserId	 StartedAt	FinishedAt	Features	
2.7.1-amzn-0	0.14.0-amzn-0	 hadoop	 2016-02-15	17:10:13	2016-02-15	17:10:34	
UNKNOWN	

Success!	

Job	Stats	(time	in	seconds):	
JobId	 Maps	 Reduces	 MaxMapTime	MinMapTime	AvgMapTime	MedianMapTime	
MaxReduceTime	 MinReduceTime	 AvgReduceTime	 MedianReducetime	 Alias
	 Feature	 Outputs	
job_1455488005182_0036	1	 0	 6	 6	 6	 6	 0
	 0	 0	 0	 lines	 MAP_ONLY	 hdfs://
ip-172-31-42-104.ec2.internal:8020/user/hadoop/outputfile,	

Input(s):	
Successfully	read	2	records	(356	bytes)	from:	"s3://gu-anly502/ps02/tobe.txt"	

Output(s):	
Successfully	stored	2	records	(44	bytes)	in:	"hdfs://ip-172-31-42-104.ec2.internal:8020/
user/hadoop/outputfile"	

Counters:	
Total	records	written	:	2	
Total	bytes	written	:	44	
Spillable	Memory	Manager	spill	count	:	0	
Total	bags	proactively	spilled:	0	
Total	records	proactively	spilled:	0	

Job	DAG:	
job_1455488005182_0036

 53

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

grunt> cat hdfs:///user/hadoop/outputfile
cat hdfs:///user/hadoop/outputfile
To be, or not to be-
that is the question:
grunt>

Was	expecting	one	of:	
				<EOF>		
				"cat"	...	
				"clear"	...	
				"fs"	...	
				"sh"	...	
				"cd"	...	
				"cp"	...	
				"copyFromLocal"	...	
				"copyToLocal"	...	
				"dump"	...	
				"\\d"	...	
				"describe"	...	
				"\\de"	...	
				"aliases"	...	
				"explain"	...	
				"\\e"	...	
				"help"	...	
				"history"	...	
				"kill"	...	
				"ls"	...	
				"mv"	...	
				"mkdir"	...	
				"pwd"	...	
				"quit"	...	
				"\\q"	...	
				"register"	...	
				"rm"	...	
				"rmf"	...	
				"set"	...	
				"illustrate"	...	

				"\\i"	...	
				"run"	...	
				"exec"	...	
				"scriptDone"	...	
				""	...	
				""	...	
				<EOL>	...	
				";"	...	

grunt>	describe	lines	
describe	lines	
16/02/15	17:14:10	INFO	
Configuration.deprecation:	
fs.default.name	is	deprecated.	
Instead,	use	fs.defaultFS	
lines:	{line:	chararray}	

grunt>	illustrate	lines;	

--	
|	lines					|	line:chararray								
|		

--	
|											|	that	is	the	question:	
|		

--	
grunt>	

Grunt built-in commands:

 54

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Describe and Illustrate
show the structure of
relations.

UDFs expand Pig's functionality.

• Parse input lines

• Perform complex operations.

• Example — a UDF could search the MaxMind IP address geolocation database

—provided that the database is on each node.

Coding Options:

• Write in Java — import as registered jar files.

• Write in jython — (Python that generates jar files) — import as registered jar files.

• Write in python — Access with "pig streaming API" (similar to Hadoop streaming)

Pig User Defined Functions (UDFs)

 55

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Piggybank — a collection of algorithms for pig.

• CommonLogLoader —

• https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CommonLogLoader.html

• CombinedLogLoader:

• https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CombinedLogLoader.html

raw	=	LOAD	'combined_log'	USING	
org.apache.pig.piggybank.storage.apachelog.CombinedLogLoader	AS	(remoteAddr,	
remoteLogname,	user,	time,	method,	uri,	proto,	status,	bytes,	referer,	userAgent);	

• Note: I was not able to get CombinedLogLoader to work with the ForensicsWiki logs!

I used REGEX_EXTRACT to extract the log file entries:

logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(EXTRACT(line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([\\w/]+):(\\d{2}:\\d{2}:\\d{2})	[+\\-]\\d{4}\\]	"(\
\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	"([^"]*)"'	
))	AS	(
					host:	chararray,	identity:	chararray,	user:	chararray,	date:	chararray,	time:	
chararray,	verb:	chararray,	url:	chararray,	request:	chararray,	status:	int,	
					size:	chararray,	referrer:	chararray,	agent:	chararray	
);	

Pig can process any tab-delimited data.
How do you process data that aren't tab-delimited? (e.g. Apache log files)

 56

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CommonLogLoader.html
https://pig.apache.org/docs/r0.14.0/api/org/apache/pig/piggybank/storage/apachelog/CombinedLogLoader.html

DEFINE	EXTRACT							org.apache.pig.piggybank.evaluation.string.EXTRACT();	

raw_logs	=	load	's3://gu-anly502/ps03/forensicswiki.2012.txt'	as	(line:chararray);	

logs_base	=	
		FOREACH	raw_logs	GENERATE	FLATTEN	(
					EXTRACT(line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([\\w/]+):(\\d{2}:\\d{2}:\\d{2})	[+\\-]\\d{4}\\]	
"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	"([^"]*)"'	
))	AS	(
					host:	chararray,	identity:	chararray,	user:	chararray,	date:	chararray,	time:	
chararray,	verb:	chararray,	url:	chararray,	request:	chararray,	status:	int,	
					size:	chararray,	referrer:	chararray,	agent:	chararray	
);	

by_date	=	GROUP	logs_base	BY	(date);	

date_counts	=	FOREACH	by_date	GENERATE	
				group	as	date,						--	the	key	you	grouped	on	
				COUNT(logs_base);			--	the	number	of	log	lines	wiht	this	date	

dump	date_counts;	

Pig program to produce hits-by-day

 57

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

$	pig	parse_apache.pig		
16/02/21	20:18:47	INFO	pig.ExecTypeProvider:	Trying	ExecType	:	LOCAL	
16/02/21	20:18:47	INFO	pig.ExecTypeProvider:	Trying	ExecType	:	MAPREDUCE	
16/02/21	20:18:47	INFO	pig.ExecTypeProvider:	Picked	MAPREDUCE	as	the	ExecType	
45			[main]	INFO		org.apache.pig.Main		-	Apache	Pig	version	0.14.0-amzn-0	(r:	
unknown)	compiled	Jan	14	2016,	02:55:53	
16/02/21	20:18:47	INFO	pig.Main:	Apache	Pig	version	0.14.0-amzn-0	(r:	unknown)	
compiled	Jan	14	2016,	02:55:53	
...	
16/02/21	20:23:09	INFO	util.MapRedUtil:	Total	input	paths	to	process	:	5	
(01/Jul/2012,35039)	
(01/Sep/2012,33272)	
(02/Jul/2012,46445)	
(02/Sep/2012,36225)	
(03/Jul/2012,43922)	
(03/Sep/2012,40703)	
(04/Jul/2012,38576)	
...	
(30/Jul/2012,45488)	
(30/Sep/2012,37817)	
(31/Jul/2012,48353)	
263298	[main]	INFO		org.apache.pig.Main		-	Pig	script	completed	in	4	minutes,	23	
seconds	and	386	milliseconds	(263386	ms)	
16/02/21	20:23:10	INFO	pig.Main:	Pig	script	completed	in	4	minutes,	23	seconds	and	
386	milliseconds	(263386	ms)	

[20:23:11	last:	266s][~/ANLY502/L05]	
$		

Pig output

 58

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

266 seconds to process 4GB file!

Old regular expression:

logs_base	=	
		FOREACH	raw_logs	GENERATE	FLATTEN	(
					EXTRACT(line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([\\w/]+):(\\d{2}:\\d{2}:\\d{2})	[+\\-]\\d{4}\\]	
"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	"([^"]*)"'	
))	AS	(
					host:	chararray,	identity:	chararray,	user:	chararray,	date:	chararray,	time:	
chararray,	verb:	chararray,	url:	chararray,	request:	chararray,	status:	int,	
					size:	chararray,	referrer:	chararray,	agent:	chararray);	

New:

logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(EXTRACT(line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([^\\]]+)\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	
"([^"]*)"	"([^"]*)"'	
))	AS	(
					host:	chararray,	identity:	chararray,	user:	chararray,	datetime_str:	
chararray,	verb:	chararray,	url:	chararray,	request:	chararray,	status:	int,	
					size:	int,	referrer:	chararray,	agent:	chararray	
);	

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Parse the date as a "datetime" and create a new relation with just the
desired fields.

 59

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

"schema"

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:

"describe" and "explain"

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:

"describe" and "explain"

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals
Explain "Logical Plan"

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:

"describe" and "explain"

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:

"describe" and "explain"

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Explain Physical Plan

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:

"describe" and "explain"

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:

"describe" and "explain"

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Explain Map Reduce Plan

logs	=	FOREACH	logs_base	GENERATE	ToDate(datetime_str,'dd/MMM/yyyy:HH:mm:ss	Z')	AS	
date,	host,	url,	size;	

Describe logs:

logs:	{date:	datetime,host:	chararray,url:	chararray,size:	int}	

Explain logs:

"describe" and "explain"

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Program:

raw_logs	=	load	's3://gu-anly502/ps03/forensicswiki.2012.txt'	as	(line:chararray);	
logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(EXTRACT(line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([^\\]]+)\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	
"([^"]*)"'	
))	AS	(
					host:	chararray,	identity:	chararray,	user:	chararray,	datetime_str:	chararray,	verb:	
chararray,	url:	chararray,	request:	chararray,	status:	int,	
					size:	int,	referrer:	chararray,	agent:	chararray	
);	

by_date	=	GROUP	logs	BY	(date);	
date_counts	=	FOREACH	by_date	GENERATE	
				group	as	date,						--	the	key	you	grouped	on	
				COUNT(logs_base);			--	the	number	of	log	lines	wiht	this	date	
dump	date_counts;	

Output:

(,0)	
(2012-01-01T00:00:00.000Z,29116)	
(2012-01-02T00:00:00.000Z,38188)	
...	
(2012-12-31T00:00:00.000Z,36631)	
(2013-01-01T00:00:00.000Z,1283)	
329255	[main]	INFO		org.apache.pig.Main		-	Pig	script	completed	in	5	minutes,	29	seconds	and	337	
milliseconds	(329337	ms)	
16/02/22	00:43:57	INFO	pig.Main:	Pig	script	completed	in	5	minutes,	29	seconds	and	337	
milliseconds	(329337	ms)	

[00:43:58	last:	331s][~/ANLY502/L05]	
$		

Final demo: list of forensicswiki hits by date:

 61

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

331 seconds! (4x faster that mrjob)

Add a second GENERATE:

logs		=	FOREACH	logs_base	GENERATE	ToDate(SUBSTRING(datetime_str,0,11),'dd/MMM/
yyyy')	AS	date,	host,	url,	size;	
logs2	=	FOREACH	logs						GENERATE	SUBSTRING(ToString(date),0,10)	AS	date,	host,	
url,	size;	

by_date	=	GROUP	logs2	BY	(date);	
date_counts	=	FOREACH	by_date	GENERATE	
				group	AS	date,				--	the	key	you	grouped	on	
				COUNT(logs2);						--	the	number	of	log	lines	wiht	this	date	

date_counts_sorted	=	ORDER	date_counts	BY	date;	
dump	date_counts_sorted;	

And run...

(2012-12-28,39090)	
(2012-12-29,54360)	
(2012-12-30,40828)	
(2012-12-31,36631)	
(2013-01-01,1283)	
368896	[main]	INFO		org.apache.pig.Main		-	Pig	script	completed	in	6	minutes,	8	
seconds	and	977	milliseconds	(368977	ms)	
16/02/22	01:21:35	INFO	pig.Main:	Pig	script	completed	in	6	minutes,	8	seconds	and	
977	milliseconds	(368977	ms)	
[hadoop@ip-172-31-37-188	L05]$	%	

368 seconds (up from 331)

A little cleaner — (2012-12-31T00:00:00.000Z,36631) -> (2012-12-31,36631)

 62

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

DEFINE	EXTRACT							org.apache.pig.piggybank.evaluation.string.EXTRACT();	

raw_logs	=	load	's3://gu-anly502/ps03/forensicswiki.2012.txt'	as	(line:chararray);	

maxmind		=	load	's3://gu-anly502/ps03/maxmind'	as	(ipaddr:chararray,	country:chararray);	

logs_base	=	
		FOREACH	
			raw_logs	
		GENERATE	
			FLATTEN	(EXTRACT(line,	
					'^(\\S+)	(\\S+)	(\\S+)	\\[([^\\]]+)\\]	"(\\S+)	(\\S+)	\\S+"	(\\S+)	(\\S+)	"([^"]*)"	
"([^"]*)"'	
))	AS	(
					host:	chararray,	identity:	chararray,	user:	chararray,	datetime_str:	chararray,	verb:	
chararray,	url:	chararray,	request:	chararray,	status:	int,	
					size:	int,	referrer:	chararray,	agent:	chararray	
);	

geolocated_logs	=	JOIN	logs_base	BY	host,	maxmind	BY	ipaddr;	
geolocated_50	=	LIMIT	geolocated_logs	50;	
dump	geolocated_50;	
...	
(180.76.5.67,-,-,01/Jan/2012:13:02:39	-0800,GET,/wiki/Special:WhatLinksHere/User_talk:Marc_Yu,
200,3799,-,Mozilla/5.0	(compatible;	Baiduspider/2.0;	+http://www.baidu.com/search/
spider.html),180.76.5.67,China)	
(180.76.5.89,-,-,01/Jan/2012:02:27:53	-0800,GET,/wiki/Special:RecentChangesLinked/Libvshadow,
200,4391,-,Mozilla/5.0	(compatible;	Baiduspider/2.0;	+http://www.baidu.com/search/
spider.html),180.76.5.89,China)	
(180.76.5.89,-,-,01/Jan/2012:21:47:55	-0800,GET,/images/7/79/?C=S;O=D,200,553,-,Mozilla/5.0	
(compatible;	Baiduspider/2.0;	+http://www.baidu.com/search/spider.html),180.76.5.89,China)	

MaxMind Join with the Forensicswiki Data

 63

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

