
L06: Introducing Spark
ANLY 502: Massive Data Fundamentals

Simson Garfinkel

February 27, 2017

1

1Name of Section

08

visual identity guidelines

08

Background:

• Midterm Assessment

• A03 Redux — it should be graded!

• A04 Questions

• Reading Release Notes

Spark 1

• Introducing Spark

• RDDs and Datasets

• Writing Spark programs in Python

Lab 1

Spark 2:

• The State of Spark

• Internet sources for information about Spark.

• Using Spark with jupyter on EMR

Lab 2

Outline for today’s class

�2

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

What we've done:

• Unix command line

• Amazon Web Services

• Spending real money — $$$

• MapReduce

• mrjob

• Debugging

• Gigabyte-sized data sets

• Data wrangling

Where we're going:

• Spark

• SparkSQL

• Terabyte-sized data sets

• Class Projects

We've done a lot in the past six weeks!

�3

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Please fill out: http://bit.ly/2lVLQTj	
Responses:	http://bit.ly/2mu8LTl		

Survey...

�4

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Please log in to Amazon and
start a 1-node EMR cluster!

emr-5.3.1

Spark 2.1.0

5

A3 - Any Questions?
6

A4
7

https://pixabay.com/en/student-typing-keyboard-text-woman-849825/

Mon Feb 13 — A4 released!

Mon Feb 20 — Holiday (President’s Day): Reading and online homework

Mon, Feb 27 — L06: Intro to Apache Spark

Mon, Mar 6 — Holiday (Spring Break, Fri Mar 3 — Sun Mar 12)

Mon, Mar 13 — L07: HBase and Spark SQL

Fri., Mar 17 — A4 Due Today!

A4 — You have a month for this problem set

�8

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Mon Mar 20 — L08: Hive & Pig (probably will change)

Tue Mar 22 — Final Project Individual Proposals

Mon Mar 27 — Scalable Machine Learning with Spark

Tue Mar 28 — Final Project Group Proposals

Mon April 3 — L10: Streaming Databases & Graph Databases

Mon April 10 — No class — Passover & Italy

Mon April 10 – Fri April 14 — Final Project Online Clinic (it's graded!)

Mon April 17 — No class Easter Break

Mon April 24 — L11: NoSQL

Mon May 1 — L12: Final Project Presentations (last class!!!)

Wed May 10 — Final Projects Due

Mon May 15 — Grades due for graduating students (anybody graduating?)

Start thinking about your final projects!

�9

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Reading the release
notes

10

Python Release History

• Python 1.0 — January 1994

• Python 2.0 — October 2000

—Python 2.1 — April 2001
—Python 2.2 — Dec. 2001
—Python 2.3 — July 2003
—Python 2.4 — Nov. 2004
—Python 2.5 — Sept. 2006
—Python 2.6 — Oct. 2008
—Python 2.7 — July 2010

Many Python users are still using 2.7! (6.5 years old!)

We are using Python 3.4 on EMR! (3 years old!)

Read the documentation! Read the release notes.

�11

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

• Python 3.0 — Dec. 2008

—Python 3.1 — June 2009
—Python 3.2 — Feb. 2011
—Python 3.3 — Sept. 2012
—Python 3.4 — March 2014
—Python 3.5 — Sept. 2015
—Python 3.6 — Dec. 2016

What's new in Python3.6?

What's new in Python3.5?

• Check the release notes!

• https://docs.python.org/3.5/

I just got Python3.6 at work...

�12

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://docs.python.org/3.5/

You should read "What's New In Python 3.5"

Here's what I think is neat:

• bytes.hex()

• collections.OrderedDict() — 4 to 100 times faster (implemented in C)

• os.scandir()

• subprocess.run()

• @ infix operator for matrix multiplication (with numpy)

• typing module and Type hints

def	greeting(name:str)	->	str:	
				return	'Hello	'	+	name	

Key things new in Python 3.5

�13

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

New modules:

• secrets — holds cryptographic secrets

Faster modules:

• dict — takes 20% to 25% less memory compared to Python 3.5

Better modules

• datetime — support for Local Time Disambiguation (for daylight savings time)

• typing — improvements

• hash lib — support for BLAKE2, SHA-3, and SHAKE

Language improvements

>>>	name	=	"Fred"	
>>>	f"He	said	his	name	is	{name}."	
'He	said	his	name	is	Fred.'	

>>>	1_000_000	
1000000	

Lots more cool stuff

Key things in Python 3.6

�14

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Use a new feature if:

• It simplifies your program

• You can specify which version of Python your users will use.

• The version of Python is supported on every computer you need to use.

Don't use a new feature if:

• You want your code to run on as many systems as possible.

• Your code needs to run on legacy or un-patched systems.

Use Python 2 if:

• You need to use a module that isn't supported on Python 3

• Only support Python 2.7

• After reading https://wiki.python.org/moin/Python2orPython3

When should you use new language features?

�15

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://wiki.python.org/moin/Python2orPython3

Be aware of the Python HOWTOs

�16

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Introducing Spark
17

What's wrong with MapReduce?

• Slow! All data written to disk at each stage.

• Awkward — Lots of calculations can't be easily described as a "map" and a "reduce"

• Wasteful — Many programs (machine learning) require multiple passes over same data.

UC Berkeley by the AMP Lab — Developed Spark

• http://spark-project.org/

Not another layer on MapReduce

• Run on top of YARN

• Run directly on the cluster

Compatible with Hadoop:

• Read/write any Hadoop data source

—HDFS (Text Files, Sequence Files, etc)
—S3 (on EMR)
—HBase, Hive, etc.

• Run legacy MapReduce jobs

Spark — Not another layer on MapReduce

�18

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Each “node” is a rack-mounted computer:

• Running Linux

• Running multiple JVMs (1 per core)

The stack runs on every node in the cluster

 22

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Rack

HDFS2 — Hadoop Distributed File System

YARN — Yet Another Resource
Negotiator

SparkTezHBase

MapReducePig HiveImpala

Your program!

Spark SQL

Hadoop MapReduce:

• Designed for data flow, not for iterative calculations — e.g. Machine Learning

• Designed for batch processing — high overhead, slow.

• Java/JVM is "first class" citizen

—other language require "streaming" interface

Spark:

• Designed for data sharing between steps — Iterative processing

• Support interactive development.

• Supports multiple languages (Scala, Python, R)

• Flexible, expressive programming model.

Four ways to run:

• Local Mode

• EC2 — multiple systems, native OS

• Apache Mesos (cluster management software)*

• Apache YARN — Run alongside MapReduce

Spark — improves on core Hadoop ideas

�19

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Spark Core

Spark
SQL

Spark
Streaming MLlib GraphX

Key Spark Parts:

*https://aws.amazon.com/blogs/compute/cluster-management-with-amazon-ecs/

Resilient Dynamic Datasets (RDDs)

• RDD stores a single "dataset" as a set of buffers on different computers:

Spark — A fundamentally different computation model

�20

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

a = sc.textFile("s3://gu-anly502/logs/forensicswiki.2012.txt")

Node 1

Node 2

Node 3

Node 1

Node 2

Node 3
a

Node 4

If a node fails, Spark re-generates the data as necessary.

X

s3://gu-anly502/logs/forensicswiki.2012.txt

 AMP Lab Slide

Data	Sharing	in	MapReduce

iter.	1 iter.	2 .		.		.

Input

HDFS  
read

HDFS  
write

HDFS  
read

HDFS  
write

Input

query	1

query	2

query	3

result	1

result	2

result	3

.		.		.

HDFS  
read

Slow	due	to	replication,	serialization,	and	disk	IO

 AMP Lab Slide

iter.	1 iter.	2 .		.		.

Input

Data	Sharing	in	Spark

Distributed 
memory

Input

query	1

query	2

query	3

.		.		.

one-time  
processing

10-100×	faster	than	network	and	disk

Hold structured data.

Distributed across 1 or more nodes.

Connected together in a directed acyclic graph

• Graph is created by the Spark program

Automatically rebuilt on failure

Immutable / Read-Only (do not change)

RDDs can hold:

• "Rows" — Untyped rows of data

• Dataframes — Typed records

Spark also offers:

• Broadcast variables — copied to every node (read-only)

• Accumulators — Can only be "added" to (similar to Hadoop Counters)

Resilient Distributed Datasets (RDDs)

�23

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Data flows

RDD A RDD B OUTPUTINPUT

Spark requires:
• Cluster manager
• Distributed storage system

Sample Question:

• How many lines in Shakespeare contain the word "Hamlet" ?

You write code in Python that performs a computation.

�24

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

RDD A RDD B OUTPUTINPUT

Data dependency

s3://gu-anly502/ps04/Shakespeare.txt

Data dependency

1. Read the
file from S3
line-by-line

A = sc.textFile("s3://gu-anly502/ps04/Shakespeare.txt")

2. Filter the
lines for
"Hamlet"

def hasHamlet(s):
 return "Hamlet" in s

B = A.filter(hasHamlet)

3. Print Line
Count

print(B.count())

s3://gu-anly502/ps04/Shakespeare.txt

When the output is requested, the RDDs are created as necessary.

Behind the scenes, Spark builds a dependency tree

�25

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

RDD A RDD B OUTP
UTINPUT

Data
dependency

s3://gu-anly502/ps04/Shakespeare.txt
FilteredRDD
B = A.filter(hasHamlet)

HadoopRDD
A = sc.textFile(fn)

A.count()

Data
dependency

s3://gu-anly502/ps04/Shakespeare.txt

$	ipyspark		
Python	3.4.3	(default,	Sep		1	2016,	23:33:38)		
Type	"copyright",	"credits"	or	"license"	for	more	information.	

IPython	5.3.0	--	An	enhanced	Interactive	Python.	
?									->	Introduction	and	overview	of	IPython's	features.	
%quickref	->	Quick	reference.	
help						->	Python's	own	help	system.	
object?			->	Details	about	'object',	use	'object??'	for	extra	details.	
Ivy	Default	Cache	set	to:	/home/hadoop/.ivy2/cache	
The	jars	for	the	packages	stored	in:	/home/hadoop/.ivy2/jars	
::	loading	settings	::	url	=	jar:file:/usr/lib/spark/jars/ivy-2.4.0.jar!/org/apache/ivy/
core/settings/ivysettings.xml	
com.databricks#spark-csv_2.11	added	as	a	dependency	
com.databricks#spark-avro_2.11	added	as	a	dependency	
org.elasticsearch#elasticsearch-spark_2.11	added	as	a	dependency	
::	resolving	dependencies	::	org.apache.spark#spark-submit-parent;1.0	
	 confs:	[default]	
	 found	com.databricks#spark-csv_2.11;1.5.0	in	central	
	 found	org.apache.commons#commons-csv;1.1	in	central	
	 found	com.univocity#univocity-parsers;1.5.1	in	central	
	 found	com.databricks#spark-avro_2.11;3.0.0	in	central	
	 found	org.slf4j#slf4j-api;1.7.5	in	central	
	 found	org.apache.avro#avro;1.7.6	in	central	
	 found	org.codehaus.jackson#jackson-core-asl;1.9.13	in	central	
	 found	org.codehaus.jackson#jackson-mapper-asl;1.9.13	in	central	
	 found	com.thoughtworks.paranamer#paranamer;2.3	in	central	
	 found	org.xerial.snappy#snappy-java;1.0.5	in	central	
	 found	org.apache.commons#commons-compress;1.4.1	in	central	
	 found	org.tukaani#xz;1.0	in	central	
	 found	org.elasticsearch#elasticsearch-spark_2.11;2.4.0	in	central	
::	resolution	report	::	resolve	601ms	::	artifacts	dl	19ms	
...

DEMO (with s3://gu-anly502/bootstrap-spark.sh)
1. Start Spark

�26

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

s3://gu-anly502/bootstrap-spark.sh

17/02/26 15:43:58 WARN Client: Same path resource file:/home/hadoop/.ivy2/jars/
org.apache.commons_commons-compress-1.4.1.jar added multiple times to distributed cache.
17/02/26 15:43:58 WARN Client: Same path resource file:/home/hadoop/.ivy2/jars/
org.tukaani_xz-1.0.jar added multiple times to distributed cache.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 2.1.0
 /_/

Using Python version 3.4.3 (default, Sep 1 2016 23:33:38)
SparkSession available as 'spark'.

In [1]: A = sc.textFile("s3://gu-anly502/ps04/Shakespeare.txt")

In [2]: def hasHamlet(s):
 ...: return "Hamlet" in s
 ...:

In [3]: B = A.filter(hasHamlet)

In [4]: print(B.count())

...	magic	...	
108

In [5]: print(B.count())

�27

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In [6]: A.first()
Out[6]: '<<THIS ELECTRONIC VERSION OF THE COMPLETE WORKS OF WILLIAM'

In [7]: B.take(5)
Out[7]:
[' Hamlet, son to the former, and nephew to the present king.',
 ' Horatio, friend to Hamlet.',
 ' Getrude, Queen of Denmark, mother to Hamlet.',
 " Ghost of Hamlet's Father.",
 " Dar'd to the combat; in which our valiant Hamlet"]

In [8]: B.takeSample(False, 5)
Out[8]:
[' Mar. Lord Hamlet!',
 ' Oph. So please you, something touching the Lord Hamlet. ',
 ' [Laertes wounds Hamlet; then] in scuffling, they',
 " [The King puts Laertes' hand into Hamlet's.]",
 ' King. From Hamlet? Who brought them?']

In [9]: B.collect()
Out[9]:
[' Hamlet, son to the former, and nephew to the present king.',
 ' Horatio, friend to Hamlet.',
 ' Getrude, Queen of Denmark, mother to Hamlet.',
 " Ghost of Hamlet's Father.",
 " Dar'd to the combat; in which our valiant Hamlet",
 ' His fell to Hamlet. Now, sir, young Fortinbras,',
 ' Unto young Hamlet; for, upon my life,',
 'Flourish. [Enter Claudius, King of Denmark, Gertrude the Queen, Hamlet,',
 " King. Though yet of Hamlet our dear brother's death",
 ' But now, my cousin Hamlet, and my son-',

...

With Spark, you can look at your data interactively!

�28

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In [1]: A = sc.textFile("s3://gu-anly502/ps04/Shakespeare.txt")
In [2]: def hasHamlet(s):
 ...: return "Hamlet" in s
 ...:
In [3]: B = A.filter(hasHamlet)

.take(n) takes first n

.first() takes first line

.takeSample(False,3) takes 3 random lines

.collect() returns all the lines

In [10]: A.
 A.aggregate A.coalesce A.context A.countByValue
 A.aggregateByKey A.cogroup A.count A.ctx
 A.cache A.collect A.countApprox A.distinct
 A.cartesian A.collectAsMap A.countApproxDistinct A.filter
 A.checkpoint A.combineByKey A.countByKey A.first

 A.flatMap A.foreachPartition A.glom A.id
 A.flatMapValues A.fullOuterJoin A.groupBy A.intersection
 < A.fold A.getCheckpointFile A.groupByKey A.is_cached
 A.foldByKey A.getNumPartitions A.groupWith A.is_checkpointed
 A.foreach A.getStorageLevel A.histogram A.isCheckpointed

 A.isEmpty A.leftOuterJoin A.mapPartitionsWithIndex A.meanApprox
 A.isLocallyCheckpointed A.localCheckpoint A.mapPartitionsWithSplit A.min
 < A.join A.lookup A.mapValues A.name
 A.keyBy A.map A.max A.partitionBy
 A.keys A.mapPartitions A.mean A.partitioner

 A.persist A.reduceByKeyLocally A.sampleByKey A.saveAsNewAPIHadoopDataset
 A.pipe A.repartition A.sampleStdev A.saveAsNewAPIHadoopFile
 < A.randomSplit A.repartitionAndSortWithinPartitions A.sampleVariance A.saveAsPickleFile
 A.reduce A.rightOuterJoin A.saveAsHadoopDataset A.saveAsSequenceFile
 A.reduceByKey A.sample A.saveAsHadoopFile A.saveAsTextFile

 A.saveAsNewAPIHadoopDataset A.setName A.subtract A.takeOrdered
 A.saveAsNewAPIHadoopFile A.sortBy A.subtractByKey A.takeSample
 < A.saveAsPickleFile A.sortByKey A.sum A.toDebugString
 A.saveAsSequenceFile A.stats A.sumApprox A.toDF
 A.saveAsTextFile A.stdev A.take A.toLocalIterator

 A.saveAsNewAPIHadoopDataset A.setName A.subtract A.takeOrdered
 A.saveAsNewAPIHadoopFile A.sortBy A.subtractByKey A.takeSample
 < A.saveAsPickleFile A.sortByKey A.sum A.toDebugString
 A.saveAsSequenceFile A.stats A.sumApprox A.toDF
 A.saveAsTextFile A.stdev A.take A.toLocalIterator

 A.subtract A.takeOrdered A.top A.values
 A.subtractByKey A.takeSample A.treeAggregate A.variance
 < A.sum A.toDebugString A.treeReduce A.zip
 A.sumApprox A.toDF A.union A.zipWithIndex
 A.take A.toLocalIterator A.unpersist A.zipWithUniqueId

Use completion to see all of the methods...

�29

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

sample(self, withReplacement, fraction, seed=None) method of pyspark.rdd.PipelinedRDD
instance
 Return a sampled subset of this RDD.

takeSample(self, withReplacement, num, seed=None) method of pyspark.rdd.PipelinedRDD
instance
 Return a fixed-size sampled subset of this RDD.

In [10]: B.sample(False,.10)
Out[10]: PythonRDD[7] at RDD at PythonRDD.scala:43

In [11]: B.sample(False,.10).collect()
...
Out[11]:
[u' Unto young Hamlet; for, upon my life,',
 u' Queen. Good Hamlet, cast thy nighted colour off,',
 u' Oph. So please you, something touching the Lord Hamlet. ',
 u' Than a command to parley. For Lord Hamlet,',
 u" Lord Hamlet, with his doublet all unbrac'd,",
 u" Of Hamlet's transformation. So I call it,",
 u' [Exit the Queen. Then] Exit Hamlet, tugging in',
 u' Enter Hamlet and Guildenstern [with Attendants].',
 u' King. Hamlet, this deed, for thine especial safety,-',
 u' The present death of Hamlet. Do it, England; ',
 u' [Exeunt all but Hamlet.]',
 u" And that in Hamlet's hearing, for a quality",
 u' King. Stay, give me drink. Hamlet, this pearl is thine;']

In [12]:

sample() — performs sampling into an RDD
takeSample() — Combines sampling and .collect()

�30

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Execution time: 2 seconds

.sample() returns an RDD

.collect() transfers the data to the driver

Question: How many times does Main_Page appear in the forensicswiki logs?

In [13]: s = sc.textFile("s3://gu-anly502/logs/forensicswiki.2012.txt")

In [14]: smain = s.filter(lambda line:"Main_Page" in line)

In [15]: %time smain.count()
[Stage 9:> (0 + 4) / 64]
[Stage 9:=================> (20 + 4) / 64]
[Stage 9:========================> (28 + 4) / 64]
[Stage 9:===============================> (35 + 4) / 64]
[Stage 9:===> (53 + 4) / 64]

348820
CPU times: user 32 ms, sys: 4 ms, total: 36 ms
Wall time: 1min 15s

In [16]:

Same example, bigger dataset:

�31

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

lambda notation!

75 sec

If we type main.count() again, it has to recompute:

In [16]: smain.count()
[Stage 10:============================> (32 + 4) / 64]
[Stage 10:===============================> (36 + 4) / 64]
[Stage 10:==> (51 + 4) / 64]
[Stage 10:===> (56 + 4) / 64]
[Stage 10:==> (62 + 2) / 64]
Out[16]: 348820

To cache smain, we need to explicitly tell it to cache:

cache() method of pyspark.rdd.PipelinedRDD instance
 Persist this RDD with the default storage level (C{MEMORY_ONLY}).

In [18]: smain.cache()
Out[18]: PythonRDD[16] at RDD at PythonRDD.scala:48

In [19]: smain.count()
[Stage 11:> (0 + 0) / 64]
[Stage 11:=======> (8 + 4) / 64]
...
Out[19]: 348820

In [20]: smain.count()
Out[20]: 348820

In [21]: smain.count()
Out[21]: 348820

Spark does not cache results by default

�32

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

How do we trust this number:

In [16]: smain.count()
Out[16]: 348820

In [17]:

Try looking at some of the output:

In [17]: smain.sample(False,.001).collect()
Out[17]:
[u'193.105.210.94 - - [01/Jan/2012:08:35:04 -0800] "GET //Talk:Main_Page HTTP/1.0" 404 518 "http://
www.forensicswiki.org//Talk:Main_Page" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; APC; .NET
CLR 1.0.3705; .NET CLR 1.1.4322; .NET CLR 2.0.50215; InfoPath.1)" ',
 u'32.178.74.29 - - [02/Jan/2012:12:18:16 -0800] "HEAD /index.php?title=Main_Page HTTP/1.1" 200 321
"-" "Mozilla/4.0 (compatible; Powermarks/3.5; Windows 95/98/2000/NT)" ',
 u'91.117.143.86 - - [02/Jan/2012:15:57:09 -0800] "GET /w/extensions/BibTex/bibtex.js HTTP/1.1" 200
1384 "http://www.forensicswiki.org/wiki/Main_Page" "Mozilla/5.0 (X11; U; i686 Linux; es, gl, en_GB,
en_US) AppleWebKit/533.3 (KHTML, like Gecko) Chrome/5.0.358.0 Safari/533.3" ',
 u'61.68.18.158 - - [03/Jan/2012:14:44:07 -0800] "GET /w/skins/monobook/main.css?270 HTTP/1.1" 304 174
"http://www.forensicswiki.org/wiki/Main_Page" "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:8.0.1) Gecko/
20100101 Firefox/8.0.1" ',
 u'198.234.82.254 - - [04/Jan/2012:06:48:42 -0800] "GET /wiki/Tools HTTP/1.1" 200 13302 "http://
www.forensicswiki.org/wiki/Main_Page" "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0;
.NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR 3.0.4506.2152; .NET CLR
3.5.30729; MDDR; InfoPath.2)" ',
...

With Spark, it's easy to check your work.

�33

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Whoops! — We got the answer to our question, but it was the wrong
question...

A RDD may be on multiple nodes.

More about RDDs

�34

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

HadoopRDD
A = sc.textFile(fn)

RDD A

A = sc.textFile("s3://gu-anly502/ps04/Shakespeare.txt")

def hasHamlet(s):
 return "Hamlet" in s

B = A.filter(hasHamlet)

print(B.count())

The control program is called the "Driver."

s3://gu-anly502/ps04/Shakespeare.txt

RDDs are deterministic.
If an RDD fails, it is rebuilt automatically

�35

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

RDD A RDD B OUTP
UTINPUT

FilteredRDD
B = A.filter(hasHamlet)HadoopRDD

A = sc.textFile(fn)

A.count()

RDD A

HadoopRDD
A = sc.textFile(fn)

X

s3://gu-anly502/ps04/Shakespeare.txt

 AMP Lab Slide

Example:	Log	Mining
Load	error	messages	from	a	log	into	memory,	
then	interactively	search	for	various	patterns
lines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache() Block	1

Block	2

Block	3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks
results

Cache	1

Cache	2

Cache	3

Base	RDDTransformed	RDD

Action

Result:	full-text	search	of	Wikipedia	
in	<1	sec	(vs	20	sec	for	on-disk	data)

Result:	scaled	to	1	TB	data	in	5-7	sec  
(vs	170	sec	for	on-disk	data)

NOTE: SCALA!

 AMP Lab Slide

Example:	Logistic	Regression
val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = data.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
 w -= gradient
}

println("Final w: " + w)

Initial	parameter	vector

Repeated	MapReduce	steps  
to	do	gradient	descent

Load	data	in	memory	once

NOTE: SCALA!

 AMP Lab Slide

Logistic	Regression	Performance
R
un

ni
ng

	T
im

e	
(s
)

0

1000

2000

3000

4000

Number	of	Iterations

1 5 10 20 30

Hadoop
Spark

127	s	/	iteration

first	iteration	174	s	
further	iterations	6	s It's faster

because the data
are read into

memory ONCE.

Good news: Python and scala look a lot alike.

Expect to see code like this:

lines	=	spark.textFile("hdfs://...")	
errors	=	lines.filter(_.startsWith("ERROR"))	
messages	=	errors.map(_.split('\t')(2))	
cachedMsgs	=	messages.cache()	

Translate it like this:

lines	=	sc.textFile("hdfs://...")	
errors	=	lines.filter(lambda	a:a.startswith("ERROR"))	
messages	=	errors.map(lambda	a:a.split("\t",	1)	
cachedMsgs	=	messages.cache()	

Scala vs. Python
Spark was developed in Scala

�39

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

About 100 different methods

• map, reduce, reduceByKey

• filter

• count

• cogroup, groupBy

• partitionBy

• join, leftOuterJoin, rightOuterJoin, cross

• sample

• save

• pipe

More...

pyspark.RDD — basic class for RDD
https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

�40

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

Lab #1
41

Run pyspark (or ipyspark)

Work the Shakespeare example:

A	=	sc.textFile("s3://gu-anly502/ps04/Shakespeare.txt")	
def	hasHamlet(s):	
				return	"Hamlet"	in	s	
B	=	A.filter(hasHamlet)	

or	

B	=	A.filter(lambda	s:	"Hamlet"	in	s)	

print(B.count())	
B.cache()	
B.takeSample(False,	10)	
B.take(10)	
B.first()	
B.collect()

Start up EMR and Spark and Log in

�42

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

A1 - Find the malformed entries?

A	=	sc.textFile("s3://gu-anly502/A1/quazyilx1.txt")	
B	=	A.filter(lambda	bad:"fnard:-1	fnok:-1	cark:-1	gnuck:-1"	in	bad)	
B.cache()	
B.count()	

A2 - Forensicswiki hit analysis

 '[28/Dec/2012:06:43:35 -0800] "GET /w/load.php?
debug=false&lang=en&modules=jquery.checkboxShiftClick%2Ccookie%2CmakeCollapsible%2CmessageBox%2Cmw
Prototypes%2Cplaceholder%7Cmediawiki.language%2Cuser%2Cutil%7Cmediawiki.legacy.ajax%2Cwikibits%7Cm
ediawiki.page.ready&skin=monobook&version=20120730T153329Z&* HTTP/1.1" 200 11293 "http://
www.forensicswiki.org/wiki/Main_Page" "Mozilla/5.0 (X11; Linux i686) AppleWebKit/536.11 (KHTML,
like Gecko) Ubuntu/12.04 Chromium/20.0.1132.47 Chrome/20.0.1132.47 Safari/536.11"'

date_re	=	re.compile("\[(\d\d/[a-zA-Z]+/\d\d\d\d)\]")	
def	extract(line):	
				m	=	date_re.search(line)	
				if	m:	
								d	=	datetime.datetime.strptime(m.group(1),"%d/%b/%Y")	
								return	"{:04}-{:02}".format(d.year,d.month)	
W	=	sc.textFile("s3://gu-anly502/logs/forensicswiki.2012.txt")	
W.cache()	
dates	=	W.map(lambda	line:	[extract(line),	1])	
dates.cache()	
dates.countByKey()

Redo problem sets with Spark!

�43

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

The State of Spark
Who is using Spark? 44

7:45 Start

2009 — Developed at UC Berkeley AMPLab

2010 — First open source release

2012 — Spark 0.5
2013 — Donated to Apache Foundation

 — Databricks founded by Ali Ghodsi, Andy Konwinski, Ion Stoica,  
 Patrick Wendell, Reynold Xin, Matei Zaharia

2014 — Spark becomes a "Top-Level Apache Project"

 — Spark 1.0

2015 — Spark has more than 1000 contributors.

2016 — Spark has more than 2000 contributors

 — Spark 2.0

Spark history and community

�45

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Who is using Spark?

�46

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

APACHE SPARK IS BEING USED
TO CREATE SOPHISTICATED
PRODUCTS WITHIN THE SAME
ORGANIZATION

FEATURES USERS CONSIDER IMPORTANT
Respondents were allowed to select more than one feature.

PERFORMANCE
91% EASE OF

PROGRAMMING

76%EASE OF
DEPLOYMENT

69%

ADVANCED
ANALYTICS

82%

REAL-TIME
STREAMING

51%

APACHE SPARK’S FASTEST GROWING AREAS IN 2016

57%
STREAMING USERS

 38%

ADVANCED ANALYTICS
USERS (MLLIB)

153%
DATAFRAME USERS

67 %
SPARK SQL USERS

Apache Spark Streaming is growing. Since its release, Spark Streaming has become one of the most widely used
distributed streaming engines. Interest in developing real-time applications and advanced analytics is on the rise.

 APACHE SPARK

SURVEY 2016
REPORT HIGHLIGHTS

® ™

Databricks ran our Apache Spark Survey 2016 this summer
to identify how organizations are using Apache Spark.
This year’s results reflect the answers and opinions of 1615
respondents representing over 900 organizations. Survey
respondents were predominantly Apache Spark users.

The survey results suggest that Spark’s growth continues across various industries, building
sophisticated data solutions by people in various functional roles. Using multiple Spark components,
many users build different types of products in production. The results indicate that Spark has
moved well beyond the early-adopter phase at high-tech companies and is now mainstream in large
data-driven enterprises. And with the rise of public cloud computing, the survey findings reflect that
users show an increased affinity toward using Spark in the public cloud.

2015 and 2016 have been exciting years for the adoption and increased growth of Apache Spark and its
community. Your voice matters. We got an insightful glimpse into the growth and trends from this year’s
survey: who’s using Spark, how they are using it, what’s important, what new features they use, and what
they are using it for. Thank you to everyone who participated in the Databricks 2016 Apache Spark Survey!

Spark today remains the most active open source project in Big Data. Today, there are over 1000 Spark contributors,
compared to 600 in 2015 from 250+ organizations. With such large numbers of contributors and organizations investing in
Spark’s future development, it has engaged a community of developers globally.

APACHE SPARK’S GROWTH CONTINUES

APACHE SPARK IN THE CLOUD IS GROWING

APACHE SPARK STREAMING AND MACHINE LEARNING SURGE IN USAGE

KEY INDUSTRIES USING APACHE SPARK

1615
RESPONDENTS

900
DISTINCT ORGANIZATIONS

ARCHITECTS

ACADEMICS

21%

TECHNICAL
MANAGEMENT

10%

5%DATA ENGINEERS
41%

DATA SCIENTISTS
23%

240%
SPARK MEETUP MEMBERS

67%
CODE CONTRIBUTORS

2016
1000

2015
600

2016
225,000

2015
66,000

57%
COMPANIES REPRESENTED AT SUMMITS

2016
1800

2015
1144

30%
SPARK SUMMIT ATTENDEES

2016
5100

2015
3912

68%

52%

45%

40%

37%

36%

29%

BUSINESS / CUSTOMER INTELLIGENCE

DATA WAREHOUSING

REAL-TIME / STREAMING SOLUTIONS

RECOMMENDATION ENGINES

LOG PROCESSING

USER-FACING SERVICES

FRAUD DETECTION / SECURITY

LANGUAGES USED IN APACHE SPARK SPARK COMPONENTS USED IN PRODUCTION

71%
65%

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016

SCALA

58% 62%

2015 2016

PYTHON

31% 29%

2015 2016

JAVA

18% 20%

2015 2016

R

36% 44%

2015 2016

SQL DATAFRAMES

15%

38%

2015 2016

SQL

24%

40%

2015 2016

STREAMING

14%

22%

2015 2016

ADVANCED
ANALYTICS (MLlib)

13%
18%

2016

Respondents were allowed to select more than one component. Respondents were allowed to select more than one language.

NOTABLE APACHE SPARK USERS WHO PRESENTED AT SPARK SUMMIT 2016

IMPORTANCE OF
APACHE SPARK
STREAMING
TO USERS

APACHE SPARK STREAMING AND MLLIB USE
IN PRODUCTION

Apache Spark’s growth and adoption continues as users, industries, development environments, disciplines,
and programming languages embrace its ease of use and programming; its unified compute engine; and
its performance to solve complex data problems at scale.

The rise of cloud computing is rapid, inexorable and causing a huge upheaval in the tech industry, writes
The Economist. We observed this trend reflected in the survey results, as many respondents elect to deploy
Spark in the public cloud, reaping its many benefits. Not only do cloud deployments have lower deployment
costs and fewer management headaches, they have higher and proven performance benefits.

Spark Streaming is being used for real-time solutions, from evaluation to production, closer in usage to
Spark’s other commonly used components. As a preferred choice of streaming engine over others, more
organizations are building real-time streaming solutions as they consider streaming an important Spark feature.

Apache Spark deployments in the public cloud increased in 2016. In contrast, the percentage of Spark deployments
on-premises decreased in the past year.

51%
2015

PERCENTAGE DECREASE IN ON-PREMISES
DEPLOYMENTS

 2016

61% of respondents
deploy Spark
in a public cloud

11%

40%
48%

7%

36%
42%

STANDALONEYARNMESOS

2015 2016 2015 2016 2015 2016

TYPES OF PRODUCTS DEVELOPED
USING APACHE SPARK

40% of respondents develop

RECOMMENDATION ENGINE
PRODUCTS

45% of respondents develop
REAL-TIME STREAMING
PRODUCTS

29% of respondents develop

FRAUD DETECTION / SECURITY
PRODUCTS

2015 2016

13%

18 %

2015 2016

STREAMING ADVANCED ANALYTICS (ML)

14%

22%

57%

STREAMING
PRODUCTION CASES

38%

ADVANCED ANALYTICS (MLlib)
PRODUCTION CASES

Databricks’ vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created
Apache® Spark™, a powerful open source data processing engine built for sophisticated analytics, ease of use, and speed. Databricks is the largest
contributor to the open source Apache Spark project providing 10x more code than any other company. The company has also trained over 20,000
users on Apache Spark, and has the largest number of customers deploying Spark to date. Databricks provides a just-in-time data platform, to simplify
data integration, real-time experimentation, and robust deployment of production applications. Databricks is venture-backed by Andreessen
Horowitz and NEA. For more information, contact info@databricks.com.

Respondents were allowed to select more than one component.

18%
CONSULTING

(IT)

25%
SOFTWARE

(SAAS, WEB, MOBILE)11%

 BANKING /
FINANCE

7%

 ADVERTISING /
MARKETING /

PR

6%

ECOMMERCE / RETAIL

5%
HEALTH / MEDICAL /

 PHARMACY / BIOTECH

CARRIERS / TELECOM

5%

4%

3%

EDUCATION

PUBLISHING / MEDIA

COMPUTERS / HARDWARE

3% 13%
OTHER

Respondents were allowed to select more than one product.

APACHE SPARK DEPLOYMENT
IN PUBLIC CLOUDS
HAS INCREASED BY 10%
SINCE 2015.

35%
SOMEWHAT
IMPORTANT

%
VERY

IMPORTANT

51 NOT
IMPORTANT

%

© Databricks 2016. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

View the full report at databricks.com/2016-spark-survey

databricks.com/2016-spark-survey

http://databricks.com/2016-spark-survey

Spark is the most active open source Big Data project.

�47

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

APACHE SPARK IS BEING USED
TO CREATE SOPHISTICATED
PRODUCTS WITHIN THE SAME
ORGANIZATION

FEATURES USERS CONSIDER IMPORTANT
Respondents were allowed to select more than one feature.

PERFORMANCE
91% EASE OF

PROGRAMMING

76%EASE OF
DEPLOYMENT

69%

ADVANCED
ANALYTICS

82%

REAL-TIME
STREAMING

51%

APACHE SPARK’S FASTEST GROWING AREAS IN 2016

57%
STREAMING USERS

 38%

ADVANCED ANALYTICS
USERS (MLLIB)

153%
DATAFRAME USERS

67 %
SPARK SQL USERS

Apache Spark Streaming is growing. Since its release, Spark Streaming has become one of the most widely used
distributed streaming engines. Interest in developing real-time applications and advanced analytics is on the rise.

 APACHE SPARK

SURVEY 2016
REPORT HIGHLIGHTS

® ™

Databricks ran our Apache Spark Survey 2016 this summer
to identify how organizations are using Apache Spark.
This year’s results reflect the answers and opinions of 1615
respondents representing over 900 organizations. Survey
respondents were predominantly Apache Spark users.

The survey results suggest that Spark’s growth continues across various industries, building
sophisticated data solutions by people in various functional roles. Using multiple Spark components,
many users build different types of products in production. The results indicate that Spark has
moved well beyond the early-adopter phase at high-tech companies and is now mainstream in large
data-driven enterprises. And with the rise of public cloud computing, the survey findings reflect that
users show an increased affinity toward using Spark in the public cloud.

2015 and 2016 have been exciting years for the adoption and increased growth of Apache Spark and its
community. Your voice matters. We got an insightful glimpse into the growth and trends from this year’s
survey: who’s using Spark, how they are using it, what’s important, what new features they use, and what
they are using it for. Thank you to everyone who participated in the Databricks 2016 Apache Spark Survey!

Spark today remains the most active open source project in Big Data. Today, there are over 1000 Spark contributors,
compared to 600 in 2015 from 250+ organizations. With such large numbers of contributors and organizations investing in
Spark’s future development, it has engaged a community of developers globally.

APACHE SPARK’S GROWTH CONTINUES

APACHE SPARK IN THE CLOUD IS GROWING

APACHE SPARK STREAMING AND MACHINE LEARNING SURGE IN USAGE

KEY INDUSTRIES USING APACHE SPARK

1615
RESPONDENTS

900
DISTINCT ORGANIZATIONS

ARCHITECTS

ACADEMICS

21%

TECHNICAL
MANAGEMENT

10%

5%DATA ENGINEERS
41%

DATA SCIENTISTS
23%

240%
SPARK MEETUP MEMBERS

67%
CODE CONTRIBUTORS

2016
1000

2015
600

2016
225,000

2015
66,000

57%
COMPANIES REPRESENTED AT SUMMITS

2016
1800

2015
1144

30%
SPARK SUMMIT ATTENDEES

2016
5100

2015
3912

68%

52%

45%

40%

37%

36%

29%

BUSINESS / CUSTOMER INTELLIGENCE

DATA WAREHOUSING

REAL-TIME / STREAMING SOLUTIONS

RECOMMENDATION ENGINES

LOG PROCESSING

USER-FACING SERVICES

FRAUD DETECTION / SECURITY

LANGUAGES USED IN APACHE SPARK SPARK COMPONENTS USED IN PRODUCTION

71%
65%

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016

SCALA

58% 62%

2015 2016

PYTHON

31% 29%

2015 2016

JAVA

18% 20%

2015 2016

R

36% 44%

2015 2016

SQL DATAFRAMES

15%

38%

2015 2016

SQL

24%

40%

2015 2016

STREAMING

14%

22%

2015 2016

ADVANCED
ANALYTICS (MLlib)

13%
18%

2016

Respondents were allowed to select more than one component. Respondents were allowed to select more than one language.

NOTABLE APACHE SPARK USERS WHO PRESENTED AT SPARK SUMMIT 2016

IMPORTANCE OF
APACHE SPARK
STREAMING
TO USERS

APACHE SPARK STREAMING AND MLLIB USE
IN PRODUCTION

Apache Spark’s growth and adoption continues as users, industries, development environments, disciplines,
and programming languages embrace its ease of use and programming; its unified compute engine; and
its performance to solve complex data problems at scale.

The rise of cloud computing is rapid, inexorable and causing a huge upheaval in the tech industry, writes
The Economist. We observed this trend reflected in the survey results, as many respondents elect to deploy
Spark in the public cloud, reaping its many benefits. Not only do cloud deployments have lower deployment
costs and fewer management headaches, they have higher and proven performance benefits.

Spark Streaming is being used for real-time solutions, from evaluation to production, closer in usage to
Spark’s other commonly used components. As a preferred choice of streaming engine over others, more
organizations are building real-time streaming solutions as they consider streaming an important Spark feature.

Apache Spark deployments in the public cloud increased in 2016. In contrast, the percentage of Spark deployments
on-premises decreased in the past year.

51%
2015

PERCENTAGE DECREASE IN ON-PREMISES
DEPLOYMENTS

 2016

61% of respondents
deploy Spark
in a public cloud

11%

40%
48%

7%

36%
42%

STANDALONEYARNMESOS

2015 2016 2015 2016 2015 2016

TYPES OF PRODUCTS DEVELOPED
USING APACHE SPARK

40% of respondents develop

RECOMMENDATION ENGINE
PRODUCTS

45% of respondents develop
REAL-TIME STREAMING
PRODUCTS

29% of respondents develop

FRAUD DETECTION / SECURITY
PRODUCTS

2015 2016

13%

18 %

2015 2016

STREAMING ADVANCED ANALYTICS (ML)

14%

22%

57%

STREAMING
PRODUCTION CASES

38%

ADVANCED ANALYTICS (MLlib)
PRODUCTION CASES

Databricks’ vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created
Apache® Spark™, a powerful open source data processing engine built for sophisticated analytics, ease of use, and speed. Databricks is the largest
contributor to the open source Apache Spark project providing 10x more code than any other company. The company has also trained over 20,000
users on Apache Spark, and has the largest number of customers deploying Spark to date. Databricks provides a just-in-time data platform, to simplify
data integration, real-time experimentation, and robust deployment of production applications. Databricks is venture-backed by Andreessen
Horowitz and NEA. For more information, contact info@databricks.com.

Respondents were allowed to select more than one component.

18%
CONSULTING

(IT)

25%
SOFTWARE

(SAAS, WEB, MOBILE)11%

 BANKING /
FINANCE

7%

 ADVERTISING /
MARKETING /

PR

6%

ECOMMERCE / RETAIL

5%
HEALTH / MEDICAL /

 PHARMACY / BIOTECH

CARRIERS / TELECOM

5%

4%

3%

EDUCATION

PUBLISHING / MEDIA

COMPUTERS / HARDWARE

3% 13%
OTHER

Respondents were allowed to select more than one product.

APACHE SPARK DEPLOYMENT
IN PUBLIC CLOUDS
HAS INCREASED BY 10%
SINCE 2015.

35%
SOMEWHAT
IMPORTANT

%
VERY

IMPORTANT

51 NOT
IMPORTANT

%

© Databricks 2016. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

View the full report at databricks.com/2016-spark-survey

databricks.com/2016-spark-survey

http://databricks.com/2016-spark-survey

Spark components

�48

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Spark Core

Standalone Scheduler YARN Mesos

Spark SQL Spark
Streaming

MLib
machine
learning

GraphX
graph

processing

�49

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

APACHE SPARK IS BEING USED
TO CREATE SOPHISTICATED
PRODUCTS WITHIN THE SAME
ORGANIZATION

FEATURES USERS CONSIDER IMPORTANT
Respondents were allowed to select more than one feature.

PERFORMANCE
91% EASE OF

PROGRAMMING

76%EASE OF
DEPLOYMENT

69%

ADVANCED
ANALYTICS

82%

REAL-TIME
STREAMING

51%

APACHE SPARK’S FASTEST GROWING AREAS IN 2016

57%
STREAMING USERS

 38%

ADVANCED ANALYTICS
USERS (MLLIB)

153%
DATAFRAME USERS

67 %
SPARK SQL USERS

Apache Spark Streaming is growing. Since its release, Spark Streaming has become one of the most widely used
distributed streaming engines. Interest in developing real-time applications and advanced analytics is on the rise.

 APACHE SPARK

SURVEY 2016
REPORT HIGHLIGHTS

® ™

Databricks ran our Apache Spark Survey 2016 this summer
to identify how organizations are using Apache Spark.
This year’s results reflect the answers and opinions of 1615
respondents representing over 900 organizations. Survey
respondents were predominantly Apache Spark users.

The survey results suggest that Spark’s growth continues across various industries, building
sophisticated data solutions by people in various functional roles. Using multiple Spark components,
many users build different types of products in production. The results indicate that Spark has
moved well beyond the early-adopter phase at high-tech companies and is now mainstream in large
data-driven enterprises. And with the rise of public cloud computing, the survey findings reflect that
users show an increased affinity toward using Spark in the public cloud.

2015 and 2016 have been exciting years for the adoption and increased growth of Apache Spark and its
community. Your voice matters. We got an insightful glimpse into the growth and trends from this year’s
survey: who’s using Spark, how they are using it, what’s important, what new features they use, and what
they are using it for. Thank you to everyone who participated in the Databricks 2016 Apache Spark Survey!

Spark today remains the most active open source project in Big Data. Today, there are over 1000 Spark contributors,
compared to 600 in 2015 from 250+ organizations. With such large numbers of contributors and organizations investing in
Spark’s future development, it has engaged a community of developers globally.

APACHE SPARK’S GROWTH CONTINUES

APACHE SPARK IN THE CLOUD IS GROWING

APACHE SPARK STREAMING AND MACHINE LEARNING SURGE IN USAGE

KEY INDUSTRIES USING APACHE SPARK

1615
RESPONDENTS

900
DISTINCT ORGANIZATIONS

ARCHITECTS

ACADEMICS

21%

TECHNICAL
MANAGEMENT

10%

5%DATA ENGINEERS
41%

DATA SCIENTISTS
23%

240%
SPARK MEETUP MEMBERS

67%
CODE CONTRIBUTORS

2016
1000

2015
600

2016
225,000

2015
66,000

57%
COMPANIES REPRESENTED AT SUMMITS

2016
1800

2015
1144

30%
SPARK SUMMIT ATTENDEES

2016
5100

2015
3912

68%

52%

45%

40%

37%

36%

29%

BUSINESS / CUSTOMER INTELLIGENCE

DATA WAREHOUSING

REAL-TIME / STREAMING SOLUTIONS

RECOMMENDATION ENGINES

LOG PROCESSING

USER-FACING SERVICES

FRAUD DETECTION / SECURITY

LANGUAGES USED IN APACHE SPARK SPARK COMPONENTS USED IN PRODUCTION

71%
65%

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016

SCALA

58% 62%

2015 2016

PYTHON

31% 29%

2015 2016

JAVA

18% 20%

2015 2016

R

36% 44%

2015 2016

SQL DATAFRAMES

15%

38%

2015 2016

SQL

24%

40%

2015 2016

STREAMING

14%

22%

2015 2016

ADVANCED
ANALYTICS (MLlib)

13%
18%

2016

Respondents were allowed to select more than one component. Respondents were allowed to select more than one language.

NOTABLE APACHE SPARK USERS WHO PRESENTED AT SPARK SUMMIT 2016

IMPORTANCE OF
APACHE SPARK
STREAMING
TO USERS

APACHE SPARK STREAMING AND MLLIB USE
IN PRODUCTION

Apache Spark’s growth and adoption continues as users, industries, development environments, disciplines,
and programming languages embrace its ease of use and programming; its unified compute engine; and
its performance to solve complex data problems at scale.

The rise of cloud computing is rapid, inexorable and causing a huge upheaval in the tech industry, writes
The Economist. We observed this trend reflected in the survey results, as many respondents elect to deploy
Spark in the public cloud, reaping its many benefits. Not only do cloud deployments have lower deployment
costs and fewer management headaches, they have higher and proven performance benefits.

Spark Streaming is being used for real-time solutions, from evaluation to production, closer in usage to
Spark’s other commonly used components. As a preferred choice of streaming engine over others, more
organizations are building real-time streaming solutions as they consider streaming an important Spark feature.

Apache Spark deployments in the public cloud increased in 2016. In contrast, the percentage of Spark deployments
on-premises decreased in the past year.

51%
2015

PERCENTAGE DECREASE IN ON-PREMISES
DEPLOYMENTS

 2016

61% of respondents
deploy Spark
in a public cloud

11%

40%
48%

7%

36%
42%

STANDALONEYARNMESOS

2015 2016 2015 2016 2015 2016

TYPES OF PRODUCTS DEVELOPED
USING APACHE SPARK

40% of respondents develop

RECOMMENDATION ENGINE
PRODUCTS

45% of respondents develop
REAL-TIME STREAMING
PRODUCTS

29% of respondents develop

FRAUD DETECTION / SECURITY
PRODUCTS

2015 2016

13%

18 %

2015 2016

STREAMING ADVANCED ANALYTICS (ML)

14%

22%

57%

STREAMING
PRODUCTION CASES

38%

ADVANCED ANALYTICS (MLlib)
PRODUCTION CASES

Databricks’ vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created
Apache® Spark™, a powerful open source data processing engine built for sophisticated analytics, ease of use, and speed. Databricks is the largest
contributor to the open source Apache Spark project providing 10x more code than any other company. The company has also trained over 20,000
users on Apache Spark, and has the largest number of customers deploying Spark to date. Databricks provides a just-in-time data platform, to simplify
data integration, real-time experimentation, and robust deployment of production applications. Databricks is venture-backed by Andreessen
Horowitz and NEA. For more information, contact info@databricks.com.

Respondents were allowed to select more than one component.

18%
CONSULTING

(IT)

25%
SOFTWARE

(SAAS, WEB, MOBILE)11%

 BANKING /
FINANCE

7%

 ADVERTISING /
MARKETING /

PR

6%

ECOMMERCE / RETAIL

5%
HEALTH / MEDICAL /

 PHARMACY / BIOTECH

CARRIERS / TELECOM

5%

4%

3%

EDUCATION

PUBLISHING / MEDIA

COMPUTERS / HARDWARE

3% 13%
OTHER

Respondents were allowed to select more than one product.

APACHE SPARK DEPLOYMENT
IN PUBLIC CLOUDS
HAS INCREASED BY 10%
SINCE 2015.

35%
SOMEWHAT
IMPORTANT

%
VERY

IMPORTANT

51 NOT
IMPORTANT

%

© Databricks 2016. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

View the full report at databricks.com/2016-spark-survey

databricks.com/2016-spark-survey

http://databricks.com/2016-spark-survey

Most respondents deploy Spark in the cloud!

�50

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

APACHE SPARK IS BEING USED
TO CREATE SOPHISTICATED
PRODUCTS WITHIN THE SAME
ORGANIZATION

FEATURES USERS CONSIDER IMPORTANT
Respondents were allowed to select more than one feature.

PERFORMANCE
91% EASE OF

PROGRAMMING

76%EASE OF
DEPLOYMENT

69%

ADVANCED
ANALYTICS

82%

REAL-TIME
STREAMING

51%

APACHE SPARK’S FASTEST GROWING AREAS IN 2016

57%
STREAMING USERS

 38%

ADVANCED ANALYTICS
USERS (MLLIB)

153%
DATAFRAME USERS

67 %
SPARK SQL USERS

Apache Spark Streaming is growing. Since its release, Spark Streaming has become one of the most widely used
distributed streaming engines. Interest in developing real-time applications and advanced analytics is on the rise.

 APACHE SPARK

SURVEY 2016
REPORT HIGHLIGHTS

® ™

Databricks ran our Apache Spark Survey 2016 this summer
to identify how organizations are using Apache Spark.
This year’s results reflect the answers and opinions of 1615
respondents representing over 900 organizations. Survey
respondents were predominantly Apache Spark users.

The survey results suggest that Spark’s growth continues across various industries, building
sophisticated data solutions by people in various functional roles. Using multiple Spark components,
many users build different types of products in production. The results indicate that Spark has
moved well beyond the early-adopter phase at high-tech companies and is now mainstream in large
data-driven enterprises. And with the rise of public cloud computing, the survey findings reflect that
users show an increased affinity toward using Spark in the public cloud.

2015 and 2016 have been exciting years for the adoption and increased growth of Apache Spark and its
community. Your voice matters. We got an insightful glimpse into the growth and trends from this year’s
survey: who’s using Spark, how they are using it, what’s important, what new features they use, and what
they are using it for. Thank you to everyone who participated in the Databricks 2016 Apache Spark Survey!

Spark today remains the most active open source project in Big Data. Today, there are over 1000 Spark contributors,
compared to 600 in 2015 from 250+ organizations. With such large numbers of contributors and organizations investing in
Spark’s future development, it has engaged a community of developers globally.

APACHE SPARK’S GROWTH CONTINUES

APACHE SPARK IN THE CLOUD IS GROWING

APACHE SPARK STREAMING AND MACHINE LEARNING SURGE IN USAGE

KEY INDUSTRIES USING APACHE SPARK

1615
RESPONDENTS

900
DISTINCT ORGANIZATIONS

ARCHITECTS

ACADEMICS

21%

TECHNICAL
MANAGEMENT

10%

5%DATA ENGINEERS
41%

DATA SCIENTISTS
23%

240%
SPARK MEETUP MEMBERS

67%
CODE CONTRIBUTORS

2016
1000

2015
600

2016
225,000

2015
66,000

57%
COMPANIES REPRESENTED AT SUMMITS

2016
1800

2015
1144

30%
SPARK SUMMIT ATTENDEES

2016
5100

2015
3912

68%

52%

45%

40%

37%

36%

29%

BUSINESS / CUSTOMER INTELLIGENCE

DATA WAREHOUSING

REAL-TIME / STREAMING SOLUTIONS

RECOMMENDATION ENGINES

LOG PROCESSING

USER-FACING SERVICES

FRAUD DETECTION / SECURITY

LANGUAGES USED IN APACHE SPARK SPARK COMPONENTS USED IN PRODUCTION

71%
65%

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016

SCALA

58% 62%

2015 2016

PYTHON

31% 29%

2015 2016

JAVA

18% 20%

2015 2016

R

36% 44%

2015 2016

SQL DATAFRAMES

15%

38%

2015 2016

SQL

24%

40%

2015 2016

STREAMING

14%

22%

2015 2016

ADVANCED
ANALYTICS (MLlib)

13%
18%

2016

Respondents were allowed to select more than one component. Respondents were allowed to select more than one language.

NOTABLE APACHE SPARK USERS WHO PRESENTED AT SPARK SUMMIT 2016

IMPORTANCE OF
APACHE SPARK
STREAMING
TO USERS

APACHE SPARK STREAMING AND MLLIB USE
IN PRODUCTION

Apache Spark’s growth and adoption continues as users, industries, development environments, disciplines,
and programming languages embrace its ease of use and programming; its unified compute engine; and
its performance to solve complex data problems at scale.

The rise of cloud computing is rapid, inexorable and causing a huge upheaval in the tech industry, writes
The Economist. We observed this trend reflected in the survey results, as many respondents elect to deploy
Spark in the public cloud, reaping its many benefits. Not only do cloud deployments have lower deployment
costs and fewer management headaches, they have higher and proven performance benefits.

Spark Streaming is being used for real-time solutions, from evaluation to production, closer in usage to
Spark’s other commonly used components. As a preferred choice of streaming engine over others, more
organizations are building real-time streaming solutions as they consider streaming an important Spark feature.

Apache Spark deployments in the public cloud increased in 2016. In contrast, the percentage of Spark deployments
on-premises decreased in the past year.

51%
2015

PERCENTAGE DECREASE IN ON-PREMISES
DEPLOYMENTS

 2016

61% of respondents
deploy Spark
in a public cloud

11%

40%
48%

7%

36%
42%

STANDALONEYARNMESOS

2015 2016 2015 2016 2015 2016

TYPES OF PRODUCTS DEVELOPED
USING APACHE SPARK

40% of respondents develop

RECOMMENDATION ENGINE
PRODUCTS

45% of respondents develop
REAL-TIME STREAMING
PRODUCTS

29% of respondents develop

FRAUD DETECTION / SECURITY
PRODUCTS

2015 2016

13%

18 %

2015 2016

STREAMING ADVANCED ANALYTICS (ML)

14%

22%

57%

STREAMING
PRODUCTION CASES

38%

ADVANCED ANALYTICS (MLlib)
PRODUCTION CASES

Databricks’ vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created
Apache® Spark™, a powerful open source data processing engine built for sophisticated analytics, ease of use, and speed. Databricks is the largest
contributor to the open source Apache Spark project providing 10x more code than any other company. The company has also trained over 20,000
users on Apache Spark, and has the largest number of customers deploying Spark to date. Databricks provides a just-in-time data platform, to simplify
data integration, real-time experimentation, and robust deployment of production applications. Databricks is venture-backed by Andreessen
Horowitz and NEA. For more information, contact info@databricks.com.

Respondents were allowed to select more than one component.

18%
CONSULTING

(IT)

25%
SOFTWARE

(SAAS, WEB, MOBILE)11%

 BANKING /
FINANCE

7%

 ADVERTISING /
MARKETING /

PR

6%

ECOMMERCE / RETAIL

5%
HEALTH / MEDICAL /

 PHARMACY / BIOTECH

CARRIERS / TELECOM

5%

4%

3%

EDUCATION

PUBLISHING / MEDIA

COMPUTERS / HARDWARE

3% 13%
OTHER

Respondents were allowed to select more than one product.

APACHE SPARK DEPLOYMENT
IN PUBLIC CLOUDS
HAS INCREASED BY 10%
SINCE 2015.

35%
SOMEWHAT
IMPORTANT

%
VERY

IMPORTANT

51 NOT
IMPORTANT

%

© Databricks 2016. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

View the full report at databricks.com/2016-spark-survey

databricks.com/2016-spark-survey

http://databricks.com/2016-spark-survey

Streaming and Machine Learning are very important

�51

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

APACHE SPARK IS BEING USED
TO CREATE SOPHISTICATED
PRODUCTS WITHIN THE SAME
ORGANIZATION

FEATURES USERS CONSIDER IMPORTANT
Respondents were allowed to select more than one feature.

PERFORMANCE
91% EASE OF

PROGRAMMING

76%EASE OF
DEPLOYMENT

69%

ADVANCED
ANALYTICS

82%

REAL-TIME
STREAMING

51%

APACHE SPARK’S FASTEST GROWING AREAS IN 2016

57%
STREAMING USERS

 38%

ADVANCED ANALYTICS
USERS (MLLIB)

153%
DATAFRAME USERS

67 %
SPARK SQL USERS

Apache Spark Streaming is growing. Since its release, Spark Streaming has become one of the most widely used
distributed streaming engines. Interest in developing real-time applications and advanced analytics is on the rise.

 APACHE SPARK

SURVEY 2016
REPORT HIGHLIGHTS

® ™

Databricks ran our Apache Spark Survey 2016 this summer
to identify how organizations are using Apache Spark.
This year’s results reflect the answers and opinions of 1615
respondents representing over 900 organizations. Survey
respondents were predominantly Apache Spark users.

The survey results suggest that Spark’s growth continues across various industries, building
sophisticated data solutions by people in various functional roles. Using multiple Spark components,
many users build different types of products in production. The results indicate that Spark has
moved well beyond the early-adopter phase at high-tech companies and is now mainstream in large
data-driven enterprises. And with the rise of public cloud computing, the survey findings reflect that
users show an increased affinity toward using Spark in the public cloud.

2015 and 2016 have been exciting years for the adoption and increased growth of Apache Spark and its
community. Your voice matters. We got an insightful glimpse into the growth and trends from this year’s
survey: who’s using Spark, how they are using it, what’s important, what new features they use, and what
they are using it for. Thank you to everyone who participated in the Databricks 2016 Apache Spark Survey!

Spark today remains the most active open source project in Big Data. Today, there are over 1000 Spark contributors,
compared to 600 in 2015 from 250+ organizations. With such large numbers of contributors and organizations investing in
Spark’s future development, it has engaged a community of developers globally.

APACHE SPARK’S GROWTH CONTINUES

APACHE SPARK IN THE CLOUD IS GROWING

APACHE SPARK STREAMING AND MACHINE LEARNING SURGE IN USAGE

KEY INDUSTRIES USING APACHE SPARK

1615
RESPONDENTS

900
DISTINCT ORGANIZATIONS

ARCHITECTS

ACADEMICS

21%

TECHNICAL
MANAGEMENT

10%

5%DATA ENGINEERS
41%

DATA SCIENTISTS
23%

240%
SPARK MEETUP MEMBERS

67%
CODE CONTRIBUTORS

2016
1000

2015
600

2016
225,000

2015
66,000

57%
COMPANIES REPRESENTED AT SUMMITS

2016
1800

2015
1144

30%
SPARK SUMMIT ATTENDEES

2016
5100

2015
3912

68%

52%

45%

40%

37%

36%

29%

BUSINESS / CUSTOMER INTELLIGENCE

DATA WAREHOUSING

REAL-TIME / STREAMING SOLUTIONS

RECOMMENDATION ENGINES

LOG PROCESSING

USER-FACING SERVICES

FRAUD DETECTION / SECURITY

LANGUAGES USED IN APACHE SPARK SPARK COMPONENTS USED IN PRODUCTION

71%
65%

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016

SCALA

58% 62%

2015 2016

PYTHON

31% 29%

2015 2016

JAVA

18% 20%

2015 2016

R

36% 44%

2015 2016

SQL DATAFRAMES

15%

38%

2015 2016

SQL

24%

40%

2015 2016

STREAMING

14%

22%

2015 2016

ADVANCED
ANALYTICS (MLlib)

13%
18%

2016

Respondents were allowed to select more than one component. Respondents were allowed to select more than one language.

NOTABLE APACHE SPARK USERS WHO PRESENTED AT SPARK SUMMIT 2016

IMPORTANCE OF
APACHE SPARK
STREAMING
TO USERS

APACHE SPARK STREAMING AND MLLIB USE
IN PRODUCTION

Apache Spark’s growth and adoption continues as users, industries, development environments, disciplines,
and programming languages embrace its ease of use and programming; its unified compute engine; and
its performance to solve complex data problems at scale.

The rise of cloud computing is rapid, inexorable and causing a huge upheaval in the tech industry, writes
The Economist. We observed this trend reflected in the survey results, as many respondents elect to deploy
Spark in the public cloud, reaping its many benefits. Not only do cloud deployments have lower deployment
costs and fewer management headaches, they have higher and proven performance benefits.

Spark Streaming is being used for real-time solutions, from evaluation to production, closer in usage to
Spark’s other commonly used components. As a preferred choice of streaming engine over others, more
organizations are building real-time streaming solutions as they consider streaming an important Spark feature.

Apache Spark deployments in the public cloud increased in 2016. In contrast, the percentage of Spark deployments
on-premises decreased in the past year.

51%
2015

PERCENTAGE DECREASE IN ON-PREMISES
DEPLOYMENTS

 2016

61% of respondents
deploy Spark
in a public cloud

11%

40%
48%

7%

36%
42%

STANDALONEYARNMESOS

2015 2016 2015 2016 2015 2016

TYPES OF PRODUCTS DEVELOPED
USING APACHE SPARK

40% of respondents develop

RECOMMENDATION ENGINE
PRODUCTS

45% of respondents develop
REAL-TIME STREAMING
PRODUCTS

29% of respondents develop

FRAUD DETECTION / SECURITY
PRODUCTS

2015 2016

13%

18 %

2015 2016

STREAMING ADVANCED ANALYTICS (ML)

14%

22%

57%

STREAMING
PRODUCTION CASES

38%

ADVANCED ANALYTICS (MLlib)
PRODUCTION CASES

Databricks’ vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created
Apache® Spark™, a powerful open source data processing engine built for sophisticated analytics, ease of use, and speed. Databricks is the largest
contributor to the open source Apache Spark project providing 10x more code than any other company. The company has also trained over 20,000
users on Apache Spark, and has the largest number of customers deploying Spark to date. Databricks provides a just-in-time data platform, to simplify
data integration, real-time experimentation, and robust deployment of production applications. Databricks is venture-backed by Andreessen
Horowitz and NEA. For more information, contact info@databricks.com.

Respondents were allowed to select more than one component.

18%
CONSULTING

(IT)

25%
SOFTWARE

(SAAS, WEB, MOBILE)11%

 BANKING /
FINANCE

7%

 ADVERTISING /
MARKETING /

PR

6%

ECOMMERCE / RETAIL

5%
HEALTH / MEDICAL /

 PHARMACY / BIOTECH

CARRIERS / TELECOM

5%

4%

3%

EDUCATION

PUBLISHING / MEDIA

COMPUTERS / HARDWARE

3% 13%
OTHER

Respondents were allowed to select more than one product.

APACHE SPARK DEPLOYMENT
IN PUBLIC CLOUDS
HAS INCREASED BY 10%
SINCE 2015.

35%
SOMEWHAT
IMPORTANT

%
VERY

IMPORTANT

51 NOT
IMPORTANT

14%

© Databricks 2016. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

View the full report at databricks.com/2016-spark-survey

databricks.com/2016-spark-survey

http://databricks.com/2016-spark-survey

Apache Spark Philosophy

�52

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Mateiza Hariakey Keynote, 2016 Spark Summit, "Spark 2.0"

Apache Spark Philosophy
Unified engine
Support end-to-end applications

High-level APIs
Easy to use, rich optimizations

Integrate broadly
Storage systems, libraries, etc

SQLStreaming ML Graph

…

1

2

3

Apache Spark Philosophy
Unified engine
Support end-to-end applications

High-level APIs
Easy to use, rich optimizations

Integrate broadly
Storage systems, libraries, etc

SQLStreaming ML Graph

…

1

2

3

Apache Spark Philosophy
Unified engine
Support end-to-end applications

High-level APIs
Easy to use, rich optimizations

Integrate broadly
Storage systems, libraries, etc

SQLStreaming ML Graph

…

1

2

3

Spark 1 — Speedup over MapReduce comes from RDDs

• Keep data in memory!

• Explicit "caching" — Programmer tells Spark when to cache.

Spark 2 — Speedup comes from better optimizing
• Strong typing of Dataframes — Avoid unnecessary storing/moving/computing

• "Structured APIs"

• Whole-stage code generation

Spark 1 vs. Spark 2

�53

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

An array of integers in Python:

In [1]: A = [1,2,3,4]

In [2]: A[3] = "whoops"

In [3]: A
Out[3]: [1, 2, 3, 'whoops']

Each element is an "object"

Invalid assignments aren't caught until runtime.

"Type" — Python is not a strongly typed language

�54

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

$ scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_40).
Type in expressions for evaluation. Or try :help.

scala> val A = Array(1,2,3,4)
A: Array[Int] = Array(1, 2, 3, 4)

scala> A(2)
res0: Int = 3

scala> A(2) = 10

scala> A
res2: Array[Int] = Array(1, 2, 10, 4)

scala> A(2) = "Whoops"
<console>:13: error: type mismatch;
 found : String("Whoops")
 required: Int
 A(2) = "Whoops"
 ^

scala>

Scala is a strongly typed language.

�55

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Scala runs on
top of the

JVM!

Spark 2 tracks type and uses the most efficient
representation possible. Dataframes can be 75%
smaller

Spark 2 analyzes and refactors code and analyzes when it runs.

Spark 2 — Structured APIs

�56

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Deep Dive: Structured APIs
events =

sc.read.json(“/logs”)

stats =
events.join(users)
.groupBy(“loc”,“status”)
.avg(“duration”)

errors = stats.where(
stats.status == “ERR”)

DataFrame API Optimized Plan Specialized Code

READ logs READ users

JOIN

AGG

FILTER

while(logs.hasNext) {

e = logs.next
if(e.status == “ERR”) {
u = users.get(e.uid)
key = (u.loc, e.status)
sum(key) += e.duration

count(key) += 1
}

}
...

Mateiza Hariakey Keynote, 2016 Spark Summit, "Spark 2.0"

Apache Spark Philosophy
Unified engine
Support end-to-end applications

High-level APIs
Easy to use, rich optimizations

Integrate broadly
Storage systems, libraries, etc

SQLStreaming ML Graph

…

1

2

3

Spark 2.0 - "Whole-stage code generation"

�57

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

New in 2.0
Whole-stage code generation
• Fuse across multiple operators

Spark 1.6 14M
rows/s

Spark 2.0 125M
rows/s

Parquet
in 1.6

11M
rows/s

Parquet
in 2.0

90M
rows/s

Optimized input / output
• Apache Parquet + built-in cache

Mateiza Hariakey Keynote, 2016 Spark Summit, "Spark 2.0"

Apache Spark Philosophy
Unified engine
Support end-to-end applications

High-level APIs
Easy to use, rich optimizations

Integrate broadly
Storage systems, libraries, etc

SQLStreaming ML Graph

…

1

2

3

Scala is a high-performance, compiled language.

• Supports interactive code development with "read-eval-print" (REP) loop.

• Can freely call Java code.

Scala runs much faster and more portable than Python

• Scala is compiled and optimized.

• JVM has billions of dollars worth of performance tuning over 20+ years

Scala programmers are in higher demand

Scala — Spark is written in Scala

�58

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals
http://stackoverflow.com/research/developer-survey-2016

Being more effective

with iPython

59

 '[28/Dec/2012:06:43:35 -0800] "GET /w/load.php?
debug=false&lang=en&modules=jquery.checkboxShiftClick%2Ccookie%2CmakeCollapsible%2CmessageBox%2CmwPrototypes%2Cpl
aceholder%7Cmediawiki.language%2Cuser%2Cutil%7Cmediawiki.legacy.ajax%2Cwikibits%7Cmediawiki.page.ready&skin=monob
ook&version=20120730T153329Z&* HTTP/1.1" 200 11293 "http://www.forensicswiki.org/wiki/Main_Page" "Mozilla/5.0
(X11; Linux i686) AppleWebKit/536.11 (KHTML, like Gecko) Ubuntu/12.04 Chromium/20.0.1132.47 Chrome/20.0.1132.47
Safari/536.11"'

date_re	=	re.compile("\[(\d\d/[a-zA-Z]+/\d\d\d\d)\]")	
def	extract(line):	
				m	=	date_re.search(line)	
				if	m:	
								d	=	datetime.datetime.strptime(m.group(1),"%d/%b/%Y")	
								return	"{:04}-{:02}".format(d.year,d.month)	
W	=	sc.textFile("s3://gu-anly502/logs/forensicswiki.2012.txt")	
dates	=	W.map(lambda	line:	[extract(line),	1])	
dates.countByKey()	

defaultdict(int,	
												{'2012-01':	1544100,	
													'2012-02':	1325030,	
													'2012-03':	1274061,	
													'2012-04':	1016456,	
													'2012-05':	1173380,	
													'2012-06':	1300250,	
													'2012-07':	1287187,	
													'2012-08':	1450426,	
													'2012-09':	1284945,	
													'2012-10':	1498895,	
													'2012-11':	1397343,	
													'2012-12':	1396198,	
													'2013-01':	1283})	

Recall the date example....

�60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In [33]: W = sc.textFile("s3://gu-anly502/logs/forensicswiki.2012.txt")

In [34]: import re

In [35]: pat = re.compile("(\d\d)/([A-Za-z]+)/(\d\d\d\d)")

In [36]: import datetime

In [37]: datetime.strptime("%d/%M/%y","28/Dec/2012")

AttributeError Traceback (most recent call last)
<ipython-input-37-0110e8ced25e> in <module>()
----> 1 datetime.strptime("%d/%M/%y","28/Dec/2012")

AttributeError: 'module' object has no attribute 'strptime'

In [38]: datetime.datetime.strptime("%d/%M/%y","28/Dec/2012")

ValueError Traceback (most recent call last)
<ipython-input-38-3156935281bf> in <module>()
----> 1 datetime.datetime.strptime("%d/%M/%y","28/Dec/2012")

/usr/lib64/python3.4/_strptime.py in _strptime_datetime(cls, data_string, format)
 498 """Return a class cls instance based on the input string and the
 499 format string."""
--> 500 tt, fraction = _strptime(data_string, format)
 501 tzname, gmtoff = tt[-2:]
 502 args = tt[:6] + (fraction,)

/usr/lib64/python3.4/_strptime.py in _strptime(data_string, format)
 335 if not found:
 336 raise ValueError("time data %r does not match format %r" %
--> 337 (data_string, format))
 338 if len(data_string) != found.end():
 339 raise ValueError("unconverted data remains: %s" %

ValueError: time data '%d/%M/%y' does not match format '28/Dec/2012'

Here's what I actually did...

�61

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In [40]: datetime.datetime.strptime("28/Dec/2012","%d/%m/%y")

ValueError Traceback (most recent call last)
<ipython-input-40-c0db5093c8da> in <module>()
----> 1 datetime.datetime.strptime("28/Dec/2012","%d/%m/%y")

/usr/lib64/python3.4/_strptime.py in _strptime_datetime(cls, data_string, format)
 498 """Return a class cls instance based on the input string and the
 499 format string."""
--> 500 tt, fraction = _strptime(data_string, format)
 501 tzname, gmtoff = tt[-2:]
 502 args = tt[:6] + (fraction,)

/usr/lib64/python3.4/_strptime.py in _strptime(data_string, format)
 335 if not found:
 336 raise ValueError("time data %r does not match format %r" %
--> 337 (data_string, format))
 338 if len(data_string) != found.end():
 339 raise ValueError("unconverted data remains: %s" %

ValueError: time data '28/Dec/2012' does not match format '%d/%m/%y'

Hm... Perhaps I should check the documentation?

�62

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

$ man strptime

$ man strftime

STRFTIME(3) BSD Library Functions Manual STRFTIME(3)

NAME
 strftime, strftime_l -- format date and time

...
 The conversion specifications are copied to the buffer after expansion as fol-
 lows:-

 %A is replaced by national representation of the full weekday name.

 %a is replaced by national representation of the abbreviated weekday name.

 %B is replaced by national representation of the full month name.

 %b is replaced by national representation of the abbreviated month name.

 %C is replaced by (year / 100) as decimal number; single digits are preceded by
 a zero.

 %c is replaced by national representation of time and date.

 %D is equivalent to ``%m/%d/%y''.

 %d is replaced by the day of the month as a decimal number (01-31).

�63

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In [44]: datetime.datetime.strptime("28/Dec/2012","%d/%b/%Y")
Out[44]: datetime.datetime(2012, 12, 28, 0, 0)

In [45]: def extract(line):
 ...: bracket = line.find('[')
 ...: return datetime.datetime.strptime(line[bracket:],"%d/%b/%Y")
 ...:

In [47]: l = '180.241.12.227 - - [28/Dec/2012:06:43:35 -0800] "GET /w/load.php?
debug=false&lang=en&modules=jquery.checkboxShiftClick%2Ccookie%2CmakeCollapsible%2CmessageBox%2C1.1" 200 11293 "http://
www.forensicswiki.org/wiki/Main_Page" "Mozilla/5.0 (X11; Linux i686) AppleWebKit/536.11 (KHTML, like Gecko) Ubuntu/12.04 Chromium/
20.0.1132.47 Chrome/20.0.1132.47 Safari/536.11"'

In [48]: extract(l)

ValueError Traceback (most recent call last)
<ipython-input-48-8b69f0a350bf> in <module>()
----> 1 extract(l)

<ipython-input-45-1bf51943eae1> in extract(line)
 1 def extract(line):
 2 bracket = line.find('[')
----> 3 return datetime.datetime.strptime(line[bracket:],"%d/%b/%Y")

/usr/lib64/python3.4/_strptime.py in _strptime_datetime(cls, data_string, format)
 498 """Return a class cls instance based on the input string and the
 499 format string."""
--> 500 tt, fraction = _strptime(data_string, format)
 501 tzname, gmtoff = tt[-2:]
 502 args = tt[:6] + (fraction,)

/usr/lib64/python3.4/_strptime.py in _strptime(data_string, format)
 335 if not found:
 336 raise ValueError("time data %r does not match format %r" %
--> 337 (data_string, format))
 338 if len(data_string) != found.end():
 339 raise ValueError("unconverted data remains: %s" %

ValueError: time data '[28/Dec/2012:06:43:35 -0800] "GET /w/load.php?
debug=false&lang=en&modules=jquery.checkboxShiftClick%2Ccookie%2CmakeCollapsible%2CmessageBox%2CmwPrototypes%2Cplaceholder%7Cmediawik
i.language%2Cuser%2Cutil%7Cmediawiki.legacy.ajax%2Cwikibits%7Cmediawiki.page.ready&skin=monobook&version=20120730T153329Z&* HTTP/1.1"
200 11293 "http://www.forensicswiki.org/wiki/Main_Page" "Mozilla/5.0 (X11; Linux i686) AppleWebKit/536.11 (KHTML, like Gecko) Ubuntu/
12.04 Chromium/20.0.1132.47 Chrome/20.0.1132.47 Safari/536.11"' does not match format '%d/%b/%Y'

Apparently my extraction didn't work well..

�64

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In [51]: def extract(line):
 ...: bracket = line.find('[')
 ...: colon = line.find(':')
 ...: return datetime.datetime.strptime(line[bracket+1:colon],"%d/%b/%Y")
 ...:
 ...:
 ...:

In [52]: extract(l)
Out[52]: datetime.datetime(2012, 12, 28, 0, 0)

In [53]: date_re = re.compile("\[(\d\d/[a-zA-Z]+/\d\d\d\d)\]")

In [56]: m = date_re.search(l)

In [57]: m

In [58]:

In [59]: date_re = re.compile("(\d\d/[a-zA-Z]+/\d\d\d\d)")

In [60]: m = date_re.search(l)

In [61]: m
Out[61]: <_sre.SRE_Match object; span=(20, 31), match='28/Dec/2012'>

In [62]: def extract(line):
 ...: m = date_re.search(line)
 ...: if m:
 ...: d = datetime.datetime.strptime(m.group(1))
 ...: return str(d.year) + "-" + (d.month)
 ...:

In [63]: Out[52].year
Out[63]: 2012

In [64]: Out[52].month
Out[64]: 12

Use a proper regular expression, date time parser, and return a
string...

�65

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

In [67]: extract(l)

TypeError Traceback (most recent call last)
<ipython-input-67-8b69f0a350bf> in <module>()
----> 1 extract(l)

<ipython-input-66-a0231b148705> in extract(line)
 3 if m:
 4 d = datetime.datetime.strptime(m.group(1),"%d/%b/%Y")
----> 5 return str(d.year) + "-" + (d.month)
 6

TypeError: Can't convert 'int' object to str implicitly

In [68]: def extract(line):
 ...: m = date_re.search(line)
 ...: if m:
 ...: d = datetime.datetime.strptime(m.group(1),"%d/%b/%Y")
 ...: return str(d.year) + "-" + str(d.month)
 ...:
 ...:

In [69]: extract(l)
Out[69]: '2012-12'

In [70]: dates = W.map(extract)

In [71]: dates.cache()
Out[71]: PythonRDD[30] at RDD at PythonRDD.scala:48

In [72]: W.cache()
Out[72]: s3://gu-anly502/logs/forensicswiki.2012.txt MapPartitionsRDD[29] at textFile at
NativeMethodAccessorImpl.java:0

In [73]: dates.take(5)
Out[73]: ['2012-1', '2012-1', '2012-1', '2012-1', '2012-1']

In [74]: dates.countByKey()
Out[74]: defaultdict(int, {'2': 15949554})

Okay... we finally got it all to work!

�66

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

.countsByKey() expect each
row to be a (key,value) pair!
It is counting row[0]...
which is a '2'

In [75]: dates = W.map(lambda line:[extract(line),1])

In [76]: dates.cache()
Out[76]: PythonRDD[33] at RDD at PythonRDD.scala:48

In [77]: dates.take(5)
Out[77]: [['2012-1', 1], ['2012-1', 1], ['2012-1', 1], ['2012-1', 1], ['2012-1', 1]]

In [78]: dates.countByKey()
Out[78]:
defaultdict(int,
 {'2012-1': 1544100,
 '2012-10': 1498895,
 '2012-11': 1397343,
 '2012-12': 1396198,
 '2012-2': 1325030,
 '2012-3': 1274061,
 '2012-4': 1016456,
 '2012-5': 1173380,
 '2012-6': 1300250,
 '2012-7': 1287187,
 '2012-8': 1450426,
 '2012-9': 1284945,
 '2013-1': 1283})

In [79]: def extract(line):
 ...: m = date_re.search(line)
 ...: if m:
 ...: d = datetime.datetime.strptime(m.group(1),"%d/%b/%Y")
 ...: return "{:04}-{:02}".format(d.year,d.month)
 ...:

In [80]: extract(l)
Out[80]: '2012-12'

We need to create (date,'1') pairs for each row.
.countByKey() will ignore the '1'.

�67

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Okay, this seems to work

In [81]: dates = W.map(lambda line:[extract(line),1])

In [82]: dates.cache()
Out[82]: PythonRDD[36] at RDD at PythonRDD.scala:48

In [83]: dates.take(5)
Out[83]:
[['2012-01', 1],
 ['2012-01', 1],
 ['2012-01', 1],
 ['2012-01', 1],
 ['2012-01', 1]]

In [84]: dates.countByKey()
Out[84]:
defaultdict(int,
 {'2012-01': 1544100,
 '2012-02': 1325030,
 '2012-03': 1274061,
 '2012-04': 1016456,
 '2012-05': 1173380,
 '2012-06': 1300250,
 '2012-07': 1287187,
 '2012-08': 1450426,
 '2012-09': 1284945,
 '2012-10': 1498895,
 '2012-11': 1397343,
 '2012-12': 1396198,
 '2013-01': 1283})

In [85]:

So now put it all together!

�68

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Spark Resources
69

http://spark.apache.org/ — Your primary resource

�70

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://spark.apache.org/

Documentation

• https://spark.apache.org/docs/latest/

Examples:

• https://spark.apache.org/examples.html

API:

• https://spark.apache.org/docs/latest/api/python/index.html

spark.apache.org

�71

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://spark.apache.org/docs/latest/
https://spark.apache.org/examples.html
https://spark.apache.org/docs/latest/api/python/index.html
http://spark.apache.org

Slides, code & videos — Great source for what's new.

Spark Summit — Annual conference with information about Spark
https://spark-summit.org/2016/

�72

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://www.youtube.com/watch?v=QLfjJXB5l7U

But be careful — most of these books are for Spark 1.x, not 2.x

PACKT — I got these on sale for $5 each.
You can get them for free at library.georgetown.edu

�73

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://library.georgetown.edu

Dean Wampler’s Spark Workshop

• https://github.com/deanwampler/spark-workshop

• 12 demos and exercises in Scala:

—Intro, WordCount (2), Matrix math, Web Crawler, Inverted Index, 
n-gram calculations, Joins, SparkSQL, Hive, and SparkStreaming.

IPython and Qt Console for Jupyter

• http://ipython.readthedocs.io/en/stable/

• https://qtconsole.readthedocs.io/en/latest/

Jupyter Notebook tricks:

• https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/

Databricks Reference Apps

• Log Analysis Application — monitor Apache access logs in batch & streaming

• Twitter Streaming Language Classifier — Spark MLLib, classifying , filtering & clustering

• Weather TimeSeries Data Application with Cassandra

—https://github.com/databricks/reference-apps
—https://www.gitbook.com/book/databricks/databricks-spark-reference-applications/details

Databricks Community Edition — Free cloud-version of Spark (no s3://)

—https://databricks.com/ce

Some web resources

�74

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

• https://ipython.org/ipython-doc/1/interactive/notebook.html

• https://ipython.org/ipython-doc/3/interactive/magics.html

Old, but still useful:

https://github.com/deanwampler/spark-workshop
http://ipython.readthedocs.io/en/stable/
https://github.com/databricks/reference-apps
https://databricks.com/ce
https://ipython.org/ipython-doc/3/interactive/magics.html

Spark programming
and mini tutorial

75

Transformations create new RDDs within the worker nodes

Actions move data between the worker nodes and the Driver:

RDD methods can be actions or transformations

�76

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

R0 ➜ R1

R0 ➜ R1

R0 ➜ R1

R1 = f(R0)

R1 = f(R0)

R1 = f(R0)

Driver

R0

R0

R0

Driver

.map() is the same as mrjob's map function:

Spark transformations produce RDDs  
(sometimes from other RDDs)

�77

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

to

be

or

not

to

be

RDD[String]

.map(lambda x : (x, 1)

to, 1

be, 1

or, 1

not, 1

to, 1

be, 1

RDD[(String, Int)]

"rows"

Operate on any RDD:

• S = R.map(f)	 	 	 	 	 f should return a value

• S = R.flatMap(f)		 	 	 	 same, but f should return a Seq

• S = R.filter(f)	 	 	 	 	 f returns boolean True/False

• S = R.mapPartitions(f)	 	

• S = R.mapPartitionsWithIndex(f) 	 	 	 f is called with (index,val)

• S = R.sample(withReplacement, fraction, seed)	Produces a random sampling

• S = R.union(R2)		 	 	 	 Produces union of two RDDs

• S = R.intersection(R2)	 	 	 	 Intersection of two RDD2

Operate on RDDs of (k,v) pairs:

• S = R.groupByKey([numTasks])

• S = R.reduceByKey(func, [numTasks])		 f must take (v1,v2)

• S = R.aggregateByKey(zeroValue)

• S = R.sortByKey([ascending])

• S = R.join(R2, [numTasks])

• https://spark.apache.org/docs/1.3.0/programming-guide.html

There are many transformations:

�78

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://spark.apache.org/docs/1.3.0/programming-guide.html

Operate on any RDD:

• R.reduce(f)	 = f(f(f(f(a,b), c), d), e)… => val

• R.collect()	 = RDD values

• R.count()	 = # of elements in RDD

• R.first()	 = first element in RDD; same as .take(1)

• R.take(n)	 = first n elements

• R.takeSample(withReplacement, n [, seed]) 	 = random sampling

—Use withReplacement=False to avoid repeats.
• RDD.saveAsTextFile(dirname) = Writes elements to HDFS

Operate on RDDs of (k,v) pairs:

• RDD.countByKey()	 = Returns a histogram (e.g. (k, count of k))

• https://spark.apache.org/docs/1.3.0/programming-guide.html

Spark actions return values to the driver program

�79

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://spark.apache.org/docs/1.3.0/programming-guide.html

sc is the SparkContext.

• R = sc.parallelize(alist) 	 	 	 	 	 Turns alist into an RDD

• R = sc.range(start, end=None, step=1, numSlices=None)	 	 Creates an RDD of ints

• R = sc.sequenceFile(path, ...)	 	 	 	 Open a sequenceFile

• R = sc.textFile(path)	 	 Read a text file from HDFS, local file system, S3, etc...

• R = wholeTextFiles(path, minPartitions=None, use_unicode=True)	 Get a directory of text files.

• R = sc.union(R1, R2, R3, ...)	 	 	 	 Combine RDDs

Coordinating the nodes:

• sc.addFile(path)	 	 	 	 	 Add a file to every Spark node
• pyspark.SparkFiles.get()	 	 	 	 Gets the files that were added

Spark commands for making RDDs and controlling the  
Spark Application

�80

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Caching — Memory/CPU trade-off.

Broadcast variables — Send data to all nodes

Accumulators — Similar to Hadoop counters

Tuning Spark — http://spark.apache.org/docs/latest/tuning.html

• Data Serialization

• Memory Tuning

• Tuning Data Structures

• Tuning Garbage Collection

• Parallelism — number of partitions — numPartitions=None uses the default number of partitions

• Data Locality

Other features

�81

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://spark.apache.org/docs/latest/tuning.html

Caching is good for Iterative algorithms & debugging

In	[21]:	A	=	sc.textFile("s3://gu-anly502/ps03/forensicswiki.2012.txt")	
In	[22]:	B	=	A.filter(lambda	line:"01/Jul/2012"	in	line)	
In	[23]:	B.count()	
...	
16/02/28	20:03:53	INFO	DAGScheduler:	Job	16	finished:	count	at	<ipython-input-23-9628edc95825>:1,	  
took	68.834135	s	
Out[23]:	35039	

In	[24]:	B.count()	
...	
16/02/28	20:05:45	INFO	DAGScheduler:	Job	17	finished:	count	at	<ipython-input-24-9628edc95825>:1,	  
took	75.764237	s	
Out[24]:	35039	

In	[25]:	B.count()	
...	
16/02/28	20:16:25	INFO	DAGScheduler:	Job	18	finished:	count	at	<ipython-input-25-9628edc95825>:1,	  
took	72.602255	s	
Out[25]:	35039	

In	[26]:	B.cache()	
...	
Out[26]:	PythonRDD[24]	at	RDD	at	PythonRDD.scala:43	

In	[27]:	B.count()	
...	
16/02/28	20:17:34	INFO	DAGScheduler:	Job	19	finished:	count	at	<ipython-input-27-9628edc95825>:1,	  
took	69.611443	s	
Out[27]:	35039	

In	[28]:	B.count()	
...	
16/02/28	20:17:36	INFO	DAGScheduler:	Job	20	finished:	count	at	<ipython-input-28-9628edc95825>:1,	  
took	1.639699	s	
Out[28]:	35039	

Caching keep the RDD after it has been evaluated.

�82

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

This was done last year; today we would use %time

Run python program that use Spark with spark-submit:

#!/usr/bin/spark-submit	
#	
#	wordcount	as	a	pyspark	

import	sys	
from	operator	import	add	
from	pyspark	import	SparkContext	

You must create the SparkContext:

from	pyspark	import	SparkContext	
sc					=	SparkContext(appName="PythonWordCount")	

Beware — syntax errors don't always appear on EMR

$./wordcount.py	s3://gu-anly502/ps03/forensicswiki/access.log.2012-01-13.gz	
$./wordcount.py	s3://gu-anly502/ps03/forensicswiki/access.log.2012-01-13.gz	

$	python	wordcount.py	
		File	"wordcount.py",	line	26	
				counts	=	lines.map(lambda	line:	filter(str.isalpha,line)))	\	
																																																													^	
SyntaxError:	invalid	syntax	

$		

Spark applications — standalone scripts

�83

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

sc.textFile() returns unicode text.

• Unicode text and strings are different in Python2, but not Python3

• Under Python2, our filtering, top-10 wordcount looks like this:

 ##
 ## Run WordCount on Spark
 ##

 sc = SparkContext(appName="PythonWordCount")
 lines = sc.textFile(filename, 1)
 counts = lines.flatMap(lambda line: line.split(' ')) \
 .map(lambda word: filter(unicode.isalpha,word)) \
 .map(lambda x: (x, 1)) \
 .reduceByKey(add)

 top20counts = counts.sortBy(lambda x: x[1], ascending=False) \
 .take(20)
 for (word, count) in top20counts:
 print "%-10s: %i" % (word, count)

 ##
 ## Terminate the Spark job
 ##

 sc.stop()

Python2 wordcount...

�84

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Notice  
 unicode.isalpha instead of

str.isalpha

old-style print

sc.textFile() returns unicode text.

 ##
 ## Run WordCount on Spark
 ##

 sc = SparkContext(appName="PythonWordCount")
 lines = sc.textFile(filename, 1)
 counts = lines.flatMap(lambda line: line.split(' ')) \
 .map(lambda word: filter(str.isalpha,word)) \
 .map(lambda x: (x, 1)) \
 .reduceByKey(add)

 top20counts = counts.sortBy(lambda x: x[1], ascending=False) \
 .take(20)
 for (word, count) in top20counts:
 print("{:-10}: {}".format(word, count))

 ##
 ## Terminate the Spark job
 ##

 sc.stop()

Python3 wordcount:

�85

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

#!/usr/bin/env	python2	
#	
#	https://databricks.com/blog/2015/04/21/analyzing-apache-access-logs-with-databricks-cloud.html	

import	re														#	bring	in	regular	expression	package	
import	dateutil,	dateutil.parser	
from	pyspark.sql	import	Row	
APPACHE_COMBINED_LOG_REGEX	=	'([(\d\.)]+)	[^]+	[^]+	\[(.*)\]	"(.*)"	(\d+)	[^]+	("(.*)")?	("(.*)")?'	
WIKIPAGE_PATTERN	=	"(index.php\?title=|/wiki/)([^	&]*)"	

appache_re		=	re.compile(APPACHE_COMBINED_LOG_REGEX)	
wikipage_re	=	re.compile(WIKIPAGE_PATTERN)	

def	parse_apache_log_line(logline):	
				m	=	appache_re.match(logline)	
				if	m==None:	
								raise	Error("Invalid	logline:	{}".format(logline))	

				timestamp	=	m.group(2)	
				request			=	m.group(3)	
				agent					=	m.group(7).replace('"','')	if	m.group(7)	else	''	

				request_fields	=	request.split("	")	
				url									=	request_fields[1]	if	len(request_fields)>2	else	""	
				datetime				=	dateutil.parser.parse(timestamp.replace(":",	"	",	1)).isoformat()	
				(date,time)	=	(datetime[0:10],datetime[11:])	

				n	=	wikipage_re.search(url)	
				wikipage	=	n.group(2)	if	n	else	""	

				return	Row(
								ipaddr	=	m.group(1),	
								timestamp	=	timestamp,	
								request	=	request,	
								result	=	int(m.group(4)),	
								user	=	m.group(5),	
								referrer	=	m.group(6),	
								agent	=	agent,	
								url	=	url,	
								datetime	=	datetime,	
								date	=	date,	
								time	=	time,	
								wikipage	=	wikipage)

A module to parse Apache web logs (with Spark):

�86

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

A Row object is return

Need to get module to every python instance:

$	ipyspark	--py-files	sweblog.py	
...	
In	[2]:	import	sweblog	
In	[3]:	lines	=	sc.textFile("s3://gu-anly502/logs/forensicswiki.2012.txt")	
In	[4]:	plines	=	lines.map(sweblog.parse_apache_log_line).cache()	
In	[5]:	plines.count()	
Out[5]:	52677	

In	[6]:	plines.take(1)	
Out[6]:	[Row(agent='',	date='2012-01-13',	datetime='2012-01-13T00:05:10-08:00',	
ipaddr=u'80.243.191.178',	referrer=u'http://www.forensicswiki.org/"	"Mozilla/4.0	
(compatible;	MSIE	7.0b;	Windows	NT	6.0)',	request=u'GET	/	HTTP/1.0',	result=301,	
time='00:05:10-08:00',	timestamp=u'13/Jan/2012:00:05:10	-0800',	url=u'/',	
user=u'"http://www.forensicswiki.org/"	"Mozilla/4.0	(compatible;	MSIE	7.0b;	Windows	
NT	6.0)"',	wikipage='')]	

In	[7]:	plines.map(lambda	x:	(x.result,	1)).reduceByKey(operator.add).collect()	

Out[7]:		
[(200,	47381),	
	(301,	330),	
	(302,	383),	
	(304,	4275),	
	(403,	2),	
	(404,	284),	
	(206,	17),	
	(503,	4),	
	(500,	1)]	

Using the Apache module:

�87

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Sort on the driver node:
sorted(plines.map(lambda x: (x.result, 1))\
 .reduceByKey(operator.add).collect())

Sort with .takeOrdered():
plines.map(lambda x: (x.result, 1))\
 .reduceByKey(operator.add).takeOrdered(100)

Sort with .sortBy():
plines.map(lambda x: (x.result, 1))\
 .reduceByKey(operator.add)\
 .sortBy(lambda x:x[0]).collect()

--py-files distributes sweblog.py

Use s3://gu-anly502/bootstrap-spark.sh

ssh -L8888:localhost:8888 hadoop@ipaddress

http://localhost:8888//

$	cat	.jupyter/jupyter_notebook_config.py	
c.NotebookApp.open_browser	=	False	
c.NotebookApp.ip='*'	
c.NotebookApp.port	=	8888	
c.NotebookApp.token	=	u'foo'	
c.Authenticator.admin_users	=	{'hadoop'}	
c.LocalAuthenticator.create_system_users	=	True	
$	

Jupyter notebook on EMR

�88

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

s3://gu-anly502/bootstrap-spark.sh
http://localhost:8888//

Homework and L07
Preview

89

https://www.pexels.com/photo/people-apple-iphone-writing-154/

Part 1 - Tidy Data

• Turn TXT output from MTR into CSV output

Part 2 - iPython with Spark - Try it out

Part 3 - Alexa top 1M websites

• Count the .com domains

• Generate a histogram

• Find the websites that use Google Analytics

Extra Credit — Under Development....

—Mon Feb 20 — Holiday (President’s Day): Reading and online homework
—Mon, Feb 27 — L06: Intro to Apache Spark
—Mon, Mar 6 — Holiday (Spring Break, Fri Mar 3 — Sun Mar 12)
—Mon, Mar 13 — L07: HBase and Spark SQL
—Fri., Mar 17 — A4 Due Today!

Homework: A04

�90

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Next week:

• SQL

• Spark SQL

How many people know SQL? What do you know?

L07 — Preview

�91

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Read this Apache Spark Documentation:

• http://spark.apache.org/docs/latest/quick-start.html

• http://spark.apache.org/docs/latest/programming-guide.html

• http://spark.apache.org/docs/latest/submitting-applications.html

• http://spark.apache.org/docs/latest/cluster-overview.html

• Databricks "Performance of Spark 2.0's Tungsten engine."

Skim the API

• http://spark.apache.org/docs/latest/api/python/pyspark.html

• http://spark.apache.org/docs/latest/monitoring.html

Scala:

• http://www.scala-lang.org/

Recommended blog posts:

• http://blog.appliedinformaticsinc.com/how-to-write-spark-applications-in-python/

• http://www.mccarroll.net/blog/pyspark2/

Reading!

�92

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://spark.apache.org/docs/latest/quick-start.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/submitting-applications.html
http://spark.apache.org/docs/latest/cluster-overview.html
https://docs.cloud.databricks.com/docs/latest/sample_applications/04%20Apache%20Spark%202.0%20Examples/03%20Performance%20Apache%20(Spark%202.0%20vs%201.6).html
http://spark.apache.org/docs/latest/api/python/pyspark.html
http://blog.appliedinformaticsinc.com/how-to-write-spark-applications-in-python/
http://www.mccarroll.net/blog/pyspark2/

