
L02: Introduction to Hadoop,
MapReduce, and Hadoop
Streaming

ANLY 502: Massive Data Fundamentals

Simson Garfinkel & Marck Vaisman

January 23, 2017

1

1Name of Section

08

visual identity guidelines

08

Questions (course, homework, lab, AWS, etc.)

Introduction to Hadoop, HDFS, Yarn and MapReduce (~45 min)

Lab # 1 (~30 min)

• Start EMR (Elastic MapReduce) Cluster

• Configure FoxyProxy

• Run some HDFS Commands

• Copy files from S3 to cluster

Introduction to Hadoop Streaming (30 min)

Lab # 2 (~30 min)

• Run example word count Hadoop Streaming job

• Navigate the various user interfaces

Outline for today’s class

 2

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Recap...

 3

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Companies kept facing the same problems.

Price vs. Reliability:

• Cheap machines failed.

• Reliable machines were expensive.

Hardware vs. Software Diversity:

• “Data centers” were designed with computers having 

similar hardware, but different software configurations.

—Hard to keep the system going.
—Hard to install, configure, administer and manager.

Back in the early 2000s, companies were building bigger and bigger data centers.  
They needed some way to scale computation.

 4

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

First Google Computer
Lego enclosure

First Google Production Server

WWW 
Server

Biz 
Logic

DB
Server

Provides isolation between the front end and the database.

The database is a bottleneck.

This is one approach to scaling…  
A fast database server and lots of clients

 5

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

HP Web Hosting  
Server Appliance SA1100 (3)
2 x 100 Mbps ethernet
10 GB hard drive
533 MHz processor
128MB RAM https://en.wikipedia.org/wiki/Data_center

SuperMicro server
6 high-speed SCSI drives
8 core processor?

Every computer has same hardware configuration.

Distributed storage.

Distributed computation.

An easier approach: identical servers.

 6

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://commons.wikimedia.org/wiki/File:Wikimedia_Servers-0001_43.jpg https://en.wikipedia.org/wiki/Dell_PowerEdge

Storage
RAM CPU

Introducing Hadoop
and MapReduce

7

Google File System Paper

• How Google stored its information — at scale

• The Google File System  

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung 
19th ACM Symposium on Operating Systems Principles, 
Lake George, NY, October, 2003. 
http://research.google.com/archive/gfs.html

Google MapReduce

• How Google processed its information — at scale

• MapReduce: Simplified Data Processing on Large Clusters 

Jeffrey Dean and Sanjay Ghemawat 
OSDI'04: Sixth Symposium on Operating System Design and Implementation, 
San Francisco, CA, December, 2004. 
http://research.google.com/archive/mapreduce.html

These papers showed how Google had overcome the scaling problem.

In 2003 & 2004 Google Research published two seminal papers.

 8

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Design assumptions:

• System built from many inexpensive components that often fail. These store DATA.

• A high-performance, high-reliability, system. The MASTER stores METADATA.

• Workload consists of two kinds of reads:

—large, streaming reads. (typically 1MB of more)
—small random reads. (typically batched by performance-critical applications)

• Workload consists of two kinds of writes:

—large, streaming writes. (sequential, >>1MB)
—small writes at arbitrary locations (infrequent; need not be efficient)

• Well-defined semantic for multiple clients writing to the same file

• High sustained bandwidth is more important than low latency.

—Designed for bulk, batch processing. (building the index, not searching the index.)

Google File System (GFS) Requirements

 9

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Files are divided into fixed-size (64MB) chunks.

• Each chunk has a unique 64-bit chunk handle.

• Each chunk replicated on multiple GFS chunkservers.

Single master:

• Maps filenames to chunks	 	 	 • Checkpoints to hot backups

• Global directory of where each chunk is stored	 • Shadows for read-only access

• Metadata stored in RAM	 	 	 	 • Replicates data on node fail

Clients:

• Send filename 

to master.

• Get chunk handles 

from master.

• Get chunks from  

chunkservers.

GFS Implementation

 10

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

Previous work on “grid” computing was based on the idea of splitting up jobs,
performing work in parallel, and combining the work:

MapReduce is an approach and infrastructure for doing this at scale.

Provides:

• Automatic parallelization and distribution

• Fault-tolerance

• I/O scheduling

• Integrated status and monitoring

Google’s MapReduce:  
A programming paradigm based on functional programming.

 11

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Big
data

data 1
data 2
data 3
data 4

result 1

result 2

result 3

result 4

Map data 
to result

ReduceSplit Combined
Results

• Speculative execution for slow jobs.

Programmer:

• Everything is a Map or Reduce, but we don’t think of problems that way

• No control over the order in which map() or reduce() runs.

• Mapper & Reducer must be stateless — can’t depend on other map() or reduce() operations.

• No random access to the data

Performance:

• Data is not indexed

• Finding MIN() or MAX() requires scanning all the data.

• No memory-to-memory transfers

—Everything must be written back to the disk
• Entire map() must finish before reduce() starts

Operational:

• High overhead

• Batch processing

• Does not produce immediate answers

MapReduce Limitations

 12

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://www.quora.com/What-are-some-limitations-of-MapReduce
http://stackoverflow.com/questions/18585839/what-are-the-disadvantages-of-mapreduce

• Hard to implement
algorithms that can’t be
easily partitioned

• Memory limitations on HDFS “Name node”

https://www.quora.com/What-are-some-limitations-of-MapReduce
http://stackoverflow.com/questions/18585839/what-are-the-disadvantages-of-mapreduce

Diagram from Yahoo! developer tutorial

 13

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://developer.yahoo.com/hadoop/tutorial/module1.html

Input & Output is a set of key/value pairs.

Programmer specifies a mapper:

• map (in_key, in_value) → list(out_key, intermediate_value)

• reduce (out_key, list(intermediate_values)) → list(out_value)

Compare with Python:

>>>	def	square(x):	return	x*x	
...					
>>>	a	=	range(0,10)	
>>>	a	
[1,	2,	3,	4,	5,	6,	7,	8,	9]	

>>>	map(square,	a)	
[1,	4,	9,	16,	25,	36,	49,	64,	81]	

>>>	def	add(x,y):	return	x+y	
...		
>>>	reduce(add,	a)	
45	

Google’s map & reduce operate on (name, value) pairs.

The MapReduce programming model is based on functional programming.

 14

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://docs.python.org/2/tutorial/datastructures.html

The programmer writes a map() function:

map(input)	->	key:value	

The framework calls map() for every piece of input

	 	 	 map(input1)	->	key1:v1																						
	 	 	 map(input2)	->	key2:v2	
	 	 	 map(input3)	->	key3:v3	

Map/Reduce

 15

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

The programmer writes a map() function:

map(input)	->	key:value	

The framework sends the map() function to every computer with data:

	 map(input1)	->	key1:v1																						
	 map(input2)	->	key2:v2	
	 map(input3)	->	key3:v3	

	 map(input11)	->	key1:v11																			
	 map(input12)	->	key2:v12	
	 map(input13)	->	key3:v13	

	 map(input21)	->	key1:v21																			
	 map(input22)	->	key1:v22	
	 map(input23)	->	key1:v23	

Map/Reduce

 16

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“embarrassingly
parallel”

The programmer writes a map() function:

map(input)	->	key:value	

The framework sorts the output by key:

	 map(input1)	->	key1:v1																						 	 key1:	v1,	v11,	v21		
	 map(input2)	->	key2:v2	
	 map(input3)	->	key3:v3	

	 map(input11)	->	key1:v11																			 	 key2:	v2,	v12,	v22	
	 map(input12)	->	key2:v12	
	 map(input13)	->	key3:v13	

	 map(input21)	->	key1:v21																			 	 key3:	v3,	v13,	v23	
	 map(input22)	->	key1:v22	
	 map(input23)	->	key1:v23	

Map/Reduce

 17

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“embarrassingly
parallel”

group by key
(expensive)

The programmer writes a reduce() function:

reduce(key,values)	->	key:value	

The framework sorts the output by key:

	 map(input1)	->	key1:v1																						 	 key1:	v1,	v11,	v21								final1	
	 map(input2)	->	key2:v2	
	 map(input3)	->	key3:v3	

	 map(input11)	->	key1:v11				 	 											key2:	v2,	v12,	v22									final2	
	 map(input12)	->	key2:v12	
	 map(input13)	->	key3:v13	

	 map(input21)	->	key1:v21						 	 													key3:	v3,	v13,	v23									final3	
	 map(input22)	->	key1:v22	
	 map(input23)	->	key1:v23	

Map/Reduce

 18

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

“embarrassingly
parallel”

group by key
(expensive)

reduce

The mapper:

map(String	input_key,	String	input_value):	
				//	input_key:	document	name	
				//	input_value:	document	contents	

				for	each	word	w	in	input_value:	
						EmitIntermediate(w,	"1");	

The reducer:

		reduce(String	output_key,	Iterator	intermediate_values):	
				//	output_key:	a	word	
				//	output_values:	a	list	of	counts	

				int	result	=	0;	
				for	each	v	in	intermediate_values:	
						result	+=	ParseInt(v);	

				Emit(AsString(result));	

The output:

“Word Count” is a common MapReduce demonstration program.
This Word Count generates a word histogram.

 19

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

The framework guarantees
that “reduce” is called with
all pairs of the same key.

“to be or not to be”
becomes:

to:1
be:1
or:1
not:1
to:1
be:1

to:2
be:2
or:1
not:1

How this gets put together:

 20

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

How this gets put together.
This time we’ll use multiple inputs.

 21

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

“to	be	or	not	
to	be”

“do	be	do	be	do”

to:1	be:1	or:1	not:1	to:1	be:1 do:1	be:1	do:1	be:1	do:1

be:1,1,1,1,1	do:1,1	 
not:1	or:1	to:1

be:5	do:2	not:1	or:1	to:1

Behind the scenes, MapReduce sorts and combines the data.

 22

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

Workers run both map & reduce tasks.

• Each task is scheduled when data are available.

• Failed tasks (or slow machines) are automatically rescheduled.

• If the same data causes two mappers to fail, the data is ignored.

“Often use 200,000 map/5000 reduce tasks with 2000 machines”

MapReduce pipelines execution and provides fault recovery

 23

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0009.html

The previous example used strings, but map & reduce can apply to any kind of
data value.

Examples (from paper)

• Parallelized String search

—map emits a pair of string is present (line #, string)
—Reduce is the “identity” function — copies input to output. (line #, string)

• Count URL Access Frequency:

—map reads logfiles and outputs (URL, 1)
—reduce adds up all of the URLs (URL, total count)

• Reverse Web-Link Graph (what points to page P?)

—map outputs (target, source) for each link found on each web page.
—reduce concatenates the sources: (target, list(source))

e.g.	(target,	(source1,	source2,	source3))

MapReduce is a powerful programming paradigm.

 24

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Fault tolerant: all of the inputs are pre-determined from the data.

• If a worker fails, that job can be run on another machine.

• The master writes periodic checkpoints. If it dies, it is restarted.

• “However, given that there is only a single master, it’s failure is unlikely; therefore our current

implementation about the MapReduce computation if the master fails.”

Minimizes network bandwidth:

• Attempts schedule workers on the same network node as the data resides.

• Failing that, it tries to schedule the worker on the same network switch

Easier to program!

• Map & Reduce functions are simple and easy to understand.

• Complexity is taken care of by infrastructure.

• Most tasks go faster when you add more machines.

MapReduce benefits

 25

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Easy to modify existing tasks to run on MapReduce framework.

• MapReduce Programs in Google Source Tree:

MapReduce was hugely successful at Google.

 26

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Doug Cutting had been trying to build a search engine at the Internet archive.

• It could only run on certain kinds of machines.

• It required reliable computers.

• When it crashed, it needed to be manually restarted.

Cutting & Cafarella decided to build an open source version 
of the Google stack to handle the Internet Archive’s search.

• In Java, so it would be portable.

—and because it’s what they knew

In 2006, Cutting moved to Yahoo.

• It was difficult scaling to larger # of nodes.

• Hadoop wasn’t good enough to replace Yahoo’s search,  

but it could be used for data analytics.

In 2011, Yahoo had 42,000 nodes and 100s of PBs of storage.

Yahoo spun out Hartonworks as a Hadoop-focused software company.

• https://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/

Hadoop Origins — An open source version of Google’s stack

 27

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Doug Cutting

Mike Cafarella

• http://www.nytimes.com/2009/03/17/technology/business-computing/17cloud.html

Doug Cutting named Hadoop after his son’s toy elephant

 28

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.nytimes.com/2009/03/17/technology/business-computing/17cloud.html

A typical small Hadoop system might have:

• 1 master node

• 1-10 Data Nodes

• 0-10 Compute Nodes

Hadoop runs on individual computers in a data center.
These computers are called “nodes.”

 29

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Master Node.
- Batch jobs submitted.
- Tracks progress of jobs.

Compute Node.
- Runs Map/Reduce jobs

Data Node.
- Holds data
- (Can also run jobs)

Worker Nodes:

MapReduce is run as a “batch” operation with a job configuration:

• Map function

• Reduce function

• Job parameters

The Hadoop job client submits the job (e.g. jar file) to the ResourceManager.

Hadoop Streaming lets jobs be run with any executable.

Hadoop Pipes is a SWIG C++ API for running from C++, python, etc.

Real-world Map Reduce.

 30

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html
https://github.com/chenmiao/Big_Data_Analytics_Web_Text/wiki/Hadoop-with-Cloudera-VM-(the-Word-Count-Example)

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Real Hadoop clusters can be huge.

 31

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

• Name Node — Keeps track of every file and where it is stored.

Hadoop cluster at Yahoo!

Hadoop running on 8 cubieboards:

The power of Hadoop (and MapReduce) is that it:

• Provides a framework for having a distributing a workflow to multiple physical computers.

• Integrates management of computation and storage.

Hadoop doesn’t need huge clusters

 32

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://cubieboard.org/2013/08/01/hadoophigh-availability-distributed-object-oriented-platform-on-cubieboard/

But you would
never do this in
practice.

Why not?

The Apache Nutch project

• Open source web crawler and search engine

• Created by Doug Cutting and Mike Cafarella

Searching and Indexing the Web is Expensive

• Estimated that a billion page index = $500K in hardware

• Operating costs of ~$30K/month

A Brief History of Hadoop

 33

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

2003: The Google File System by Sanjay Ghemawat et.al.

Google File System

• stores data computation locally

• distributed file system

• management with a single master server

• low-cost, commodity storage nodes

A Brief History of Hadoop (continued)

 34

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

2004: MapReduce: Simplified Data Processing on Large Clusters by Dean &
Ghemawat

• Parallelization: how to parallelize the computation

• Distribution: how to distribute the data

• Fault-tolerance: how to handle component failure

MapReduce is the computational framework that enables

the parallel, distributed processing off the GFS cluster.

2005: Doug Cutting and Mike Cafarella reimplement MapReduce and GFS

(HDFS) in open-source to power Nutch.

2008:

● Yahoo! announces that production search engine running on a 10,000 node
Hadoop cluster

● Apache elevates Hadoop to a top-level project

A Brief History of Hadoop (continued)

 35

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

• Traditional data analysis involve complex processing (regressions, etc.) upon small data sets,
usually representative samples of a larger population of data.

• Computations of this type are dependent on the size and performance of a processor or the
computer's main memory.

• To improve computational speed or the amount of data a computer is able to process, faster
processors and more RAM is required.

The Motivation for Hadoop

 36

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

MapReduce — Performs computation

• Job Tracker — Master planner

• Task Tracker — Runs each task

HDFS — Stores the data

• Data Node — Stores the blocks for each file.

• Name Node — Keeps track of every file and where it is stored.

—Controls the Data Nodes.

Data must be stored where MapReduce can reach it

• Hadoop MapReduce: HDFS or Amazon S3

• mrjob: in local file system, HDFS or S3

Hadoop has two main systems: MapReduce and HDFS

 37

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

1. Data are distributed on nodes.

2. Data are split

3. Data sent to mapping processes

3. Map data are “shuffled” (sorted)

4. Data are reduced.

You must write:

• mapper

• reducer

You may also write:

• combiner — at Node before shuffle

• partitioner — describes how data are split

Remember the basic map reduce idea:

 38

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://developer.yahoo.com/hadoop/tutorial/module1.html

Hadoop 2 on Yarn
39

MapReduce — Performs computation

• Job Tracker — Master planner

• Task Tracker — Runs each task

HDFS — Stores the data

• Data Node — Stores the blocks for each file.

• Name Node — Keeps track of every file and where it is stored.

—Controls the Data Nodes.

Data must be stored where MapReduce can reach it

• Hadoop MapReduce: HDFS or Amazon S3

• mrjob: in local file system, HDFS or S3

Hadoop has two main systems: MapReduce and HDFS

 40

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

YARN is the resource management and computation framework that is new as
of Hadoop 2, which was released late in 2013.

YARN implements a MapReduce application, therefore for the most part,
discussing MapReduce as the distributed computational framework of
Hadoop is correct, however YARN expands on the distributed computational
ability that is available to Hadoop.

Hadoop 2 also led to some version confusion as there were, at one point,
parallel versions of Hadoop that are now simply called Hadoop 1 and Hadoop
2.

Hadoop 2 on YARN

 41

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hadoop Releases

 42

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hadoop 2 on YARN

 43

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Client applications submit jobs to the Job tracker.

The JobTracker talks to the NameNode to determine the location of the data

The JobTracker locates TaskTracker nodes with available slots at or near the
data

The JobTracker submits the work to the chosen TaskTracker nodes.

The TaskTracker nodes are monitored. If they do not submit heartbeat signals
often enough, they are deemed to have failed and the work is scheduled on a
different TaskTracker.

 44

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

A TaskTracker will notify the JobTracker when a task fails. The JobTracker may
resubmit the job elsewhere, it may mark that specific record as something to
avoid, and it may even blacklist the TaskTracker as unreliable.

When the work is completed, the JobTracker updates its status.

Client applications can poll the JobTracker for information.

Hadoop 2 on YARN

 45

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

YARN supports multiple processing models in addition to MapReduce.

All share common resource management service.

No need to ship out data!

Hadoop 2 on YARN

 46

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Resource Manager (RM) - serves

as the central agent for managing

and allocating cluster resources

Node Manager (NM) - per node

agent that manages and enforces

node resources

Application Master (AM) - per

application manager that manages

lifecycle and task scheduling

Hadoop 2 on YARN

 47

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hadoop 2 on YARN

 48

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hadoop 1: single namespace for the entire

cluster managed by a single NameNode.

Hadoop 2 HDFS Federation adds support

for multiple NameNodes/namespaces and

horizontal scalability of the name service.

Each namespace is independently operating

in the same cluster.

Standby NameNode can be configured to

automatically take over if the active

NameNode fails.

Hadoop 2 on YARN

 49

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hadoop 1:

Hadoop 2:

Hadoop 2 on YARN

Although slightly more complex, Hadoop 2 on YARN allows

for some very important features:

Multi-tenancy: Other computation frameworks can be run

on the Hadoop cluster, simultaneously.

Single job queue for multiple job submissions and

standardized resource management

Improved availability and prevention of job failure

(NameNode redundancy, separation of resource, job,

and task management)

HDFS Federation: Multiple namespace support for better

isolation in a multi-user and multi-tenant environment

 50

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Although slightly more complex - this application framework

allows for some very important features:

• Multiple MapReduce jobs may be run simultaneously

• Other computation frameworks for Graph computation

• and SQL-like queries can be run without MapReduce

• implementations

• Job failure is prevented by using speculative execution

• and redundant tasks for slow running processes

• Processes run on local data to reduce network traffic.

At this point, we will discuss the specifics of implementing

MapReduce in a distributed fashion, which is more or less the

same for both Hadoop 1 and 2.

MapReduce in Detail

 51

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

HDFS is a distributed filesystem that is based on the GFS paper from 2003.

• Provides redundant storage of extremely large datasets

• Can be linearly expanded to increase storage space

• It's a software layer on top of a native filesystem like ext4

—swimming pool analogy

Files are split into HDFS block size chunks (default 64MB) and replicated across
the cluster (default of 3x).

• At 3X, a 1TB file needs 3TB of storage

HDFS performs best with a modest number of large files

• millions of 100MB files is better than billions of 1MB files

The number of splits of a file determines the number of map jobs

• There is a 1 to 1 relationship between a task and a block of data

File permissions are handled similarly to POSIX filesystems

HDFS

 52

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Amazon EMR

(Elastic MapReduce)

53

It is a product/service from Amazon Web Services that allows users to start a
set of VMs configured as a cluster running Hadoop and other tools.

It is a managed service, and it automatically installs the software, which has
been optimized to run on Amazon's VMs, and configures the cluster.

• Installs and configures Hadoop and additional tools as needed

• It's elastic (scalable)

• Connects your cluster to your S3 bucket

Three types of nodes:

• Master: acts as gateway node, runs NameNode and other services, stores data in HDFS

• Core: runs TaskNode and stores data in HDFS

• Task: runs TaskNode only

Data can be read/written to both the cluster's HDFS and/or S3

What is Amazon's Elastic MapReduce Service?

 54

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Elastic Map Reduce: Amazon’s Managed Hadoop Cluster

 55

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage-resize.html

Hourly rate for every instance hour you use.

• 10-node cluster for 10 hours = 100-node cluster for 1 hour

• Higher prices for more powerful instances.

• Instance prices $0.11/hour to $0.27/hour

• EMR price is in addition to EC2 price.

US East is generally cheapest.

• Even cheaper with spot instances.

• Hadoop & Spark don’t run on  

“Previous Generation” small & medium 
instances.

Elastic Map Reduce: Amazon’s managed Hadoop cluster.

 56

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Note:

• Logging — S3 bucket

• Vendors:

—Amazon & MapR
• Instances:

—Instance Type
—# of Instances

• Security

—EC2 key pair.

But for this course, 
please use the  
“Advanced Options”

Options when creating EMR clusters

 57

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

 58

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

 59

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Task:  
Compute-only

nodes

Core: 
Compute & HDFS

nodes

If you shrink “Core,” EMR will redistribute your
data to the remaining nodes.

 60

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

 61

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

 62

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Connect with SSH tunneling and FoxProxy

 63

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Be sure to terminate in the EMR, not EC2 panel.

Remember: you lose your disk and HDFS when you terminate!

• Store things in S3 and git!

Clusters remain after termination so you can “clone” them.

 64

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

• Start an Amazon EMR Cluster

—1 Master, 2 Core

• Ssh into the Master Node

—Make sure you use ssh -A so you can clone your git repository
—Make sure that the security groups are setup correctly (open port 22) so you can ssh
—ssh -A hadoop@cluster-ip-address

• Install git

—sudo yum install -y git

• Go to AWS Console, select your cluster

—Follow instructions related to FoxyProxy - install, create foxyproxy-settings.xml file and

configure FP for your browser
• List files in cluster's HDFS (will be empty)

—hdfs dfs -ls
—hadoop fs -ls

• List files in course's S3 repository

—hdfs dfs -ls s3://gu-anly502/

• Explore the HDFS Filesystem Commands:

—https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/

FileSystemShell.html

Lab # 1

 65

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html

Hadoop Streaming
66

Hadoop streaming — reads from stdin & writes to stdout.

• Allows using Hadoop MapReduce with any language.

• Performance penalty — all I/O has to go over pipes.

Hadoop Streaming

 67

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Hadoop
Map

HDFS
or
S3

User-supplied
Mapper

Hadoop
Reduce

User-supplied
Reducer

HDFS
or
S3

Input
Reader

Output
writer

Shuffle

Standard
Input

Standard
Input Standard

Output
Standard
Output

Hadoop MapReduce

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_.28stdin.29

What is stdin, stdout?

 68

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_.28stdin.29

#!/usr/bin/env python

import sys

input comes from STDIN (standard input)

for line in sys.stdin:

 # remove leading and trailing whitespace

 line = line.strip()

 # split the line into words

 words = line.split()

 # increase counters

 for word in words:

 # write the results to STDOUT (standard output);

 # what we output here will be the input for the

 # Reduce step, i.e. the input for reducer.py

 #

 # tab-delimited; the trivial word count is 1

 print("%s\t%s" % (word, 1))

Use Python programs as a mapper:

 69

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

#!/usr/bin/env python

from operator import itemgetter

import sys

current_word = None

current_count = 0

word = None

input comes from STDIN

for line in sys.stdin:

 # remove leading and trailing whitespace

 line = line.strip()

 # parse the input we got from mapper.py

 word, count = line.split('\t', 1)

 # convert count (currently a string) to int

 try:

 count = int(count)

 except ValueError:

 # count was not a number, so silently

 # ignore/discard this line

 continue

 # this IF-switch only works because Hadoop sorts map output

 # by key (here: word) before it is passed to the reducer

 if current_word == word:

 current_count += count

 else:

 if current_word:

 # write result to STDOUT

 print("%s\t%s" % (current_word, current_count))

 current_count = count

 current_word = word

do not forget to output the last word if needed!

if current_word == word:

 print("%s\t%s" % (current_word, current_count))

Use Python program as reducer:

 70

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Mapper:

[myprompt]$	echo	"one	two	two	three	three	three"	|	./streaming_mapper.py		
one	1	
two	1	
two	1	
three	 1	
three	 1	
three	 1	
[myprompt]$		

Mapper and Reducer:

[myprompt]$	cat	infile.txt	
one	two	two	three	three	three	
[myprompt]$	cat	infile.txt	|	./streaming_mapper.py	|	sort	|	./streaming_reducer.py		
one	1	
three	 3	
two	2	
[myprompt]$		

You can independently test the mapper and reducer:

 71

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Simple Hadoop Streaming command on Amazon EMR:

$	hadoop	jar	/usr/lib/hadoop/hadoop-streaming-2.7.3-amzn-1.jar	-files	q2_mapper.py,q2_reducer.py	-input	
s3://gu-anly502/A2/sonnet18.txt	-output	output-2017-01-22T00-06-42	-mapper	q2_mapper.py	-reducer	
q2_reducer.py	

Hadoop Streaming Example

 72

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

if you see this:

Caused	by:	java.lang.reflect.InvocationTargetException	
	 at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)	
	 at	sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)	
	 at	sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)	
	 at	java.lang.reflect.Method.invoke(Method.java:606)	
	 at	org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106)	
	 ...	17	more	
Caused	by:	java.lang.RuntimeException:	configuration	exception	
	 at	org.apache.hadoop.streaming.PipeMapRed.configure(PipeMapRed.java:221)	
	 at	org.apache.hadoop.streaming.PipeMapper.configure(PipeMapper.java:66)	
	 ...	22	more	
Caused	by:	java.io.IOException:	Cannot	run	program	"streaming_mapper.py":	error=2,	No	such	file	or	
directory	
	 at	java.lang.ProcessBuilder.start(ProcessBuilder.java:1047)	
	 at	org.apache.hadoop.streaming.PipeMapRed.configure(PipeMapRed.java:208)	
	 ...	23	more	
Caused	by:	java.io.IOException:	error=2,	No	such	file	or	directory	
	 at	java.lang.UNIXProcess.forkAndExec(Native	Method)	
	 at	java.lang.UNIXProcess.<init>(UNIXProcess.java:186)	
	 at	java.lang.ProcessImpl.start(ProcessImpl.java:130)	
	 at	java.lang.ProcessBuilder.start(ProcessBuilder.java:1028)	
	 ...	24	more	

Look for errors that you can understand

Debugging

 73

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Caused	by:	java.io.IOException:	Cannot	run	program	"streaming_mapper.py":	error=2,	No	such	file	or	
directory	

Streaming tries to run the programs from the your home directory!

• streaming_mapper.py and streaming_reducer.py were in the current directory

• You need to specify the complete path name.

• `pwd` evaluates to the current directory

Revised Simple Hadoop Streaming command on CDH Quickstart VM:

$	hadoop	jar	/usr/lib/hadoop/hadoop-streaming-2.7.3-amzn-1.jar	\	
		-input	data	-output	data2	\	
		-mapper	`pwd`/streaming_mapper.py	-reducer	`pwd`/streaming_reducer.py		

Hadoop Streaming Coudn’t find the executable

 74

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Sample command from tutorial:

$	hadoop	jar	/usr/lib/hadoop/hadoop-streaming-2.7.3-amzn-1.jar	\	
		-D	mapreduce.map.output.key.field.separator=.	\	
		-D	mapreduce.partition.keypartitioner.options=-k1,2	\	
		-D	mapreduce.fieldsel.data.field.separator=.	\	
		-D	mapreduce.fieldsel.map.output.key.value.fields.spec=6,5,1-3:0-	\	
		-D	mapreduce.fieldsel.reduce.output.key.value.fields.spec=0-2:5-	\	
		-D	mapreduce.map.output.key.class=org.apache.hadoop.io.Text	\	
		-D	mapreduce.job.reduces=12	\	
		-input	myInputDirs	\	
		-output	myOutputDir	\	
		-mapper	org.apache.hadoop.mapred.lib.FieldSelectionMapReduce	\	
		-reducer	org.apache.hadoop.mapred.lib.FieldSelectionMapReduce	\	
		-partitioner	org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner	

Specifies:

—mapper, reducer & partitioner
—Different field separators
—Output formats.
—etc.

You can specify more complex things

 75

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Good tutorials on Hadoop Streaming: streaming

• http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

References

 76

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

• Output directory (S3 or HDFS) must not exist before running a Hadoop job

• Keep track of which filesystem you are accessing

—Linux filesystem
—HDFS
—S3

• Hadoop/Java errors are cryptic. Many times you need to look at the stdout/stderr logs

Hadoop Gotchas

 77

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

• ssh into cluster using port forwarding to be able to use the EMR Cluster Hadoop Web UI. You need two
terminals. Also, enable the FoxyProxy settings

—ssh -A hadoop@my-ip-address

—ssh -ND 8157 hadoop@my-ip-address

• git clone the class Bitbucket repo or your fork (which you must update before you clone)

• Change directory to A2

• "Get" text file from S3 to A2 directory

—hadoop fs -get s3://gu-anly502/gutenberg/Meyers.txt

• Explore this text file using head, tail, less, more, etc.

• "Test" the hadoop streaming framework

—cat Meyers.txt | ./q2_mapper.py

—cat Meyers.txt | ./q2_mapper.py | sort | ./q2_reducer.py

• Run Hadoop Streaming job on this file, reading from S3, and writing to S3

—hadoop jar /usr/lib/hadoop/hadoop-streaming-2.7.3-amzn-1.jar -files q2_mapper.py,q2_reducer.py -input

s3://gu-anly502/gutenberg/Meyers.txt -output s3://[mybucket]/my-first-streaming-job -mapper
q2_mapper.py -reducer q2_reducer.py

• "Put" Meyers.txt into EMR Cluster HDFS and run Hadoop Streaming Job, reading and writing from HDFS

—hadoop fs -mkdir my-source-data-on-hdfs

—hadoop fs -put Meyers.txt my-source-data-on-hdfs/

—hadoop jar /usr/lib/hadoop/hadoop-streaming-2.7.3-amzn-1.jar -files q2_mapper.py,q2_reducer.py -input

my-source-data-on-hdfs/Meyers.txt -output my-first-output-on-hdfs -mapper q2_mapper.py -reducer
q2_reducer.py

• DON'T FORGET TO STOP YOUR CLUSTER AT THE END OF CLASS

Lab # 2

 78

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

s3://gu-anly502/gutenberg/Meyers.txt

A02 - Due Friday 2/3

Q2- Due Friday 1/27

L03 - Mon 1/30: MapReduce Patte

Coming Up

 79

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

Parking Lot

 80

1Name of Section

08

visual identity guidelines

08

Massive Data Fundamentals

