Hash-Based Carving:

Searching media for complete files and
fragments with sector hashing and hashdb

Simson L. Garfinkel
National Institute of Standards and Technology

Michael McCarrin

[Bruce Allen]

Naval Postgraduate School Tuesday, August 11, 2015
Session 4: Computational Forensics
2:15pm

1

In this talk, we present hash-based carving.

(Finally!)

Hash based carving: the big idea 2

Work to date

Our toolchain: hashdb, bulk_extractor, report_identified_runs.py

Initial experience running this at scale

OOOO107jpo

T rer———

P, s -
-, e — . m""“"t\

: . R A PRI . e
LI

S NI
Wi

... 5 .

‘L‘,a ..1: ‘ 1
o

e 1 uﬁﬁhmmpm

S’t&v&' *“‘“ | ETIRSE

] ' ". e - 2
.’ -v'.\. “ ..

Hash-based carving:

The Big ldea

Every file has a unique hash

41,572 bytes

c996£fel9c45bcl9961d2301f47cabaab

Every file can be viewed as a sequence of blocks.

oo A
. § .? . - - . |
- » ‘o i 2 ok o 3 dn "
Ir?ﬁ."‘;;\ e o f:‘)“M ma"
. X VT By W F
'y ‘.‘ s | ';r“": . - "
r . ¢ 0-0.

e

41,572 bytes + 512 bytes/block = 81 blocks + 100 bytes
= 82 blocks
(w/ zero padding)

When a file is stored on a drive, the file’'s blocks are
stored in disk sectors.

|’ e -
o N ' ". il e w
.. o - A .0
. o s ' s . N
P L RN o VISP ¢ 'm m&

~

;-' ‘ - “'., . - -.;rozl"_:l.'t‘.—.
SRR T s

All modern file systems align files (> 4KiB) on sector boundaries.

Traditional carving examines the sectors on the drive.

Any sequence of sectors with a specific header and
footer are stored in a file.

FFD8 FFD9

Conventional watch lists are based on file hashes.

Software alerts if the hash matches
the watch list.

...

..
..

..

Cat 253fbeb0834b45e382af5862376al778

Hash-based carving applies hashing to each file block.

I"'(n‘ “A\ = \-I [f ‘

o P I 17

-
’3:':0.

dc0Oc20abad42ay9p7a74£308Bc69d18aba

9e7bc64399ad87ae9¢c2b548061959778

6e7£3577b100£f9%ec7£fael18438£d5b047

10

Hash-based carving applies hashing to each file block.

I-‘- .
- S\ -

dcOc2 v“vi \"‘08c

-
-
-

}12

3 - . -
9e7bc) oy4 - g‘ °£.

N,

6e7£3577b100£f9%ec7£fael18438£d5b047

11

In theory, hash-based carving lets us find file fragments.

Fragments might come from:

» Fragmented files
* Files deleted and partially overwritten

12

Hash-based carving should be simple.

1. Hash every sector of the drive

2. Hash every sector
of the target files

Block # Byte Range MD5*(block(N))
0 0- 511 dc0c20abad4dNg487a74£308c69d18aba
1 512-1023 9e7bc64399ad87aeSe !45061959778
3. Look for matches
2 1024-1535 6e7£3577b100£f9ec7£fael8438£d5b047
3 1536-2047 4594899684d0565789ae9£364885e303
4

Using distinct sectors in media sampling and full media analysis to detect presence of documents from a corpus,
Kristina Foster, NPS Master’s Thesis, 2012 13

Of course, files have internal structure.

Header |« [FF D8 FF EO] or [FF D8 FF E1]

lcons

EXIF

Color Table

Only part of the file directly

FF D9 . -
| Footer |~ [FF D3] maps to the visible portion
41,572 bytes

14

Some blocks are likely to be distinct for each file

Header | Header
lcons lcons
EXIF EXIF

Color Table Color Table

‘31 HSZHSS\

X
Q
Different files will have different Huffman encoded areas. Q}ﬁ
¥
A\

Other blocks might occur in more than one file.

Header | Header
Ilcons lcons
EXIF 1] 2] EXIF [[1]]2]
3 3
Color Table | — Color Table |

&Q |
| {0
Footer Foot | %)
EXIF and color table are generated by the camera. N

~ 16

Consider the 82 blocks for this 41K JPEG.

MD5(Block(N))
| 1
cons > 0 dc0c20abad42d487a7
EX”: 3 4£308c69dl8aba
4 1 9e7bc64399ad87ae9c
Color Table 5 2b545061959778
6
2 6e7£3577b100f9%ec7f
[ael8438£d5b047
8
5 3 4594899684d0565789
ae9£364885e303
10

17

We searched for these block hashes in a corpus of 4

million files.

= 1 million in GOVDOCS1 collection

= 109,282 JPEGs (including 000107.jpg) 0
= 3 million samples of Windows malware

Results:
- Most of the block hashes in 000107.jpg do not appear elsewhere in corpus.
- Some of the block hashes appeared in other JPEGs.

- None of the block hashes appeared in files that were not JPEGs

O || |IN|O||[O|[~[[W][IDN

RN
o

0 | =
N |-

18

The beginning of the file is distinct in GOVDOCS

hash location count
dc0c20abad42d487a74£308c69d18ab5a offset 0-511 1
9e7bc64399ad87ae9¢c2b545061959778 offset 512-1023 1
6e7£3577b100£f9%ec7£fael8438£d5b047 offset 1024-1535 1
4594899684d0565789ae9£364885e303 offset 1536-2047 1
4d21b27ceec5618£f94d7b62ad3861e9a offset 2048-2559 1
03b6al3453624£f649bbf3e9cd83c48ae offset 2560-3071 1
c996£fe19¢c45bcl19961d2301£f47cabaab offset 3072-3583 1
0691baa904933¢c9946bbda69c019be5f offset 3584-4095 1
1bd9960a3560b9420d6331clf4d95fec offset 4096-4607 1
52e£f8£fe0a800c9410bb7a303abe35e64 offset 4608-5119 1
b8d5¢c7¢c29da4188a4dcaal09e057d25ca offset 5120-5631 1
3d7679a976b91c6eb8acdlbfa3414£f96 offset 5632-6143 1
8649£180275e0b63253e7eele8fadcld offset 6144-6655 1
60ebc8acb8467045e9dcbe207£f61a6¢c2 offset 6656-7167 1
440cl1lcl318186ac0e42b2977779514al offset 7168-7679 1
72686172£8¢c865231e2b30b2829e3dd9 offset 7680-8191 1
£fd£f£55¢c618d434416717e5ed45cb407e offset 8192-8703 1
£cd89d71b5£728ba550a7bc017ea8£f£f1 offset 8704-9215 1
2d733e47¢5500d91¢cc896£99504e0a38 offset 9216-9727 1
2152fdde0e0a62d2el0b4fecc369e4chb offset 9728-10239 1
692527£fa35782db85924863436d45d7f£ offset 10240-10751 1
1

76dbb9b469273d0e0e467a55728b7883

offset

10752-11263

O || |IN|O||[O|[~[[W][IDN

RN
o

oo
N

19

The middle of 000107.JPG appears elsewhere...

hash location count
9d£886£fdfa6934cc7dcfl10c04be3464a offset 14848-15359 1
95399e7ecc7balb38243069bdd5¢c263a offset 15360-15871 1
eflffcdclll62ecdfedd2ddeb644ec8f2 offset 15872-16383 1
7eb35cl61e91b215e2al1d20c32£f4477e offset 16384-16895 1
38f9b6£045db235al14b49c3fe7blcec3 offset 16896-17407 1
edceba3444b5551179c791ee3ec627a5 offset 17408-17919 1
6bc8ed0ce3d49dc238774a2bdeb7eca’ offset 17920-18431 1
5070e4021866a547aa37e5609e401268 offset 18432-18943 14
13d33222848d5b25e26aefb87dbd£294 offset 18944-19455 9198
0dfcde85¢c648d20aed68068cc7b57¢c25 offset 19456-19967 9076
756£0bbe70642700aafb2557b£f2¢c5649 offset 19968-20479 9118
c2c29016d3005f7a1d£f247168d34e673 offset 20480-20991 9237
42f£3d72b2b25£880be21fac46608cc9 offset 20992-21503 9708
b943cdOea25e354d4ac22b886045650d offset 21504-22015 9615
a003ec2¢c4145b0bc871118842b74£385 offset 22016-22527 9564
1168c351f57aadl14del35736c06665ea offset 22528-23039 7
51a50e6148d13111669218dc40940ce5 offset 23040-23551 83
365b122£53075cb76b39cal366418£f£f9 offset 23552-24063 83
9ad9660e7c812e2568aaf063albe7d05 offset 24064-24575 84
67bd01c2878172e2853f0aef341563dc offset 24576-25087 84
£fc3e47d734d658559d1624c8blcbf2cl offset 25088-25599 84
cb9aef5b7£32e2a983e67af38ce8££87 offset 25600-26111 1

O || |IN|O||[O|[~[[W][IDN

RN
o

oo
N

20

Block 37 was found in 9198 other files.

The sector is filled with blank lines 100 characters long...

13d33222848d5b25e26aefb87dbdf294

offset 18944-19455 9198

$ dd if=000107.jpg skip=18944 count=512 bs=1|xxd

0000000: 2020 2020 2020 2020 2020 2020 2020 2020
0000010: 2020 2020 2020 2020 2020 2020 0a20 2020
0000020: 2020 2020 2020 2020 2020 2020 2020 2020
0000030: 2020 2020 2020 2020 2020 2020 2020 2020
0000040: 2020 2020 2020 2020 2020 2020 2020 2020
0000050: 2020 2020 2020 2020 2020 2020 2020 2020
0000060: 2020 2020 2020 2020 2020 2020 2020 2020
0000070: 2020 2020 2020 2020 2020 2020 2020 2020
0000080: 200a 2020 2020 2020 2020 2020 2020 2020
0000090: 2020 2020 2020 2020 2020 2020 2020 2020
00000a0: 2020 2020 2020 2020 2020 2020 2020 2020
00000b0: 2020 2020 2020 2020 2020 2020 2020 2020
00000c0O: 2020 2020 2020 2020 2020 2020 2020 2020
00000d0: 2020 2020 2020 2020 2020 2020 2020 2020
00000e0: 2020 2020 2020 0a20 2020 2020 2020 2020
00000£f0: 2020 2020 2020 2020 2020 2020 2020 2020

This pattern comes from the “whitespace padding” of the XMP section.
- The whitespace can start on any byte offset, making collisions likely but not common

21

51a50e6148d13111669218dc40940ce5

S dd i1£f=000107.jpg

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
0000060:
0000070:
0000080:
0000090:
00000a0:
00000bO:
00000cO:
00000dO:
00000e0:
00000fO0:
0000100:
0000110:
0000120:

3936
0000
0000
0000
0000
2000
0058
£500
9900
0000
6300
703a
0000
7470
0000
0000
0000
6300
3636

362d
0000
0000
0000
00£f3
0000
595a
0003
00b7
0024
0000
2f2f
0000
3a2f
0000
0000
0000
0000
2d32

Block 45 was found in 83 other files.

It appears to contain EXIF metadata

offset 23040-23551

skip=23040 count=512 bs=1]|xxd

322e
0000
0000
0000
5100
0000
2000
9058
8500
a000
0000
7777
0000
2£77
0000
0000
0000
0000
2e31

3100
0000
0000
0000
0100
0000
0000
595a
0018
000f
0000
172e
0000
1777
0000
0000
0000
0000
2044

0000
0000
0000
0058
0000
0000
0000
2000
dab58
8400
1649
6965
0016
2e69
0000
0000
0000
2e49
6566

0000
0000
0000
595a
0116
0000
006f
0000
595a
00b6
4543
632e
4945
6563
0000
0000
0000
4543
6175

0000
0000
0000
2000
cc58
0000
a200
0000
2000
cfé64
2068
6368
4320
2e63
0000
0000
0064
2036
6c74

0000
0000
0000
0000
595a
0000
0038
0062
0000
6573
7474
0000
6874
6800
0000
0000
6573
3139
2052

83
966-2.1.........
......... XYZ ...

eDeeeeeeen XYZ
XYZ ... O...8
..... XYZ eee...D
......... XYZ ..
B des
Ceoeoooose IEC htt
p://www.iec.ch..
.......... IEC ht

IEC 619

66-2.1 Default R

22

67bd01c2878172e2853f0aef341563dc

S dd if=000107.jpg

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
0000060:
0000070:
0000080:
0000090:
00000a0:
00000bO:
00000cO:
00000dO:
00000e0:
00000f0:
0000100:
0000110:
0000120:

7a27
0629
O9b2a
392c
el2e
912f
4a3l
0d33
d835
ae36
8c38
743a
653c
603e
6440
7242
8add
abd6
d749

ab27
3829
cf2b
6e2c
162e
c72f
8231
4633
1335
e937
c839
b23a
ad3c
al03e
a64o0
b542
ced5
£047
1d49

skip=24576 count=512 bs=1 |xxd

dc28
6b29
022b
al22c
4ce
fe30
ba3l
7f£33
4d35
2437
0539
ef3b
e33d
e03f
e/4d1l
£743
1245
3547
6349

0d28
9d29
362b
d72d
822e
3530
£f232
b833
8735
6037
4239
2d3b
223d
213f
2941
3a43
5545
7bd7
ag949

3f£28
d02a
692b
Oc2d
b72e
6¢c30
2a32
£f134
c235
9¢c37
7£39
6b3b
613d
613f
6adl
7d43
9a45
c048
fO04da

7128
022a
9d2b
412d
ee2f
a430
6332
2b34
£d36
d738
bc39
aa3b
al3d
a23f
acdl
c044
ded 6
0548
374a

Block 48 was found in 84 collisions files.

a2l228
352a
dl2c
762d
242f
db31
9b32
6534
3736
1438
f93a
e83c
el3e
e240
eed?2
0344
2246
4b48
7d4a

d429
682a
052c
ab2d
5a2f
1231
d433
9e34
7236
5038
363a
273c
203e
2340
3042
4744
6746
9148
cddb

It appears to contain part of a JPEG color table...
offset 24576-25087

Z

- (- (?2(a(.

84

(-)

.)8)k).).* . *5xh*
Kot .+6+i+.+., .,

9,n,.,.-.
eLeeeeeoe

././.05010.0.1.1

Jl1.1.1.2%2c2.2.3
.3F3.3.3.4+4e4.4
.5.5M5.5.5.
6.787°7.7.

.8.9

te.:.

e<.<
> >
de.a@
rB.B
.D.E

.9B9.9.
.="=a=,
.?1?a?.
.A)AJA.
.C:C}C.
.EUE.E.

.F.G5G{G.H.
.I.IcI.I.J7J}J.K

676r6

8

9.
F—iKieg

’
?
A

D.

. 8P8
:6:
L '<
S>>

? . @#0

.B0OB
DGD

F"FgF
HKH.H

23

Non-distinct sectors complicate file reassembly.

Distinct Sectors

“Common Sectors”

File 1 File 1 File 1 File 1 File 1 File 1 File 1
Sec 1 Sec 2 Sec 3 Sec4 Sec 5 Sec 6 Sec7
File 2 File 2 File 2 File 2

Sec10 | Sec11 | Sec 12 | Sec 13
File 3 File 3 File 3 File 3

Sec45 | Sec 50 | Sec 200 | Sec 304

thousands
of possible
file matches

24

Hash-based carving: the vision and our contribution.

We hope to use hash-based carving to:
* Look for “known content” on new media.
—E.qg., CP videos on suspect drives.
- Search with a target database of 4GB files (1 billion 4KiB blocks)
- Process media at I/0O speed

Previous work thought that the hash database was the challenge!
—Requires approximately 100,000 database lookups per second w/ 4K sectors.
— We created hashdb and a bulk_extractor plug-in to scan media.
— We discovered that having the list of hash hits wasn’t enough!

Our contributions:

* We present our real-world experiences of hash-based carving on a non-trivial
problem

- We present an algorithm for reassembling matched blocks into files.

25

Prior work

There has been work on hash-based carving since 2006

DFRWS 2006 Carving Challenge

- Extracted text from the challenge; searched the Internet for the text

- Downloaded MSWORD files from the Internet

- Block-hashed the target files, looked sector hash matches, copied runs into files.
—Note: target database size = 1 file!

Dundass et al. (2008), Collange et al (2009a, b)

* Introduced the term “hash-based carving”
« Surveyed algorithms; explored GPUs for hashing on 4-byte boundaries

Foster (2012)

 Looked for occurrence of common blocks in GOVDOCS
- |dentified patterns in some common blocks (EXIF structures, PDF structures, etc.)

Taguchi (2013)

- Concluded that a 64KiB read size was optimal when performing sector hashing.

27

There are two existing hash-based carving systems

frag_find — Garfinkel (2009)

« C++ script, distributed with NPS Bloom Filter package.
* Hashes target files, keeps hash database in RAM.

File Block Hash Map Analysis (FBHMA) — Key (2013)
- EnScript for EnCase

Both programs will work with only a few target files.

28

Terminology and theory

A consistent terminology is important.

hash-based carving: recognizing a target file on a piece of
searched media by hashing same-sized blocks of data from both the
file and the media and looking for hash matches.

Disk sector

Target file

Search media
30

Blocks and sectors must be the same size.

We use 4KiIB blocks

File blocks O 1

Disk sectors O 1

New hard drives will have 4KiB disk sectors.
Most file systems allocate in 4KiB blocks or larger.

31

For legacy drives, we hash groups of 8 sectors.

File blocks O 1

Disk sectors

32

We don’t know the starting sector offset, so we hash

with a sliding 8-sector window

File blocks O 1

Disk sectors

024: : ! 1032 1040 1048 1055
Httiiy (mod 8)=0
| (mod 8) =3
(mod 8) =7

33

Comparing 512-byte and 4096-byte blocks:

512 bytes:

- Advantage: Matches today’s disk sector size
- Advantage: No alignment issues. Every file starts on a disk sector
- Disadvantage: Data reduction factor = 16/512 = 1/32 (1 billion hashes = 512GiB)

4096 bytes:
- Advantage: Data reduction factor = 16/4096 = 1/256 (1 billion hashes = 4TiB)
- Disadvantage: Alignment!

—Files are aligned with start-of-partition, not start-of-disk.

— Partition starts at block 63, 4K cluster size:
files start at sector: (63+B*Cluster Size)
63 (mod 8) = 7 ; we want to hash blocks 7-14, 15-22, 23-30 ..

— Partition starts at block 1024, 4K cluster size:
files start at sector: (1024+B*Cluster Size)
1024 (mod 8) = 0 ; we want to hash blocks 0-7, 8-15, 16-23

(mod 8) value depends on current & previous file system(s)

34

Hash matches can result from four scenarios:

A copy of the file is present on the search media. (1-6)

35

Hash matches can result from four scenarios:

A copy present on media, later partially overwritten

36

Hash matches can result from four scenarios:

A new file that has sectors in common with an existing file

I N A A A
| |tj2f3]4}s5}6] |
/A

VY
(1j2)3fafsfefz] | |
I N I O I

37

Hash matches can result from four scenarios:

ing file
A target file embedded in a larger file

I N A A A
1 ltfp2f3j4lsie] |
I | I O

I N A
A | A
(112 30 (4@ [53)[6@)|7¢)[86) [9]

38

We created a four-step hash-based carving process.

Step 1 — Database Building
 Create a database of file block hashes from target files.

- Each hash may be in multiple files!
—Database: Hash =] (file1,0ffset1), (file2,0ffset2), (file3,0ffset3), ...]

Step 2 — Media Scanning
- Scan the searched media by hashing 4KiB of sectors
- Search each hash in database

Step 3 — Candidate Selection

« Determine which files are likely present

Step 4 — Target Assembly

* Produce a map showing how media sectors map to target files.

39

Our tool chain is based on bulk extractor and hash db.

bulk_extractor — Open source tool for media scanning

hash_db — High-speed hash database

- Bloom filter stores hashes for fast “false” lookup.

* For each hash, hashdb stores: {data set, file id, offset}
 For each file, hashdb stores: {name, length}

Two primary functions:
 Import hashes into database
* Look up hashes

Lookup speed = 100,000 hashes/sec on Laptop w/SSD.

Some database management functions:
- Dump, Remove duplicates (hashes with more than one source)

40

bulk extractor’s “hashdb” scanner hashes blocks.

iImport mode: sector-hash target files and store in DB

target nles
—

41

scan mode: sector-hash the “search drive” and compare
against the sector hash database.

42

Diagram of hash-based carving

Step 2 — Media Scanning

Step 1 — Database Building

target niles j> P @

database
of sector
hashes

target
sector hashes
found on
search drive

Results analyzed with a
“matching” program

files presumably on

- searchmedia

Step 4 — Target Assembly

43

Experimental Setup

We performed a realistic test

Target files:
- “Monterey Kitty” — 82 JPEGs, 2 QT movies, 4 MPEG4 files (201MB in total)
« GOVDOCS1 — =1M files downloaded from US Government web sites

Search Media:

- M57-Patents — Scenario of a small business developed by NPS in 2009.
* j0-2009-11-20-oldComputer — disk image of person who had “kitty” materials.
— 13 GB disk image

Experiment:
1.Create hashdb database with Monterey Kitty & GOVDOCS1 (kitty+govdocs.hdb)
2.Use database to scan M57-Patents drives
3.Hypothesis:
1.If we found a single “distinct” block from a file, that file was on the drive.

45

Step 1 — Database Building

Create hashdb database using bulk_extractor
- Monterey Kitty database: 50,206 hashes from 88 different files

1 J°'Q“ [aYs
S C eSS >

-y

times in DB # of hashes
Singleton 50,206
2 X 0
3 X 0

46

Step 1 — Database Building

Create hashdb database using bulk_extractor

- Monterey Kitty database: 50,206 hashes from 88 different files
« GOVDOCS corpus: 119,687,300 hashes from 909,815 files

bt ™ >. .; '.;.-'.., - »"" 2t ‘A .V . >
py N e g LT SRR A o
VREAE 7TR Eo
AR BT TAR A LTI o
Py, - PRI [ool i iy
o P LYY L
SSRGS I T 1{ P t
1 v L L
- ora Q
target riles
o

[V

times in DB # of hashes
Singleton 117,213,026
2 X 514,238
3 X 60,317
11,434 1 (“null”)

47

Step 2 — Media Scanning:

Input files: 16GB disk image
+ 394 pages (6.3GB) x 32,768 overlapping 4KiB blocks per page.

Scan time: 116 seconds (64-core reference system)
- 111 K lookups/sec

Output — 33,847 matches found:

Feature-Recorder: identified blocks
Filename: nps-2009-m57-patents-redacted/jo-2009-11-16.E01

86435328 736d99610d0097be78651ecdaed4714bb {"count":39,"flags":"H"}
1231920640 90ccbdf24a74c8c05b94032b4cel825d {“count”:1,"flags":"H"}

1231924736 9403elcac89e860b93570ac452d232a5 {“count”":1}

48

What we found — graphically

MS7-Patents drives: Can only be TiggerTheCat.m4v
» Found nearly all Kitty files

—Found multiple copies FF FF|FF FF

—In some cases, found all of a file except the first sector (that’s good!)

Brrrelirrilrer

This produces a simple reassembly algorithm:
 For every file whose hash was found:
—Make a list of the [file block #, disk block #]
—Sort

— Report complete runs:
[0, 1024]
[1, 1032]
[2, 1040]
[3, 1056]
[4, 1064]

TiggerTheCat.m4v

49

First complication:

the same block might be in two places in a file

M57-Patents drives:
» Found nearly all Kitty files

—In some cases, found all of a file except the first sector (that’s good!)

Brrrelirrilrer

—Found multiple copies

This produces a stimpite more complicated reassembly algorithm:
 For every file whose hash was found:

—Make a list of the [disk block #, {file block #s} |

—Sort

—Report complete runs:
[1024, O]
[1032, {1,4}]
[1040, 2]
[1056, 3]
[1064, {1,4}]

50

We also found distinct blocks from GOVDOCS files on

the M57 drive

M57-Patents drives:
» Found nearly all Kitty files

—Found multiple copies FF FF|FF FF

—In some cases, found all of a file except the first sector (that’s good!)

Brrrelirrilrer

» Distinct GOVDOCS files:
—Found several complete files! These files really were present! (fonts)
—Found several runs of distinct blocks that were never present!

XX X X

— Found many runs of common blocks.

—Frequently, we find common runs scattered:

51

These are non-probative blocks

These blocks match files that we know are not present.

Why did we think they were distinct?

* We had not looked at enough files!

52

These are non-probative blocks

These blocks match files that we know are not present.

Why did we think they were distinct?

* We had not looked at enough files!

These blocks were similar to the common blocks we had seen in 0000107.jpg:
* Incrementing binary numbers

- Whitespace
- Strange binary structures

53

We found many blocks on the media that appeared

“distinct” but could not have been.

The blocks must have been “common” — but we had not sampled
enough files

LA | GO |

u

54

Step 3 — Candidate Selection — determining which files

might have been on the drive.

Previously we deemed a file present if we found a distinct block.

Now we will evaluate each “distinct” block to see if it is probative.

LA | GO

« Some distinct blocks are “distinct” in our data set, but are built from common
structures:

Candidate selection requires that we screen out non-probative
blocks.

55

We developed four tests for non-probative blocks.

1. The Ramp Test

» Detect and mark blocks with incrementing 4-byte binary numbers:

8102
8502
83902
8d02

0000
0000
0000
0000

8202
8602
8al?2
8el2

0000
0000
0000
0000

8302
8702
302
802

0000
0000
0000
0000

8402
8802
8c02
9002

0000
0000
0000
0000

 These typically come from Microsoft Office Sector Allocation Tables.
— They have a strong chance of appearing distinct...
—but they are algorithmically generated

56

We developed four tests for non-probative blocks.

1. The Ramp Test
2. The White Space Test

« Any sector that is 3/4 white space is non-probative.

 Screens out whitespace in JPEGs and other files

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
0000060:
0000070:
0000080:
0000090:

2020
2020
2020
2020
2020
2020
2020
2020
200a
2020

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

2020
0az20
2020
2020
2020
2020
2020
2020
2020
2020

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

57

We developed four tests for non-probative blocks.

1. The Ramp Test
2. The White Space Test
3. The 4-byte Histogram Test

« Suppresses sector if any 4-byte n-gram is present more than 256 times

- Usually catches white space test as well (but not always)

0000 6400 0000 O1ff f£fff 9c00 0000 0100
0000 6400 0000 O1ff f£fff 9c00 0000 0200
0000 0000 0000 0100 0000 6400 0000 O1lft
ffff 9¢c00 0000 0100 0000 6400 0000 O1lft
ffff 9¢c00 0000 0100 0000 6400 0000 O1lft
ffff 9¢c00 0000 0100 0000 6400 0000 O1lft
ffff 9¢c00 0000 0100 0000 6400 0000 O1ff
ffff 9¢c00 0000 0100 0000 6400 0000 O1lff

58

We developed four tests for non-probative blocks.

1. The Ramp Test

2. The White Space Test

3. The 4-byte Histogram Test

d=—rre-ontropy—rest—

TR S T T D Ve Ty Do Rt T e o Py ower e e siToe—
N . iyttt

* Didn’t work as well

59

Evaluating the rules — Blocks that should be eliminated

(Distinct blocks that were non-probative.)

Distinct blocks for files that

could not be on oldComputer 677

matched by ad hoc rules: 600

matched by entropy rule: 600

60

Evaluating the rules — Blocks that should not be

eliminated (distinct blocks that were matched)

kitty and 4 GOVDOCS files

21,469 blocks

Matched by ad hoc rules: 126
Matched by entropy rule: 149
Matched by both: /78
Matched by either: 197

Matching blocks were metadata, unpopulated arrays, control
structures, and hybrid blocks containing a mix of data and long

strings of nulls.

61

Step 4 — Target Assembly

After determining candidate files, we reassemble each target file.

Two algorithms.

HASH_SETS — Reports % of the file present on the search drive

 Fast and efficient
- Doesn’t identify where the files are.

HASH_RUNS — Finds the runs of the file for reassembly

- |dentifies individual runs of blocks.
- Allows re-creating original files solely from data on the search drive.

62

Reassembly algorithm #1: HASH_SETS

Each HASH has 1..N FILES at 1..N Offsets

(Hash, File#, Offset#)

ALL FILES SEEN = Union(ALL HASHES::ALL FILES)

SELECT DISTINCT filenum FROM hashes.

For each FILE SEEN:

% of file recovered = # File Hashes Recovered for that file
/ # Hashes in File

Problems with this algorithm:
- Doesn’t handle a single hash being in the file multiple times
» Doesn’t handle all of the hashes recovered being for common blocks.

63

Reassembly Algorithm #2: HASH_RUNS

For each HASH of each IDENTIFIED FILE, we build an array:

[disk block#, {file blocks}, count-in-corpus]
- We sort the array by disk block #.
- We look for runs of blocks where the (sector #/8) and block # increment in step.

[12496591, {0}, 1]
[12496599, {1}, 1]
[12496607, {2}, 1] A run of a distinct video
[12496615, {3}, 1]
[12496623, {4}, 1]
[12496631, {5}, 1]

[5891103, {879}, 3207]
[5891111, {880}, 2440] |

(5891119, {881}, 1886] A set of alias blocks
[5891127, {882}, 1596]

[5891135, {883}, 1397]

[5891143, {884}, 1215]

64

Additional rules in the HASH_RUNS algorithm let us

throw out spurious blocks.

Singletons that aren’t in runs and/or aren’t in order are easy to
identify:

(19252422, {1595}, 11 //
[19252558, {2609}, 11 //
(19263478, {2070}, 11 //

—Such singletons probably aren’t probative.

In cases with identical blocks in multiple locations, it’s easy to verify

runs:
/govdocs/168/168524 .doc mod8=7

[10053327, {119, 180}, 2]
(10053335, {120, 181}, 1]

65

The output is a table of file fragments.

Target File name Score Start Start End Sector Percent Allocated File on Target Media
Sector Block Block (mod 8) Recovered
569152.pdf 3 18433052 373 375 4 n/a
569152.pdf 3 19652860 373 375 4 4% /WINDOWS/Fonts/courbd.ttf
970013.pdf 2 18433380 279 280 4 0.2% n/a
970013.pdf 2 19653188 279 280 4 0.2% /WINDOWS/Fonts/courbi.ttf
215955.ps 3 18192573 571 573 5 0.2% /Program Files/ ... Datal.cab
235835.ps 2 18192598 11503 11504 6 0.02% /Program Files/Adobe/Reader 9.0/ ... Datal.cab
MontereyKittyHQ.m4v 6132 18639703 0 6131 7 100% /Documents and Settings/ ... /MontereyKittyHQ.m4v
TiggerTheCat.m4v 3059 3532519 0 3058 7 100% /Documents and Settings/ ... /TiggerTheCat.m4v
KittyMaterial/Cat.mov 1374 18696759 0 1393 7 100% /Documents and Settings/ ... /Cat.mov
466982.csv 4 2932551 0 3 7 0% ... /Cache/F5433139d01
466982.csv 8 2833023 4 11 7 1% ... /Cache/F5433139d01
466982.csv 16 2800423 12 27 7 2% ... /Cache/F5433139d01
466982.csv 36 10062599 28 63 7 4% ... /Cache/F5433139d01
DSC00072.JPG 234 14306831 0 233 7 100% /Documents and Settings/ ... /DSC00072.JPG
809089.eps 6 11907023 0 5 7 100% /Python26/ ... /[pwrdLogo.eps
574989.csv 4 3713503 0 3 7 67% ... /Cache/4787E2CCd01
574989.csv 2 3713359 4 5 7 33% ... /Cache/4787E2CCd01
466749.csv 2 5032175 0 1 7 100% ... Cache/_CACHE_003_

In this example, all bold filenames are actually on the drive.

66

Overall performance is quite fast.

Database construction:
 Only have to do this once.

- Hashing is parallelized with bulk_extractor
- Building a 500GB database = 24 hours

Media Scanning:

- bulk_extractor runs at 1/0 speed with enough cores.
—Hashing is parallelized.
—Database > 100,000 lookups/second

- Scanning 20GB disk image took less than 10 minutes

Reassembly:
- Main time is reading number of hashdb hits.

- Reassembly time proportional to sort of mostly-sorted array.
—=30 seconds for 20GB test disk.

67

Conclusions

Engineering decisions and lessons learned

512-byte vs. 4KiB:
- We thought we could determine in advance the (mod 8) of a drive.
- But a single drive might have two partitions with different (mod 8) values.
- Within a .DOC file, embedded pictures will be on 512-byte offsets.
» Qur solution gives best of both worlds:
—8x extra hashing is not significant on multi-core system (we use MD5)
—Database is hashed with 4K chunks
— Probative block selection prevents false positives

C++ vs. Python:

- Large data operations are (still) best done in C++ (e.g. bulk_extractor, hashdb)
- Python was better for algorithm development.

Flat files vs. databases:
- Regret not leveraging bulk_extractor’s SQLite support.

69

In summary

We’'ve been talking about hash-based carving for =10 years.

To date, most of the tools would only search for a few target files.

 Previously most researchers thought that finding a few high-entropy blocks from a
target file meant that the target file had probably been present.

* We were wrong! Many high-entropy blocks that are infrequent but not distinct.

We developed a system that can search for a million files, 500GB of
target data.

 High-performance implementation with publicly available tools.
* All you need is a large database of target content.

Available on github today

- https://github.com/simsong/bulk_extractor — current bulk_extractor with HBC.
python/report identified runs.py

* https://github.com/simsong/hashdb — the hashdb library and command line tool

Questions? 70

https://github.com/simsong/bulk_extractor

