
Hash-Based Carving:  
Searching media for complete files and
fragments with sector hashing and hashdb
Simson L. Garfinkel  
National Institute of Standards and Technology

Michael McCarrin  
[Bruce Allen] 
Naval Postgraduate School

1

Tuesday, August 11, 2015  
Session 4: Computational Forensics 
2:15pm

In this talk, we present hash-based carving.
(Finally!)

•Hash based carving: the big idea

•Work to date

•Our toolchain: hashdb, bulk_extractor, report_identified_runs.py

•Initial experience running this at scale

2

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

1 2

3

Hash-based carving:  
The Big Idea

0000107.jpg:

Every file has a unique hash

4

c996fe19c45bc19961d2301f47cabaa6

41,572 bytes

Every file can be viewed as a sequence of blocks.

5

41,572 bytes ÷ 512 bytes/block = 81 blocks + 100 bytes
= 82 blocks  
 (w/ zero padding)

•All modern file systems align files (> 4KiB) on sector boundaries.

When a file is stored on a drive, the file’s blocks are
stored in disk sectors.

6

1 2 3 4 5 6

Traditional carving examines the sectors on the drive.

7

1 2 3 4 5 6

1 2 3 4 5 6

Any sequence of sectors with a specific header and
footer are stored in a file.

8

1 2 3 4 5 6

FFD8 FFD9

Conventional watch lists are based on file hashes.

•Software alerts if the hash matches 
 the watch list.

9

c996fe19c45bc19961d2301f47cabaa6Stolen images
Tractor c996fe19c45bc19961d2301f47cabaa6

Cow 029bab60cfdc5685b8e6334a35df42bc

Dog ee59a3677ef302bb3c0b816e00063559

Cat 253fbeb0834b45e382af5862376a1778

Hash-based carving applies hashing to each file block.

10

dc0c20abad42d487a74f308c69d18a5a

9e7bc64399ad87ae9c2b545061959778

6e7f3577b100f9ec7fae18438fd5b047

1

2

3

Hash-based carving applies hashing to each file block.

11

dc0c20abad42d487a74f308c69d18a5a

9e7bc64399ad87ae9c2b545061959778

6e7f3577b100f9ec7fae18438fd5b047

1

2

3

1

2

3

•Fragments might come from:
• Fragmented files
• Files deleted and partially overwritten

In theory, hash-based carving lets us find file fragments.

12

1

2

3

Hash-based carving should be simple.

•1. Hash every sector of the drive

13
Using distinct sectors in media sampling and full media analysis to detect presence of documents from a corpus,

Kristina Foster, NPS Master’s Thesis, 2012

Block # Byte Range MD5*(block(N))

0 0- 511 dc0c20abad42d487a74f308c69d18a5a

1 512-1023 9e7bc64399ad87ae9c2b545061959778

2 1024-1535 6e7f3577b100f9ec7fae18438fd5b047

3 1536-2047 4594899684d0565789ae9f364885e303

4 ...

•2. Hash every sector
of the target files

•3. Look for matches

Of course, files have internal structure.

14

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

41,572 bytes

Only part of the file directly
maps to the visible portion

Some blocks are likely to be distinct for each file

•Different files will have different Huffman encoded areas.

15

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

31 32 334 5 6

Lik
ely

 di
ffe

ren
t

Other blocks might occur in more than one file.

•EXIF and color table are generated by the camera.

16

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

1 2

3

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

1 2

3

Lik
ely

 th
e s

am
e.

Consider the 82 blocks for this 41K JPEG.

17

Block # MD5(Block(N))

0 dc0c20abad42d487a7
4f308c69d18a5a

1 9e7bc64399ad87ae9c
2b545061959778

2 6e7f3577b100f9ec7f
ae18438fd5b047

3 4594899684d0565789
ae9f364885e303

... ...

0

1

2

3

4

5

6

7

8

9

10
...
82

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

We searched for these block hashes in a corpus of 4
million files.
•≃ 1 million in GOVDOCS1 collection
•= 109,282 JPEGs (including 000107.jpg)
•≃ 3 million samples of Windows malware

•Results:
• Most of the block hashes in 000107.jpg do not appear elsewhere in corpus.
• Some of the block hashes appeared in other JPEGs.
• None of the block hashes appeared in files that were not JPEGs

18

0

1

2

3

4

5

6

7

8

9

10
...
82

The beginning of the file is distinct in GOVDOCS
hash location count
dc0c20abad42d487a74f308c69d18a5a offset 0-511 1
9e7bc64399ad87ae9c2b545061959778 offset 512-1023 1
6e7f3577b100f9ec7fae18438fd5b047 offset 1024-1535 1
4594899684d0565789ae9f364885e303 offset 1536-2047 1
4d21b27ceec5618f94d7b62ad3861e9a offset 2048-2559 1
03b6a13453624f649bbf3e9cd83c48ae offset 2560-3071 1
c996fe19c45bc19961d2301f47cabaa6 offset 3072-3583 1
0691baa904933c9946bbda69c019be5f offset 3584-4095 1
1bd9960a3560b9420d6331c1f4d95fec offset 4096-4607 1
52ef8fe0a800c9410bb7a303abe35e64 offset 4608-5119 1
b8d5c7c29da4188a4dcaa09e057d25ca offset 5120-5631 1
3d7679a976b91c6eb8acd1bfa3414f96 offset 5632-6143 1
8649f180275e0b63253e7ee0e8fa4c1d offset 6144-6655 1
60ebc8acb8467045e9dcbe207f61a6c2 offset 6656-7167 1
440c1c1318186ac0e42b2977779514a1 offset 7168-7679 1
72686172f8c865231e2b30b2829e3dd9 offset 7680-8191 1
fdff55c618d434416717e5ed45cb407e offset 8192-8703 1
fcd89d71b5f728ba550a7bc017ea8ff1 offset 8704-9215 1
2d733e47c5500d91cc896f99504e0a38 offset 9216-9727 1
2152fdde0e0a62d2e10b4fecc369e4c6 offset 9728-10239 1
692527fa35782db85924863436d45d7f offset 10240-10751 1
76dbb9b469273d0e0e467a55728b7883 offset 10752-11263 1

19

0

1

2

3

4

5

6

7

8

9

10
...
82

The middle of 000107.JPG appears elsewhere...
hash location count
9df886fdfa6934cc7dcf10c04be3464a offset 14848-15359 1
95399e7ecc7ba1b38243069bdd5c263a offset 15360-15871 1
ef1ffcdc11162ecdfedd2dde644ec8f2 offset 15872-16383 1
7eb35c161e91b215e2a1d20c32f4477e offset 16384-16895 1
38f9b6f045db235a14b49c3fe7b1cec3 offset 16896-17407 1
edceba3444b5551179c791ee3ec627a5 offset 17408-17919 1
6bc8ed0ce3d49dc238774a2bdeb7eca7 offset 17920-18431 1
5070e4021866a547aa37e5609e401268 offset 18432-18943 14
13d33222848d5b25e26aefb87dbdf294 offset 18944-19455 9198
0dfcde85c648d20aed68068cc7b57c25 offset 19456-19967 9076
756f0bbe70642700aafb2557bf2c5649 offset 19968-20479 9118
c2c29016d3005f7a1df247168d34e673 offset 20480-20991 9237
42ff3d72b2b25f880be21fac46608cc9 offset 20992-21503 9708
b943cd0ea25e354d4ac22b886045650d offset 21504-22015 9615
a003ec2c4145b0bc871118842b74f385 offset 22016-22527 9564
1168c351f57aad14de135736c06665ea offset 22528-23039 7
51a50e6148d13111669218dc40940ce5 offset 23040-23551 83
365b122f53075cb76b39ca1366418ff9 offset 23552-24063 83
9ad9660e7c812e2568aaf063a1be7d05 offset 24064-24575 84
67bd01c2878172e2853f0aef341563dc offset 24576-25087 84
fc3e47d734d658559d1624c8b1cbf2c1 offset 25088-25599 84
cb9aef5b7f32e2a983e67af38ce8ff87 offset 25600-26111 1

20

0

1

2

3

4

5

6

7

8

9

10
...
82

Block 37 was found in 9198 other files.
The sector is filled with blank lines 100 characters long...

13d33222848d5b25e26aefb87dbdf294 offset 18944-19455 9198

$ dd if=000107.jpg skip=18944 count=512 bs=1|xxd
0000000: 2020 2020 2020 2020 2020 2020 2020 2020
0000010: 2020 2020 2020 2020 2020 2020 0a20 2020 .
0000020: 2020 2020 2020 2020 2020 2020 2020 2020
0000030: 2020 2020 2020 2020 2020 2020 2020 2020
0000040: 2020 2020 2020 2020 2020 2020 2020 2020
0000050: 2020 2020 2020 2020 2020 2020 2020 2020
0000060: 2020 2020 2020 2020 2020 2020 2020 2020
0000070: 2020 2020 2020 2020 2020 2020 2020 2020
0000080: 200a 2020 2020 2020 2020 2020 2020 2020 .
0000090: 2020 2020 2020 2020 2020 2020 2020 2020
00000a0: 2020 2020 2020 2020 2020 2020 2020 2020
00000b0: 2020 2020 2020 2020 2020 2020 2020 2020
00000c0: 2020 2020 2020 2020 2020 2020 2020 2020
00000d0: 2020 2020 2020 2020 2020 2020 2020 2020
00000e0: 2020 2020 2020 0a20 2020 2020 2020 2020 .
00000f0: 2020 2020 2020 2020 2020 2020 2020 2020

•This pattern comes from the “whitespace padding” of the XMP section.
• The whitespace can start on any byte offset, making collisions likely but not common

21

Block 45 was found in 83 other files.
It appears to contain EXIF metadata

51a50e6148d13111669218dc40940ce5 offset 23040-23551 83

$ dd if=000107.jpg skip=23040 count=512 bs=1|xxd
0000000: 3936 362d 322e 3100 0000 0000 0000 0000 966-2.1.........
0000010: 0000 0000 0000 0000 0000 0000 0000 0000
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
0000030: 0000 0000 0000 0000 0058 595a 2000 0000 XYZ ...
0000040: 0000 00f3 5100 0100 0000 0116 cc58 595a Q........XYZ
0000050: 2000 0000 0000 0000 0000 0000 0000 0000
0000060: 0058 595a 2000 0000 0000 006f a200 0038 .XYZo...8
0000070: f500 0003 9058 595a 2000 0000 0000 0062 XYZb
0000080: 9900 00b7 8500 0018 da58 595a 2000 0000 XYZ ...
0000090: 0000 0024 a000 000f 8400 00b6 cf64 6573 ...$.........des
00000a0: 6300 0000 0000 0000 1649 4543 2068 7474 c........IEC htt
00000b0: 703a 2f2f 7777 772e 6965 632e 6368 0000 p://www.iec.ch..
00000c0: 0000 0000 0000 0000 0016 4945 4320 6874 IEC ht
00000d0: 7470 3a2f 2f77 7777 2e69 6563 2e63 6800 tp://www.iec.ch.
00000e0: 0000 0000 0000 0000 0000 0000 0000 0000
00000f0: 0000 0000 0000 0000 0000 0000 0000 0000
0000100: 0000 0000 0000 0000 0000 0000 0064 6573 des
0000110: 6300 0000 0000 0000 2e49 4543 2036 3139 c........IEC 619
0000120: 3636 2d32 2e31 2044 6566 6175 6c74 2052 66-2.1 Default R

22

Block 48 was found in 84 collisions files.
It appears to contain part of a JPEG color table...

67bd01c2878172e2853f0aef341563dc offset 24576-25087 84

$ dd if=000107.jpg skip=24576 count=512 bs=1 |xxd
0000000: 7a27 ab27 dc28 0d28 3f28 7128 a228 d429 z'.'.(.(?(q(.(.)
0000010: 0629 3829 6b29 9d29 d02a 022a 352a 682a .)8)k).).*.*5*h*
0000020: 9b2a cf2b 022b 362b 692b 9d2b d12c 052c .*.+.+6+i+.+.,.,
0000030: 392c 6e2c a22c d72d 0c2d 412d 762d ab2d 9,n,.,.-.-A-v-.-
0000040: e12e 162e 4c2e 822e b72e ee2f 242f 5a2f L....../$/Z/
0000050: 912f c72f fe30 3530 6c30 a430 db31 1231 ././.050l0.0.1.1
0000060: 4a31 8231 ba31 f232 2a32 6332 9b32 d433 J1.1.1.2*2c2.2.3
0000070: 0d33 4633 7f33 b833 f134 2b34 6534 9e34 .3F3.3.3.4+4e4.4
0000080: d835 1335 4d35 8735 c235 fd36 3736 7236 .5.5M5.5.5.676r6
0000090: ae36 e937 2437 6037 9c37 d738 1438 5038 .6.7$7`7.7.8.8P8
00000a0: 8c38 c839 0539 4239 7f39 bc39 f93a 363a .8.9.9B9.9.9.:6:
00000b0: 743a b23a ef3b 2d3b 6b3b aa3b e83c 273c t:.:.;-;k;.;.<'<
00000c0: 653c a43c e33d 223d 613d a13d e03e 203e e<.<.="=a=.=.> >
00000d0: 603e a03e e03f 213f 613f a23f e240 2340 `>.>.?!?a?.?.@#@
00000e0: 6440 a640 e741 2941 6a41 ac41 ee42 3042 d@.@.A)AjA.A.B0B
00000f0: 7242 b542 f743 3a43 7d43 c044 0344 4744 rB.B.C:C}C.D.DGD
0000100: 8a44 ce45 1245 5545 9a45 de46 2246 6746 .D.E.EUE.E.F"FgF
0000110: ab46 f047 3547 7b47 c048 0548 4b48 9148 .F.G5G{G.H.HKH.H
0000120: d749 1d49 6349 a949 f04a 374a 7d4a c44b .I.IcI.I.J7J}J.K

23

Non-distinct sectors complicate file reassembly.

24

File 1
Sec 1

File 1
Sec 2

File 1
Sec 3

File 1
Sec 4

File 1
Sec 5

File 1
Sec 6

File 1
Sec 7

Distinct Sectors “Common Sectors”

File 2
Sec 10

File 2
Sec 11

File 2
Sec 12

File 2
Sec 13

File 3
Sec 45

File 3
Sec 50

File 3  
Sec 200

File 3
Sec 304

thousands
of possible
file matches

…

…

Hash-based carving: the vision and our contribution.

•We hope to use hash-based carving to:
• Look for “known content” on new media.

—E.g., CP videos on suspect drives.
• Search with a target database of 4GB files (1 billion 4KiB blocks)
• Process media at I/O speed

•Previous work thought that the hash database was the challenge!
—Requires approximately 100,000 database lookups per second w/ 4K sectors.
—We created hashdb and a bulk_extractor plug-in to scan media.
—We discovered that having the list of hash hits wasn’t enough!

•Our contributions:
• We present our real-world experiences of hash-based carving on a non-trivial

problem
• We present an algorithm for reassembling matched blocks into files.

25

Prior work

There has been work on hash-based carving since 2006

•DFRWS 2006 Carving Challenge
• Extracted text from the challenge; searched the Internet for the text
• Downloaded MSWORD files from the Internet
• Block-hashed the target files, looked sector hash matches, copied runs into files.

—Note: target database size = 1 file!

•Dundass et al. (2008), Collange et al (2009a, b)
• Introduced the term “hash-based carving”
• Surveyed algorithms; explored GPUs for hashing on 4-byte boundaries

•Foster (2012)
• Looked for occurrence of common blocks in GOVDOCS
• Identified patterns in some common blocks (EXIF structures, PDF structures, etc.)

•Taguchi (2013)
• Concluded that a 64KiB read size was optimal when performing sector hashing.

27

There are two existing hash-based carving systems

•frag_find — Garfinkel (2009)
• C++ script, distributed with NPS Bloom Filter package.
• Hashes target files, keeps hash database in RAM.

•File Block Hash Map Analysis (FBHMA) — Key (2013)
• EnScript for EnCase

•Both programs will work with only a few target files.

28

Terminology and theory

A consistent terminology is important.

•hash-based carving: recognizing a target file on a piece of
searched media by hashing same-sized blocks of data from both the
file and the media and looking for hash matches.

30

Target file

File block

Search media

1

Disk sector

Blocks and sectors must be the same size.
We use 4KiB blocks

•New hard drives will have 4KiB disk sectors.
•Most file systems allocate in 4KiB blocks or larger.

31

(mod 8) = 0

(mod 8) = 3

(mod 8) = 7

0 1 2 3

1024 1032 1040 1048 1055

File Blocks

Disk Sectors

Figure 2: 4096-byte File blocks align with groups of eight 512-byte disk sec-
tors. By reading many sectors at once and chunking them into 4KiB runs with
an 8-sector sliding window, it is possible to account for different file system off-
sets. A file system that starts on sector 63 will have valid data in runs that have
a starting sector number of (mod 8)=7, while a file system that starts on sector
2048 will have valid data in those blocks that have an offset of (mod 8)=0.

hashes is that the 4KiB blocksize requires the same number of
hash operations and database lookups as the 512B block size.
However, hashing every 512B need only be performed on drives
with a 512B sector size, and only if the examiner is unsure of
the partition start, or if there is a chance that the drive was pre-
viously partitioned with a different partitioning scheme. More-
over, even with overlapping sector hashes, the hash database
is still an eighth the size when using 4KiB blocks vice 512B
blocks, because only the disk sectors need to be hashed with an
overlapping window.

3. Experimental Setup

In this section we discuss our setup used to develop and test
hash-based carving algorithms.

One of the fictional crimes in the M57-Patents data sets in-
volves an employee named Jo who is collecting photographs
of cats. The photographs come from the “Monterey Kitty”
dataset, a set of 82 JPEG files, 2 QuickTime files, and 4 MPEG4
files (201MB in total) recorded in Monterey CA. This data set
was used as a surrogate for child pornography. In the sce-
nario, the employee’s computer was decommissioned on 2009-
11-20 by the IT coordinator and replaced with another com-
puter. The remainder of this discussion focuses on the disk im-
age jo-2009-11-20-oldComputer, which we will call oldCom-
puter for brevity.

We performed sector hashing of the oldComputer image
using bulk extractor (Garfinkel, 2013), an open source digital
forensics tool, and hashdb, a special-purpose database for stor-
ing cryptographic hashes (Allen, 2014). Included with bulk extractor
is a scanner called scan_hashdb that can import block hashes

into a new database or can scan sector hashes against a pre-
existing hash database. We use these features for the first two
steps of hash-based carving, described in the next two subsec-
tions.

3.1. DATABASE BUILDING: Creating the target hashdb
Using bulk extractor, we created a hashdb database con-

taining 4KiB block hashes corresponding to each 4KiB block
of the Monterey Kitty files1 and renamed the output database as
kitty.hdb. The hashdb “size” command reports that the database
has 50,206 hashes from 88 different files. The hashdb “his-
togram” command reports that all of these hashes are “distinct”
— that is, there are no 4KiB blocks in the input files that have
the same content.

We also used bulk extractor to create a larger hashdb con-
taining block hashes from the GOVDOCS corpus. The result-
ing hashdb contained 119,687,300 hashes from 909,815 files.
(We did not hash files smaller than 4KiB). Of these, 117,213,026
hashes appeared only once in the dataset, 514,238 appeared
twice, 60,317 appeared three times, and so on. At the other end
of the distribution there one hash that was present in 11,434 dif-
ferent locations. (Our software skips over the block containing
all NULLs.) We call this database govdocs.hdb.

We added the two databases together to create a third 4KiB
block hash database called kitty+govdocs.

3.2. MEDIA SCANNING: Finding instances of known content
on the searched media

Next, we used the kitty+govdocs database to search the M57
disk image using the bulk extractor hashdb scanner.2 This com-
mand took an average of 116 seconds on our 64-core reference
system to scan the 13GB disk image. bulk extractor breaks the
disk image into 16MiB “pages” and only processes pages that
are not blank. Each page is broken into 32,768 overlapping
4KiB blocks, each block is hashed with the MD5 algorithm
and the resulting hash is used to query the block hash database.
(Bytes at the end of a page are joined with the bytes from the
beginning of the next by bulk extractor’s “margin” system.) In
all, 394 pages were scanned, for a total of 6.3GB, which trans-
lates to roughly 12.9 million sector hashes. The computation of
the hashes is multi-threaded, but the version of hashdb that we
used was single-threaded. The database was therefore perform-
ing over 111K lookups/sec.

The bulk extractor program reported being I/O bound—a
predictable result of running on a system with 64 cores. If the
program had been CPU bound, performance could have been
improved by telling the program to hash non-overlapping 4KiB
blocks,3 although the (mod 8) offset of the file system’s parti-
tion would have needed to be known in advance.4 We did this as

1bulk extractor -S hashdb mode=import -E hashdb -o
out-kitty -R 2009-m57-patents/KittyMaterial/

2bulk extractor -S hashdb mode=scan -S
hashdb scan path or socket=kitty.hdb -E hashdb -o
out-kitty2 jo-2009-11-20-oldComputer.E01

3To avoid hashing overlapping blocks, use the -S
hashdb scan sector size=4096 option.

4In this example, the (mod 8) offset is 7, so the flag -Y 3584 would need
to be added.

4

(mod 8) = 0

(mod 8) = 3

(mod 8) = 7

0 1 2 3

1024 1032 1040 1048 1055

File Blocks

Disk Sectors

Figure 2: 4096-byte File blocks align with groups of eight 512-byte disk sec-
tors. By reading many sectors at once and chunking them into 4KiB runs with
an 8-sector sliding window, it is possible to account for different file system off-
sets. A file system that starts on sector 63 will have valid data in runs that have
a starting sector number of (mod 8)=7, while a file system that starts on sector
2048 will have valid data in those blocks that have an offset of (mod 8)=0.

hashes is that the 4KiB blocksize requires the same number of
hash operations and database lookups as the 512B block size.
However, hashing every 512B need only be performed on drives
with a 512B sector size, and only if the examiner is unsure of
the partition start, or if there is a chance that the drive was pre-
viously partitioned with a different partitioning scheme. More-
over, even with overlapping sector hashes, the hash database
is still an eighth the size when using 4KiB blocks vice 512B
blocks, because only the disk sectors need to be hashed with an
overlapping window.

3. Experimental Setup

In this section we discuss our setup used to develop and test
hash-based carving algorithms.

One of the fictional crimes in the M57-Patents data sets in-
volves an employee named Jo who is collecting photographs
of cats. The photographs come from the “Monterey Kitty”
dataset, a set of 82 JPEG files, 2 QuickTime files, and 4 MPEG4
files (201MB in total) recorded in Monterey CA. This data set
was used as a surrogate for child pornography. In the sce-
nario, the employee’s computer was decommissioned on 2009-
11-20 by the IT coordinator and replaced with another com-
puter. The remainder of this discussion focuses on the disk im-
age jo-2009-11-20-oldComputer, which we will call oldCom-
puter for brevity.

We performed sector hashing of the oldComputer image
using bulk extractor (Garfinkel, 2013), an open source digital
forensics tool, and hashdb, a special-purpose database for stor-
ing cryptographic hashes (Allen, 2014). Included with bulk extractor
is a scanner called scan_hashdb that can import block hashes

into a new database or can scan sector hashes against a pre-
existing hash database. We use these features for the first two
steps of hash-based carving, described in the next two subsec-
tions.

3.1. DATABASE BUILDING: Creating the target hashdb
Using bulk extractor, we created a hashdb database con-

taining 4KiB block hashes corresponding to each 4KiB block
of the Monterey Kitty files1 and renamed the output database as
kitty.hdb. The hashdb “size” command reports that the database
has 50,206 hashes from 88 different files. The hashdb “his-
togram” command reports that all of these hashes are “distinct”
— that is, there are no 4KiB blocks in the input files that have
the same content.

We also used bulk extractor to create a larger hashdb con-
taining block hashes from the GOVDOCS corpus. The result-
ing hashdb contained 119,687,300 hashes from 909,815 files.
(We did not hash files smaller than 4KiB). Of these, 117,213,026
hashes appeared only once in the dataset, 514,238 appeared
twice, 60,317 appeared three times, and so on. At the other end
of the distribution there one hash that was present in 11,434 dif-
ferent locations. (Our software skips over the block containing
all NULLs.) We call this database govdocs.hdb.

We added the two databases together to create a third 4KiB
block hash database called kitty+govdocs.

3.2. MEDIA SCANNING: Finding instances of known content
on the searched media

Next, we used the kitty+govdocs database to search the M57
disk image using the bulk extractor hashdb scanner.2 This com-
mand took an average of 116 seconds on our 64-core reference
system to scan the 13GB disk image. bulk extractor breaks the
disk image into 16MiB “pages” and only processes pages that
are not blank. Each page is broken into 32,768 overlapping
4KiB blocks, each block is hashed with the MD5 algorithm
and the resulting hash is used to query the block hash database.
(Bytes at the end of a page are joined with the bytes from the
beginning of the next by bulk extractor’s “margin” system.) In
all, 394 pages were scanned, for a total of 6.3GB, which trans-
lates to roughly 12.9 million sector hashes. The computation of
the hashes is multi-threaded, but the version of hashdb that we
used was single-threaded. The database was therefore perform-
ing over 111K lookups/sec.

The bulk extractor program reported being I/O bound—a
predictable result of running on a system with 64 cores. If the
program had been CPU bound, performance could have been
improved by telling the program to hash non-overlapping 4KiB
blocks,3 although the (mod 8) offset of the file system’s parti-
tion would have needed to be known in advance.4 We did this as

1bulk extractor -S hashdb mode=import -E hashdb -o
out-kitty -R 2009-m57-patents/KittyMaterial/

2bulk extractor -S hashdb mode=scan -S
hashdb scan path or socket=kitty.hdb -E hashdb -o
out-kitty2 jo-2009-11-20-oldComputer.E01

3To avoid hashing overlapping blocks, use the -S
hashdb scan sector size=4096 option.

4In this example, the (mod 8) offset is 7, so the flag -Y 3584 would need
to be added.

4

File blocks

Disk sectors

For legacy drives, we hash groups of 8 sectors.

32

(mod 8) = 0

(mod 8) = 3

(mod 8) = 7

0 1 2 3

1024 1032 1040 1048 1055

File Blocks

Disk Sectors

Figure 2: 4096-byte File blocks align with groups of eight 512-byte disk sec-
tors. By reading many sectors at once and chunking them into 4KiB runs with
an 8-sector sliding window, it is possible to account for different file system off-
sets. A file system that starts on sector 63 will have valid data in runs that have
a starting sector number of (mod 8)=7, while a file system that starts on sector
2048 will have valid data in those blocks that have an offset of (mod 8)=0.

hashes is that the 4KiB blocksize requires the same number of
hash operations and database lookups as the 512B block size.
However, hashing every 512B need only be performed on drives
with a 512B sector size, and only if the examiner is unsure of
the partition start, or if there is a chance that the drive was pre-
viously partitioned with a different partitioning scheme. More-
over, even with overlapping sector hashes, the hash database
is still an eighth the size when using 4KiB blocks vice 512B
blocks, because only the disk sectors need to be hashed with an
overlapping window.

3. Experimental Setup

In this section we discuss our setup used to develop and test
hash-based carving algorithms.

One of the fictional crimes in the M57-Patents data sets in-
volves an employee named Jo who is collecting photographs
of cats. The photographs come from the “Monterey Kitty”
dataset, a set of 82 JPEG files, 2 QuickTime files, and 4 MPEG4
files (201MB in total) recorded in Monterey CA. This data set
was used as a surrogate for child pornography. In the sce-
nario, the employee’s computer was decommissioned on 2009-
11-20 by the IT coordinator and replaced with another com-
puter. The remainder of this discussion focuses on the disk im-
age jo-2009-11-20-oldComputer, which we will call oldCom-
puter for brevity.

We performed sector hashing of the oldComputer image
using bulk extractor (Garfinkel, 2013), an open source digital
forensics tool, and hashdb, a special-purpose database for stor-
ing cryptographic hashes (Allen, 2014). Included with bulk extractor
is a scanner called scan_hashdb that can import block hashes

into a new database or can scan sector hashes against a pre-
existing hash database. We use these features for the first two
steps of hash-based carving, described in the next two subsec-
tions.

3.1. DATABASE BUILDING: Creating the target hashdb
Using bulk extractor, we created a hashdb database con-

taining 4KiB block hashes corresponding to each 4KiB block
of the Monterey Kitty files1 and renamed the output database as
kitty.hdb. The hashdb “size” command reports that the database
has 50,206 hashes from 88 different files. The hashdb “his-
togram” command reports that all of these hashes are “distinct”
— that is, there are no 4KiB blocks in the input files that have
the same content.

We also used bulk extractor to create a larger hashdb con-
taining block hashes from the GOVDOCS corpus. The result-
ing hashdb contained 119,687,300 hashes from 909,815 files.
(We did not hash files smaller than 4KiB). Of these, 117,213,026
hashes appeared only once in the dataset, 514,238 appeared
twice, 60,317 appeared three times, and so on. At the other end
of the distribution there one hash that was present in 11,434 dif-
ferent locations. (Our software skips over the block containing
all NULLs.) We call this database govdocs.hdb.

We added the two databases together to create a third 4KiB
block hash database called kitty+govdocs.

3.2. MEDIA SCANNING: Finding instances of known content
on the searched media

Next, we used the kitty+govdocs database to search the M57
disk image using the bulk extractor hashdb scanner.2 This com-
mand took an average of 116 seconds on our 64-core reference
system to scan the 13GB disk image. bulk extractor breaks the
disk image into 16MiB “pages” and only processes pages that
are not blank. Each page is broken into 32,768 overlapping
4KiB blocks, each block is hashed with the MD5 algorithm
and the resulting hash is used to query the block hash database.
(Bytes at the end of a page are joined with the bytes from the
beginning of the next by bulk extractor’s “margin” system.) In
all, 394 pages were scanned, for a total of 6.3GB, which trans-
lates to roughly 12.9 million sector hashes. The computation of
the hashes is multi-threaded, but the version of hashdb that we
used was single-threaded. The database was therefore perform-
ing over 111K lookups/sec.

The bulk extractor program reported being I/O bound—a
predictable result of running on a system with 64 cores. If the
program had been CPU bound, performance could have been
improved by telling the program to hash non-overlapping 4KiB
blocks,3 although the (mod 8) offset of the file system’s parti-
tion would have needed to be known in advance.4 We did this as

1bulk extractor -S hashdb mode=import -E hashdb -o
out-kitty -R 2009-m57-patents/KittyMaterial/

2bulk extractor -S hashdb mode=scan -S
hashdb scan path or socket=kitty.hdb -E hashdb -o
out-kitty2 jo-2009-11-20-oldComputer.E01

3To avoid hashing overlapping blocks, use the -S
hashdb scan sector size=4096 option.

4In this example, the (mod 8) offset is 7, so the flag -Y 3584 would need
to be added.

4

File blocks

Disk sectors

(mod 8) = 0

(mod 8) = 3

(mod 8) = 7

0 1 2 3

1024 1032 1040 1048 1055

File Blocks

Disk Sectors

Figure 2: 4096-byte File blocks align with groups of eight 512-byte disk sec-
tors. By reading many sectors at once and chunking them into 4KiB runs with
an 8-sector sliding window, it is possible to account for different file system off-
sets. A file system that starts on sector 63 will have valid data in runs that have
a starting sector number of (mod 8)=7, while a file system that starts on sector
2048 will have valid data in those blocks that have an offset of (mod 8)=0.

hashes is that the 4KiB blocksize requires the same number of
hash operations and database lookups as the 512B block size.
However, hashing every 512B need only be performed on drives
with a 512B sector size, and only if the examiner is unsure of
the partition start, or if there is a chance that the drive was pre-
viously partitioned with a different partitioning scheme. More-
over, even with overlapping sector hashes, the hash database
is still an eighth the size when using 4KiB blocks vice 512B
blocks, because only the disk sectors need to be hashed with an
overlapping window.

3. Experimental Setup

In this section we discuss our setup used to develop and test
hash-based carving algorithms.

One of the fictional crimes in the M57-Patents data sets in-
volves an employee named Jo who is collecting photographs
of cats. The photographs come from the “Monterey Kitty”
dataset, a set of 82 JPEG files, 2 QuickTime files, and 4 MPEG4
files (201MB in total) recorded in Monterey CA. This data set
was used as a surrogate for child pornography. In the sce-
nario, the employee’s computer was decommissioned on 2009-
11-20 by the IT coordinator and replaced with another com-
puter. The remainder of this discussion focuses on the disk im-
age jo-2009-11-20-oldComputer, which we will call oldCom-
puter for brevity.

We performed sector hashing of the oldComputer image
using bulk extractor (Garfinkel, 2013), an open source digital
forensics tool, and hashdb, a special-purpose database for stor-
ing cryptographic hashes (Allen, 2014). Included with bulk extractor
is a scanner called scan_hashdb that can import block hashes

into a new database or can scan sector hashes against a pre-
existing hash database. We use these features for the first two
steps of hash-based carving, described in the next two subsec-
tions.

3.1. DATABASE BUILDING: Creating the target hashdb
Using bulk extractor, we created a hashdb database con-

taining 4KiB block hashes corresponding to each 4KiB block
of the Monterey Kitty files1 and renamed the output database as
kitty.hdb. The hashdb “size” command reports that the database
has 50,206 hashes from 88 different files. The hashdb “his-
togram” command reports that all of these hashes are “distinct”
— that is, there are no 4KiB blocks in the input files that have
the same content.

We also used bulk extractor to create a larger hashdb con-
taining block hashes from the GOVDOCS corpus. The result-
ing hashdb contained 119,687,300 hashes from 909,815 files.
(We did not hash files smaller than 4KiB). Of these, 117,213,026
hashes appeared only once in the dataset, 514,238 appeared
twice, 60,317 appeared three times, and so on. At the other end
of the distribution there one hash that was present in 11,434 dif-
ferent locations. (Our software skips over the block containing
all NULLs.) We call this database govdocs.hdb.

We added the two databases together to create a third 4KiB
block hash database called kitty+govdocs.

3.2. MEDIA SCANNING: Finding instances of known content
on the searched media

Next, we used the kitty+govdocs database to search the M57
disk image using the bulk extractor hashdb scanner.2 This com-
mand took an average of 116 seconds on our 64-core reference
system to scan the 13GB disk image. bulk extractor breaks the
disk image into 16MiB “pages” and only processes pages that
are not blank. Each page is broken into 32,768 overlapping
4KiB blocks, each block is hashed with the MD5 algorithm
and the resulting hash is used to query the block hash database.
(Bytes at the end of a page are joined with the bytes from the
beginning of the next by bulk extractor’s “margin” system.) In
all, 394 pages were scanned, for a total of 6.3GB, which trans-
lates to roughly 12.9 million sector hashes. The computation of
the hashes is multi-threaded, but the version of hashdb that we
used was single-threaded. The database was therefore perform-
ing over 111K lookups/sec.

The bulk extractor program reported being I/O bound—a
predictable result of running on a system with 64 cores. If the
program had been CPU bound, performance could have been
improved by telling the program to hash non-overlapping 4KiB
blocks,3 although the (mod 8) offset of the file system’s parti-
tion would have needed to be known in advance.4 We did this as

1bulk extractor -S hashdb mode=import -E hashdb -o
out-kitty -R 2009-m57-patents/KittyMaterial/

2bulk extractor -S hashdb mode=scan -S
hashdb scan path or socket=kitty.hdb -E hashdb -o
out-kitty2 jo-2009-11-20-oldComputer.E01

3To avoid hashing overlapping blocks, use the -S
hashdb scan sector size=4096 option.

4In this example, the (mod 8) offset is 7, so the flag -Y 3584 would need
to be added.

4

We don’t know the starting sector offset, so we hash
with a sliding 8-sector window

33

File blocks

Disk sectors

(mod 8) = 0

(mod 8) = 3

(mod 8) = 7

0 1 2 3

1024 1032 1040 1048 1055

File Blocks

Disk Sectors

Figure 2: 4096-byte File blocks align with groups of eight 512-byte disk sec-
tors. By reading many sectors at once and chunking them into 4KiB runs with
an 8-sector sliding window, it is possible to account for different file system off-
sets. A file system that starts on sector 63 will have valid data in runs that have
a starting sector number of (mod 8)=7, while a file system that starts on sector
2048 will have valid data in those blocks that have an offset of (mod 8)=0.

hashes is that the 4KiB blocksize requires the same number of
hash operations and database lookups as the 512B block size.
However, hashing every 512B need only be performed on drives
with a 512B sector size, and only if the examiner is unsure of
the partition start, or if there is a chance that the drive was pre-
viously partitioned with a different partitioning scheme. More-
over, even with overlapping sector hashes, the hash database
is still an eighth the size when using 4KiB blocks vice 512B
blocks, because only the disk sectors need to be hashed with an
overlapping window.

3. Experimental Setup

In this section we discuss our setup used to develop and test
hash-based carving algorithms.

One of the fictional crimes in the M57-Patents data sets in-
volves an employee named Jo who is collecting photographs
of cats. The photographs come from the “Monterey Kitty”
dataset, a set of 82 JPEG files, 2 QuickTime files, and 4 MPEG4
files (201MB in total) recorded in Monterey CA. This data set
was used as a surrogate for child pornography. In the sce-
nario, the employee’s computer was decommissioned on 2009-
11-20 by the IT coordinator and replaced with another com-
puter. The remainder of this discussion focuses on the disk im-
age jo-2009-11-20-oldComputer, which we will call oldCom-
puter for brevity.

We performed sector hashing of the oldComputer image
using bulk extractor (Garfinkel, 2013), an open source digital
forensics tool, and hashdb, a special-purpose database for stor-
ing cryptographic hashes (Allen, 2014). Included with bulk extractor
is a scanner called scan_hashdb that can import block hashes

into a new database or can scan sector hashes against a pre-
existing hash database. We use these features for the first two
steps of hash-based carving, described in the next two subsec-
tions.

3.1. DATABASE BUILDING: Creating the target hashdb
Using bulk extractor, we created a hashdb database con-

taining 4KiB block hashes corresponding to each 4KiB block
of the Monterey Kitty files1 and renamed the output database as
kitty.hdb. The hashdb “size” command reports that the database
has 50,206 hashes from 88 different files. The hashdb “his-
togram” command reports that all of these hashes are “distinct”
— that is, there are no 4KiB blocks in the input files that have
the same content.

We also used bulk extractor to create a larger hashdb con-
taining block hashes from the GOVDOCS corpus. The result-
ing hashdb contained 119,687,300 hashes from 909,815 files.
(We did not hash files smaller than 4KiB). Of these, 117,213,026
hashes appeared only once in the dataset, 514,238 appeared
twice, 60,317 appeared three times, and so on. At the other end
of the distribution there one hash that was present in 11,434 dif-
ferent locations. (Our software skips over the block containing
all NULLs.) We call this database govdocs.hdb.

We added the two databases together to create a third 4KiB
block hash database called kitty+govdocs.

3.2. MEDIA SCANNING: Finding instances of known content
on the searched media

Next, we used the kitty+govdocs database to search the M57
disk image using the bulk extractor hashdb scanner.2 This com-
mand took an average of 116 seconds on our 64-core reference
system to scan the 13GB disk image. bulk extractor breaks the
disk image into 16MiB “pages” and only processes pages that
are not blank. Each page is broken into 32,768 overlapping
4KiB blocks, each block is hashed with the MD5 algorithm
and the resulting hash is used to query the block hash database.
(Bytes at the end of a page are joined with the bytes from the
beginning of the next by bulk extractor’s “margin” system.) In
all, 394 pages were scanned, for a total of 6.3GB, which trans-
lates to roughly 12.9 million sector hashes. The computation of
the hashes is multi-threaded, but the version of hashdb that we
used was single-threaded. The database was therefore perform-
ing over 111K lookups/sec.

The bulk extractor program reported being I/O bound—a
predictable result of running on a system with 64 cores. If the
program had been CPU bound, performance could have been
improved by telling the program to hash non-overlapping 4KiB
blocks,3 although the (mod 8) offset of the file system’s parti-
tion would have needed to be known in advance.4 We did this as

1bulk extractor -S hashdb mode=import -E hashdb -o
out-kitty -R 2009-m57-patents/KittyMaterial/

2bulk extractor -S hashdb mode=scan -S
hashdb scan path or socket=kitty.hdb -E hashdb -o
out-kitty2 jo-2009-11-20-oldComputer.E01

3To avoid hashing overlapping blocks, use the -S
hashdb scan sector size=4096 option.

4In this example, the (mod 8) offset is 7, so the flag -Y 3584 would need
to be added.

4

Comparing 512-byte and 4096-byte blocks:

•512 bytes:
• Advantage: Matches today’s disk sector size
• Advantage: No alignment issues. Every file starts on a disk sector
• Disadvantage: Data reduction factor = 16/512 = 1/32 (1 billion hashes = 512GiB)

•4096 bytes:
• Advantage: Data reduction factor = 16/4096 = 1/256 (1 billion hashes = 4TiB)
• Disadvantage: Alignment!

—Files are aligned with start-of-partition, not start-of-disk.
—Partition starts at block 63, 4K cluster size:

files start at sector: (63+B*Cluster Size)
63 (mod 8) = 7 ; we want to hash blocks 7-14, 15-22, 23-30 …

—Partition starts at block 1024, 4K cluster size:
files start at sector: (1024+B*Cluster Size)
1024 (mod 8) = 0 ; we want to hash blocks 0-7, 8-15, 16-23

•(mod 8) value depends on current & previous file system(s)

34

Hash matches can result from four scenarios:

•A copy of the file is present on the search media. (1-6)

35

1 2 3 4 5 6

Hash matches can result from four scenarios:

•A copy of the file is present on the search media
•A copy present on media, later partially overwritten

36

1 2 3 4 3 4 5 1 2 3

Hash matches can result from four scenarios:

•A copy of the file is present on the search media
•A copy present on media, later partially overwritten
•A new file that has sectors in common with an existing file

37

1 2 3 4 5 6

1 2 3 4 5 6 7

Hash matches can result from four scenarios:

•A copy of the file is present on the search media
•A copy present on media, later partially overwritten
•A new file that has sectors in common with an existing file
•A target file embedded in a larger file

38

1 2 3 4 5 6

1 2 3(1) 4(2) 5(3) 6(4) 7(5) 8(6) 9

We created a four-step hash-based carving process.

•Step 1 — Database Building
• Create a database of file block hashes from target files.
• Each hash may be in multiple files!

—Database: Hash = [(file1,offset1), (file2,offset2), (file3,offset3), …]

•Step 2 — Media Scanning
• Scan the searched media by hashing 4KiB of sectors
• Search each hash in database

•Step 3 — Candidate Selection
• Determine which files are likely present

•Step 4 — Target Assembly
• Produce a map showing how media sectors map to target files.

39

Our tool chain is based on bulk_extractor and hash_db.

•bulk_extractor — Open source tool for media scanning

•hash_db — High-speed hash database
• Bloom filter stores hashes for fast “false” lookup.
• For each hash, hashdb stores: {data set, file id, offset}
• For each file, hashdb stores: {name, length}

•Two primary functions:
• Import hashes into database
• Look up hashes

•Lookup speed ≈ 100,000 hashes/sec on Laptop w/SSD.

•Some database management functions:
• Dump, Remove duplicates (hashes with more than one source)

40

bulk_extractor’s “hashdb” scanner hashes blocks.
import mode: sector-hash target files and store in DB

41

target	
 files Hashdb
BE

scan mode: sector-hash the “search drive” and compare
against the sector hash database.

42

Search	

drive

found	
 hashes

BEHashdb

Diagram of hash-based carving

43

target	
 files Hashdb

Search	

drive

found	
 hashes

Results	
 analyzed	
 with	
 a	

“matching”	
 program

BE

database
of sector
hashes

BE

target  
sector hashes 

 found on  
search drive

files	
 presumably	
 on	

search	
 media

•Step 1 — Database Building

•Step 2 — Media Scanning

•Step 3 — Candidate Selection

•Step 4 — Target Assembly

Experimental Setup

We performed a realistic test

•Target files:
• “Monterey Kitty” — 82 JPEGs, 2 QT movies, 4 MPEG4 files (201MB in total)
• GOVDOCS1 — ≈1M files downloaded from US Government web sites

•Search Media:
• M57-Patents — Scenario of a small business developed by NPS in 2009.
• jo-2009-11-20-oldComputer — disk image of person who had “kitty” materials.

—13 GB disk image

•Experiment:
1.Create hashdb database with Monterey Kitty & GOVDOCS1 (kitty+govdocs.hdb)
2.Use database to scan M57-Patents drives
3.Hypothesis:

1.If we found a single “distinct” block from a file, that file was on the drive.

45

Step 1 — Database Building

•Create hashdb database using bulk_extractor
• Monterey Kitty database: 50,206 hashes from 88 different files

46

target	
 files HashdbBE

times in DB # of hashes
Singleton 50,206

2 x 0
3 x 0

…

F

F

F

Step 1 — Database Building

•Create hashdb database using bulk_extractor
• Monterey Kitty database: 50,206 hashes from 88 different files
• GOVDOCS corpus: 119,687,300 hashes from 909,815 files

47

target	
 files HashdbBE

times in DB # of hashes
Singleton 117,213,026

2 x 514,238
3 x 60,317

…
11,434 1 (“null”)

F

F

F

Step 2 — Media Scanning:

•Input files: 16GB disk image
• 394 pages (6.3GB) x 32,768 overlapping 4KiB blocks per page.

•Scan time: 116 seconds (64-core reference system)
• 111 K lookups/sec

•Output — 33,847 matches found:

Feature-Recorder: identified_blocks
Filename: nps-2009-m57-patents-redacted/jo-2009-11-16.E01

86435328 736d99610d0097be78651ecdae4714bb {"count":39,"flags":"H"}

1231920640 90ccbdf24a74c8c05b94032b4ce1825d {“count":1,"flags":"H"}

1231924736 9403e1cac89e860b93570ac452d232a5 {“count":1}

48

What we found — graphically

•M57-Patents drives:
• Found nearly all Kitty files

—Found multiple copies
—In some cases, found all of a file except the first sector (that’s good!)

•This produces a simple reassembly algorithm:
• For every file whose hash was found:

—Make a list of the [file block #, disk block #]
—Sort
—Report complete runs:

[0, 1024]
[1, 1032]
[2, 1040]
[3, 1056]
[4, 1064]

49

F F F F F F F F F F F F

F F F F F F F F F F F F

Can only be TiggerTheCat.m4v

TiggerTheCat.m4v

First complication:  
the same block might be in two places in a file
•M57-Patents drives:

• Found nearly all Kitty files
—Found multiple copies
—In some cases, found all of a file except the first sector (that’s good!)

•This produces a simple more complicated reassembly algorithm:
• For every file whose hash was found:

—Make a list of the [disk block #, {file block #s}]
—Sort
—Report complete runs:

[1024, 0]
[1032, {1,4}]
[1040, 2]
[1056, 3]
[1064, {1,4}]

50

F F F F F F F F F F F F

F F F F F F F F F F F F

We also found distinct blocks from GOVDOCS files on
the M57 drive
•M57-Patents drives:

• Found nearly all Kitty files
—Found multiple copies
—In some cases, found all of a file except the first sector (that’s good!)

• Distinct GOVDOCS files:
—Found several complete files! These files really were present! (fonts)
—Found several runs of distinct blocks that were never present!

—Found many runs of common blocks.

—Frequently, we find common runs scattered:

51

F F F F F F F F F F F F

F F F F F F F F F F F F

F F F F F F

G G G G G G

X X X X

These are non-probative blocks

•These blocks match files that we know are not present.

•Why did we think they were distinct?
• We had not looked at enough files!

52

F F F F F F

G G G G G G

X X X X

These are non-probative blocks

•These blocks match files that we know are not present.

•Why did we think they were distinct?
• We had not looked at enough files!

•These blocks were similar to the common blocks we had seen in 0000107.jpg:
• Incrementing binary numbers
• Whitespace
• Strange binary structures

53

F F F F F F

G G G G G G

X X X X

We found many blocks on the media that appeared
“distinct” but could not have been.
•The blocks must have been “common” — but we had not sampled
enough files

54

F F F F FF

F F F F

F FF F F F F F F F

F F F F F F F F F F F F F F

F F F F F F F F F F F F

F F

Step 3 — Candidate Selection — determining which files
might have been on the drive.
•Previously we deemed a file present if we found a distinct block.

•Now we will evaluate each “distinct” block to see if it is probative.

• Some distinct blocks are “distinct” in our data set, but are built from common
structures:

•Candidate selection requires that we screen out non-probative
blocks.

55

F F F F FF F F F F

F F

We developed four tests for non-probative blocks.

•1. The Ramp Test
• Detect and mark blocks with incrementing 4-byte binary numbers:

• These typically come from Microsoft Office Sector Allocation Tables.
—They have a strong chance of appearing distinct…
—but they are algorithmically generated

56

8102 0000 8202 0000 8302 0000 8402 0000
8502 0000 8602 0000 8702 0000 8802 0000
8902 0000 8a02 0000 8b02 0000 8c02 0000
8d02 0000 8e02 0000 8f02 0000 9002 0000

Figure 1: 64 bytes from the file 007533.xls shows the “ramp” structure of the
Microsoft Office Sector Allocation Table.

hashes”) with the hashes of every 4KiB block from a file block
hash database and identify files based on hashes that the two
sets have in common.

Hash matches result from a variety of scenarios, including:
• A copy of an intact target file is present on the searched

media. Because hash-based carving is file system agnos-
tic, it makes no difference if the file is allocated, deleted,
or in free space.

• A copy of the target file might have been placed on the
searched media at some time in the past and is later deleted
and partially overwritten. In this case, there may be small
fragments of a target file on searched media that are pro-
bative.

• A file that has many sectors in common with the target
file may be on the searched media. In this case, the hash-
based carving will identify the blocks shared between the
two similar files.

• A target file may be embedded in a larger carrying file,
provided that the file is embedded on an even sector bound-
ary. (Microsoft’s “.doc” format embeds objects such as
JPEG files on 512-byte boundaries, but the “.docx” for-
mat does not.)

Ideally, the hash-based carving algorithm should address all
of these cases simultaneously.

2.3. A hash-based carving process
We approach hash-based carving as a four-step process:

1. DATABASE BUILDING: Create a database of file block
hashes from the target files.

2. MEDIA SCANNING: Scan the searched media by hash-
ing 4KiB of sectors and searching for those hashes in the
database. This produces a set of hash values that can be
matched to target files.

3. CANDIDATE SELECTION: Some sector hashes map to
a single file, while others map to many possible files in
the database. This step determines the set of target files
that are likely to be present on the searched media based
on the hashes observed.

4. TARGET ASSEMBLY: For each identified candidate, at-
tempt to identify runs of matching blocks on the searched
media and map these back to the corresponding target
files.

2.4. Common Blocks
A significant complication arises from the fact that the same

4KiB block may be present in many different target files. Foster
(2012) called such blocks “common blocks.” The most com-
mon block is the block of all NULLs, which is used to initialize

blank media and is also found in many document and database
files. The NULL block thus poses a special challenge for hash-
based carving and must be specially handled, since building a
list of every NULL sector on a drive would result in significant
inefficiencies and possibly memory exhaustion.

A second common block pattern identified by Foster is a
block of monotonically increasing 32-bit numbers. For exam-
ple, Fig 1 shows an excerpt from a Microsoft Excel file that is
part of the file’s Sector Allocation Table (SAT) data structure,
defined by the Microsoft Office Compound File Binary Format.
Any Microsoft Office file that contains an embedded 1MB ob-
ject (for example, a JPEG), will have 8KiB of data devoted to
such a pattern, with the initial value depending on the location
of the embedded file. The result is a low probability of a match
between the SAT structures of any two specific Microsoft Of-
fice files, but a high chance that there will be a few matches
between two large collections of Office files.

The existence of such common blocks complicates hash-
based carving in two ways. First, because these blocks match
multiple files, they cannot be used for Candidate Selection: find-
ing a block that appears in a hundred files should not be taken as
evidence that any of those hundred files are present. A second
problem is that the larger we make the database, the more com-
mon blocks we discover. We need an approach for recognizing
common blocks before we even encounter a collision because it
is simply not possible to collect and enumerate all such blocks
in advance.

2.5. Sector Size And Alignment Issues
One of the clear advantages of using 4KiB blocks over 512B

blocks is that hashes of 4KiB blocks represent eight times as
much data. This is especially important for hash-based carving,
as it is critical to hold the entire database in RAM to support the
high-speed access required.

The problem of using a 4KiB block size is file system align-
ment. The hashed sectors must be aligned with the file system
allocation blocks, so the sector hashes will align with the file
block hashes. This alignment is achieved by aligning the sector
hashes with the start of the file system.

In some cases it is not possible to determine the start of the
file system. This happens if the partition table is corrupted, or if
there is a previous file system that was created with a different
starting point.

If the partition offset is not known, or if examiner wishes to
account for the possibility that there may have been a previous
partitioning scheme, our solution is to hash overlapping blocks
with a 4KiB sliding window over the entire drive, moving the
window one sector (512B) at a time (Fig 2). This results in eight
distinct sets of 4KiB sector hashes, one where every group of
8 hashed sectors has a starting sector number of (mod 8)=0,
one where every group has a start of (mod 8)=1, and so on.
Because all of the 4KiB blocks from the same file system will
necessarily have the same sector alignment, each alignment set
can be processed independently.

Generating and searching overlapping hashes may seem to
create needless work, since the result of calculating overlapping

3

We developed four tests for non-probative blocks.

•1. The Ramp Test
•2. The White Space Test

• Any sector that is 3/4 white space is non-probative.
• Screens out whitespace in JPEGs and other files

0000000: 2020 2020 2020 2020 2020 2020 2020 2020
0000010: 2020 2020 2020 2020 2020 2020 0a20 2020 .
0000020: 2020 2020 2020 2020 2020 2020 2020 2020
0000030: 2020 2020 2020 2020 2020 2020 2020 2020
0000040: 2020 2020 2020 2020 2020 2020 2020 2020
0000050: 2020 2020 2020 2020 2020 2020 2020 2020
0000060: 2020 2020 2020 2020 2020 2020 2020 2020
0000070: 2020 2020 2020 2020 2020 2020 2020 2020
0000080: 200a 2020 2020 2020 2020 2020 2020 2020 .
0000090: 2020 2020 2020 2020 2020 2020 2020 2020

57

We developed four tests for non-probative blocks.

•1. The Ramp Test
•2. The White Space Test
•3. The 4-byte Histogram Test

• Suppresses sector if any 4-byte n-gram is present more than 256 times
• Usually catches white space test as well (but not always)

58

0000 6400 0000 01ff ffff 9c00 0000 0100
0000 6400 0000 01ff ffff 9c00 0000 0200
0000 0000 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff
ffff 9c00 0000 0100 0000 6400 0000 01ff

Figure 4: An example of the low-entropy pattern found in both the QuickTime
file KittyMontage.mov and in the PowerPoint file 182853.ppt

them. The next sections describe the rules and discusses our un-
successful attempt to use of Shannon entropy on 16-bit values
as an alternative.

4.2. The Ramp Test
By far the most common non-probative blocks identified by

this test are those that appear to contain Microsoft Office Sec-
tor Allocation Tables (SAT). These data structures are defined
by their length (typically 4KiB-12KiB) and their starting value,
which corresponds to the ordinal number of the 512-byte block
where the content stream appears in the disk file. There are thus
tens of thousands of different 4KiB “ramp” blocks that can be
observed for a given Microsoft Office file, with the result that
the chance of a collision between any two Office files is small,
but the chance of collision within a corpus of a few thousand
Office files is quite high.

We developed a simple test that returns True if half of the
bytes in a buffer match the ramp pattern, which was sufficient
to weed out many cases in which the 4KiB block contained the
SAT and other binary structures, or where the SAT referenced a
few objects.

4.2.1. The White Space Test
Another kind of block that we have encountered are blocks

consisting of blank lines of 100 spaces, each terminated by a
newline character. Such blocks are commonly seen in JPEG
files that were produced with Adobe PhotoShop, and are the re-
sult of whitespace padding located within the Extensible Meta-
data Platform XMP section (Adobe, 2012, p.10). Because the
sections can appear on any 1-byte boundary, there are 101 dif-
ferent such common blocks filled with whitespace as a result
of alignment issues. The end of the whitespace section typi-
cally has patterned data as well, resulting in tens of thousands
of possible blocks that are mostly spaces but contain additional
common material. Our whitespace test classifies blocks as non-
probative if three-quarters or more of the block contains whites-
pace.

4.3. The 4-byte Histogram Test
Another common structure that we discovered with manual

analysis are blocks of patterned 4-byte values, either repeat-
ing or alternating 4-byte values. Analysis revealed these data
structures in both Apple QuickTime and Microsoft Office file
formats.

4KiB Blocks Blocks Fraction
File in File Detected Detected
466982.csv 848 848 1
809089.eps 6 6 1
574989.csv 6 6 1
466749.csv 3 3 1
...
153348.png 11 2 0.18
569152.pdf 395 11 0.028
284845.ps 113 3 0.027
393395.eps 60 1 0.017
30 more files...

Table 1: Some matched files from GOVDOCS on the oldComputer disk, sorted
by fraction detected. The first four files in bold could be completely recovered
from oldComputer drive. Only a few blocks from the other files are recovered.
These are non-probative blocks which occur by chance in both GOVDOCS and
on the searched drive.

We devised a rule for eliminating sectors which contain a
few repeating 4-grams. The rule treats the 4KiB buffer as a
sequence of 1024 4-byte integers and computes a histogram of
those numbers. It suppresses the sector if any single 4-gram is
present more than 256 times (more than a quarter of the block).
This rule is unlikely to trigger on either text or image data, since
neither typically have long runs of the same 4-byte values.

4.4. The Entropy Test
Foster (2012) observed that common blocks tended to con-

tain low entropy data. This observation holds for the many of
the non-probative blocks we examined while creating our ramp,
whitespace and histogram tests. We hoped that we could re-
place our ad-hoc non-probative tests with a single test for low
entropy data.

Our entropy test treated each 4KiB buffer as a collection
of 16-bit unsigned integers and calculated the Shannon entropy
for each. This method yields an entropy score of 6.0 for buffers
flagged by the “ramp” test, and a score between 0 and 1 for
blocks matching the whitespace test. The vast majority of blocks
flagged by the histogram test scored less than 5, though these
blocks had the widest range overall, with some blocks scoring
as low as 0 and as high as 8.373.

We experimented with a range of threshold values and found
that flagging blocks with an entropy value of less than 7.0 pro-
duced results that closely corresponded to the union of the sets
identified by the whitespace, ramp and histogram tests.

4.5. Determining the effectiveness of the rules
We applied the rules described in this section to 677 distinct

blocks in the GOVDOCS dataset that matched the oldComputer
drive that were not in the four identified files. The ramp rule
matched 200 blocks and the histogram rule matched 400. An
entropy threshold of 7 also identified a set of 600 blocks as
non-probative. This set was identical to that given by the com-
bination of histogram and ramp rules, except that it omitted one
block flagged by the histogram rule, and included one addi-
tional block that was not flagged by any other rule.

6

We developed four tests for non-probative blocks.

•1. The Ramp Test
•2. The White Space Test
•3. The 4-byte Histogram Test
•4. The Entropy Test

• Mark as non-probative any block with entropy lower than a threshold
• Possibly use instead of “ad hoc” tests

59

• Didn’t work as well

Evaluating the rules — Blocks that should be eliminated
(Distinct blocks that were non-probative.)

60

Distinct blocks for files that
could not be on oldComputer 677

matched by ad hoc rules: 600

matched by entropy rule: 600

Evaluating the rules — Blocks that should not be
eliminated (distinct blocks that were matched)

•Matching blocks were metadata, unpopulated arrays, control
structures, and hybrid blocks containing a mix of data and long
strings of nulls.

61

kitty and 4 GOVDOCS files 21,469 blocks

Matched by ad hoc rules: 126

Matched by entropy rule: 149

Matched by both: 78

Matched by either: 197

Step 4 — Target Assembly

•After determining candidate files, we reassemble each target file.

•Two algorithms.

•HASH_SETS — Reports % of the file present on the search drive
• Fast and efficient
• Doesn’t identify where the files are.

•HASH_RUNS — Finds the runs of the file for reassembly
• Identifies individual runs of blocks.
• Allows re-creating original files solely from data on the search drive.

62

Reassembly algorithm #1: HASH_SETS

•Each HASH has 1..N FILES at 1..N Offsets
(Hash, File#, Offset#)

•ALL FILES SEEN = Union(ALL HASHES::ALL FILES)
SELECT DISTINCT filenum FROM hashes.

•For each FILE SEEN:
% of file recovered = # File Hashes Recovered for that file

/ # Hashes in File

•Problems with this algorithm:
• Doesn’t handle a single hash being in the file multiple times
• Doesn’t handle all of the hashes recovered being for common blocks.

63

Reassembly Algorithm #2: HASH_RUNS

•For each HASH of each IDENTIFIED FILE, we build an array:

[disk block#, {file blocks}, count-in-corpus]

• We sort the array by disk block #.
• We look for runs of blocks where the (sector #/8) and block # increment in step.

[12496591, {0}, 1]
[12496599, {1}, 1]
[12496607, {2}, 1]
[12496615, {3}, 1]
[12496623, {4}, 1]
[12496631, {5}, 1]

[5891103, {879}, 3207]
[5891111, {880}, 2440]
[5891119, {881}, 1886]
[5891127, {882}, 1596]
[5891135, {883}, 1397]
[5891143, {884}, 1215]

64

•A run of a distinct video

•A set of alias blocks

Additional rules in the HASH_RUNS algorithm let us
throw out spurious blocks.
•Singletons that aren’t in runs and/or aren’t in order are easy to
identify:

[19252422, {1595}, 1] //
[19252558, {2609}, 1] //
[19263478, {2070}, 1] //

—Such singletons probably aren’t probative.

•In cases with identical blocks in multiple locations, it’s easy to verify
runs:

/govdocs/168/168524.doc mod8=7

[10053327, {119, 180}, 2]
[10053335, {120, 181}, 1]

65

The output is a table of file fragments.

•In this example, all bold filenames are actually on the drive.

66

Conclusion

We have presented a hash-based carving system that
uses the bulk_extractor program to create a block hash
database of target files and a sector hash record of searched
media, supported by the hashdb hash database to provide
rapid lookups and perform initial correlation steps. As-
sembly of individually recognized block hashes into carved
runs is performed by a post-processing Python script.

Although there has been considerable interest in hash-
based carving for nearly a decade, to the best of our
knowledge this article presents the first workable algo-
rithm and reference implementation that can work with a
large database of target file block hashes.

Possible improvements

Additional efficiency gains could be realized by flagging
non-probative blocks during the database construction
phase and storing the flag status in the target database. This
alteration would permit each test to be run only once per
distinct block, rather than repeating each time the block is
encountered on the searched media. Furthermore, by

moving the classification process to the target ingestion
stage, we open the possibility for more computationally
intensive tests, since there is no longer the need to keep up
with speed of the disk scanning process. Finally, we can
avoid storing files that are composed entirely of non-
probative blocks and are therefore not recoverable by this
method.

Another improvement is to consider file allocation sta-
tus in addition to considering (mod 8). In general, wewould
expect all of the blocks associated with a target file to be in
the same file allocation statusdeither allocated or unallo-
cated. (When the target file is written to the media it is
allocated; if it is later deleted, it is unallocated.) File allo-
cation status could be considered by simply adding another
filtering step. However, computing file allocation status on
a per-block level is computationally expensive and would
not improve the accuracy of the file recovery in our ex-
amples here.

Limitations

If the media contains an encrypted file system, it is
necessary to first decrypt the file system so that the
unencrypted blocks can be accessed. This is typically done
by mounting the media using an appropriate decrypting
driver.

Acknowledgments

Bruce Allen is the primary developer of the hash data-
base; Joel Young contributed to hashdb's initial design. Rob
Beverly, Kevin Fairbanks and the anonymous reviewers
provided useful comments on this article.

Table 2
An excerpt of the output of the report_identified_runs.py program, in tabular form, and sorted by (mod 8) values. The files in bold are actually present on the
media, whereas the others represent miss-matches from non-probative blocks. Notice that the files 466982.csv and 574989.csv are both present in their
entirety, but in multiple runs that are not combined together in this report.

Target File name Score Start
Sector

Start
Block

End
Block

Sector
(mod 8)

Percent
Recovered

Allocated File on Target Media

569152.pdf 3 18433052 373 375 4 n/a
569152.pdf 3 19652860 373 375 4 4% /WINDOWS/Fonts/courbd.ttf
…
970013.pdf 2 18433380 279 280 4 0.2% n/a
970013.pdf 2 19653188 279 280 4 0.2% /WINDOWS/Fonts/courbi.ttf

215955.ps 3 18192573 571 573 5 0.2% /Program Files/ … Data1.cab
235835.ps 2 18192598 11503 11504 6 0.02% /Program Files/Adobe/Reader 9.0/ … Data1.cab

MontereyKittyHQ.m4v 6132 18639703 0 6131 7 100% /Documents and Settings/ … /MontereyKittyHQ.m4v
TiggerTheCat.m4v 3059 3532519 0 3058 7 100% /Documents and Settings/ … /TiggerTheCat.m4v
KittyMaterial/Cat.mov 1374 18696759 0 1393 7 100% /Documents and Settings/ … /Cat.mov
466982.csv 4 2932551 0 3 7 0% … /Cache/F5433139d01
466982.csv 8 2833023 4 11 7 1% … /Cache/F5433139d01
466982.csv 16 2800423 12 27 7 2% … /Cache/F5433139d01
466982.csv 36 10062599 28 63 7 4% … /Cache/F5433139d01
…
DSC00072.JPG 234 14306831 0 233 7 100% /Documents and Settings/ … /DSC00072.JPG
…
809089.eps 6 11907023 0 5 7 100% /Python26/ … /pwrdLogo.eps
574989.csv 4 3713503 0 3 7 67% … /Cache/4787E2CCd01
574989.csv 2 3713359 4 5 7 33% … /Cache/4787E2CCd01
…
466749.csv 2 5032175 0 1 7 100% … Cache/_CACHE_003_

Fig. 6. A hypothetical hash-based carving exercise in which a file with 6
logical blocks is recovered with the HASH-RUNS algorithm. Logical blocks 1
and 4 are identical, whereas Logical block 3 is blank.

S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95eS105S104

Overall performance is quite fast.

•Database construction:
• Only have to do this once.
• Hashing is parallelized with bulk_extractor
• Building a 500GB database ≈ 24 hours

•Media Scanning:
• bulk_extractor runs at I/O speed with enough cores.

—Hashing is parallelized.
—Database > 100,000 lookups/second

• Scanning 20GB disk image took less than 10 minutes

•Reassembly:
• Main time is reading number of hashdb hits.
• Reassembly time proportional to sort of mostly-sorted array.

—≈30 seconds for 20GB test disk.

67

Conclusions

Engineering decisions and lessons learned

•512-byte vs. 4KiB:
• We thought we could determine in advance the (mod 8) of a drive.
• But a single drive might have two partitions with different (mod 8) values.
• Within a .DOC file, embedded pictures will be on 512-byte offsets.
• Our solution gives best of both worlds:

—8x extra hashing is not significant on multi-core system (we use MD5)
—Database is hashed with 4K chunks
—Probative block selection prevents false positives

•C++ vs. Python:
• Large data operations are (still) best done in C++ (e.g. bulk_extractor, hashdb)
• Python was better for algorithm development.

•Flat files vs. databases:
• Regret not leveraging bulk_extractor’s SQLite support.

69

In summary

•We’ve been talking about hash-based carving for ≈10 years.
•To date, most of the tools would only search for a few target files.

• Previously most researchers thought that finding a few high-entropy blocks from a
target file meant that the target file had probably been present.

• We were wrong! Many high-entropy blocks that are infrequent but not distinct.

•We developed a system that can search for a million files, 500GB of
target data.

• High-performance implementation with publicly available tools.
• All you need is a large database of target content.

•Available on github today
• https://github.com/simsong/bulk_extractor — current bulk_extractor with HBC.

python/report_identified_runs.py

• https://github.com/simsong/hashdb — the hashdb library and command line tool

70Questions?

https://github.com/simsong/bulk_extractor

