
DETECTING THREATENING
INSIDERS WITH LIGHTWEIGHT
MEDIA FORENSICS
Naval Postgraduate School &
The University of Texas at San Antonio

Dr. Simson Garfinkel (NPS) & Dr. Nicole Beebe (UTSA)

8am, Wednesday November 13th, 2013

Team Profile

Naval Postgraduate School
• Simson L. Garfinkel

Assoc. Prof
Computer Science

—simsong@acm.org
—+1.202.649.0029

The University of Texas at San Antonio
• N. Beebe, Asst. Prof.

Info Systems/Cyber Security
—Nicole.Beebe@utsa.edu
—+1.210.269.5647

2

mailto:simsong@acm.org
mailto:simsong@acm.org
mailto:Nicole.Beebe@utsa.edu
mailto:Nicole.Beebe@utsa.edu

The current approaches for finding hostile insiders
are based on “signatures.”
Sample signature to find a problem employee:

These signatures are typically hand written.
—Brittle
—Don’t scale
—Miss new patterns

3

(CERT 2011)
• if the mail is from a departing insider
• and the message was sent in last 30 days
• and the recipient is not in organization’s domain
• and the total bytes summed by day is more than X,
➜ send an alert to security operator

We propose a new approach for finding
threatening insiders—storage profile anomalies.
Hypothesis 1:
Some insiders hoard before exfiltration

• Manning
• Snowden

4

Hypothesis 2:
Some illegal activity has storage indicators:

• Contraband software (hacking tools) and data
• Large amount of:

—graphics
—PII; PHI; account numbers
—Encrypted data

• Stolen documents

Illegal employee activity is:
• Bad for business
• Exploitation threat
• Fraud risk

We also want to detect other kinds of illegal
employee activity.

5

Our plan: look for storage devices that are different
than their peers.
We build a “storage profile” from features:

• # of credit card numbers, phone #s; SSNs, DOBs, etc.
• % pictures; %video
• % Doc files; %PDFs;

“Different” relative to:
• User’s history
• User’s organization
• Others in role.

6

Garfinkel, S. and Shelat, A., "Remembrance of Data Passed: A Study of Disk
Sanitization Practices," IEEE Security & Privacy, January/February 2003.

http://simson.net/clips/academic/2003.IEEE.DiskDriveForensics.pdf
http://simson.net/clips/academic/2003.IEEE.DiskDriveForensics.pdf
http://simson.net/clips/academic/2003.IEEE.DiskDriveForensics.pdf
http://simson.net/clips/academic/2003.IEEE.DiskDriveForensics.pdf

Our approach:
Collect “storage profiles” and look for outliers.
We profile storage on the hard drive/storage device:

• Allocated & “deleted” files; Unallocated space (file fragments)

Statistical profile is collected:
• Frequently, at “random” times
• Securely — by going to raw media
• Centrally — at management console

7

AGENT

AGENT
Management ConsoleLightweight

Media Forensics
Reports

Outlier Analysis
and identification

AGENT

Hostile insider

Normal insiders

We cluster the storage profiles to find “outliers.”

What’s an outlier?
• Something that’s different from its peers
• Something different from its own history

8

Outliers Matter

“Normal” Storage Profile

Outlier detection should have significant benefits:

• Not signature based
• Not reliant on access patterns
• Not reliant on policy definition, discovery, auditing

Design constraints:
• Agent must be scalable and cannot interfer with operations

—Desktop: background process, samples disk data
—Network load: small, aggregated data transfer
—Management console: scalable algorithms used

• Must work with isolated systems
• Must be OS agnostic
• Must includes deleted data in collection/analysis

9

Outliers Matter

“Normal” Storage Profile

Our system has three parts:

1. Sample disk to collect desired data
• bulk_extractor

— a lightweight media forensics tool

2. Client-server, enterprise response framework
• Google Rapid Response (GRR)

3. Anomaly detection agent
• Univariate and multivariate outlier detection

10

11/9/2013 grr - GRR Rapid Response is an Incident Response Framework - Google Project Hosting

https://code.google.com/p/grr/ 1/2

Project Home Wiki Issues Source

simsong@gmail.com ▼ | My favorites ▼ | Profile | Sign out

grr
GRR Rapid Response is an Incident Response Framework Search projects

Summary People

Project Information

 Starred by 97 users

Project feeds

Code license

Apache License 2.0

Labels

Python, Incident-­Response, Forensics,

C

 Members

scude...@gmail.com,

joachim.metz@gmail.com,

darrenbi...@gmail.com,

caro...@google.com,

amo...@google.com,

parki....@gmail.com,

gcas...@google.com,

realbush...@gmail.com

Featured

 Wiki pages

Demo

GettingStarted

Roadmap

Show all »

Links

External links

Documentation

User Manual

Admin Manual -­ Setup and Configuraiton

Developers Information

Downloads

Overview Presentation OSFC 2012

Groups

GRR Developers List

GRR Users List

GRR is an Incident Response Framework focused on Remote Live Forensics.

State of the Project

GRR is currently in an Beta release, ready for testing by end users. More

information can be found in the GRR Rapid Response documentation.

Update: November 2 2013 Test release for 0.2-­9 is out! You can get it by

download the install script as per Testing Release

Update: August 28 2013: GRR v 0.2-­8 is out! Grab it by redownloading the

install script, as described in GettingStarted.

Known issue: This release comes with a prebuilt mac client which does not

support custom client names, it will always run as "grr" regardless of your

Client.name settings.

Information

GRR consists of an agent that can deployed to a target system, and a server

infrastructure that can manage and talk to the agent. More information can be

found in the GRR Developer documentation.

Client Features:

Cross-­platform support for Linux, Mac OS X and Windows clients (agents)

Open source memory drivers for Linux, Mac OS X and Windows

Supports searching, downloading

Volatility integration for memory analysis

Secure communication infrastructure designed for Internet deployment

Client automatic update support

Server Features:

Fully fledged response capabilities handling most incident response and

forensics tasks

OS-­level and raw access file system access, using the SleuthKit (TSK)

Ajax Web UI

Fully scriptable IPython console access

Enterprise hunting support

Basic system timelining features

Basic reporting infrastructure

Support for asynchronous flows

Fully scaleable back-­end to handle very large deployments

Detailed monitoring of client CPU, memory, IO usage

Automated scheduling for reoccurring tasks

See GettingStarted to start using it.

Garfinkel, Simson, Digital media triage with bulk data analysis and
bulk_extractor. Computers and Security 32: 56-72 (2013)

http://simson.net/clips/academic/2013.COSE.bulk_extractor.pdf
http://simson.net/clips/academic/2013.COSE.bulk_extractor.pdf
http://simson.net/clips/academic/2013.COSE.bulk_extractor.pdf
http://simson.net/clips/academic/2013.COSE.bulk_extractor.pdf

Random sampling is a great way to analyze data.

Simple random sampling can determine % free space

Data characterization can determine the kind of stored data

Sector hashing can identify specific target files

11

Audio Data reported by iTunes: 2.25 GiB 2.42 GB
MP3 files reported by file system: 2.39 GB
Estimated MP3 usage with random sampling : 2.49 GB 10,000 random samples

2.71 GB 5,000 random samples

Figure 1: Usage of a 160GB iPod reported by iTunes 8.2.1 (6) (top), as reported by the file system (bottom center), and
as computing with random sampling (bottom right). Note that iTunes usage actually in GiB, even though the program
displays the “GB” label.

length offset. If a frame is recognized from byte pat-
terns and the next frame is found at the specified off-
set, then there is a high probability that the fragment
contains an excerpt of the media type in question.

Field validation Once headers or frames are recognized,
they can be validated by “sanity checking” the fields
that they contain.

n-gram analysis As some n-grams are more common
than others, discriminators can base their results
upon a statistical analysis of n-grams in the fragment.

Other statistical tests Tests for entropy and other statis-
tical properties can be employed.

Context recognition Finally, if a fragment cannot be
readily discriminated, it is reasonable to analyze the
adjacent fragments. This approach works for frag-
ments found on a hard drive, as most files are stored
contiguously[15]. This approach does not work for
identifying fragments in physical memory, however,
as modern memory systems make no effort to co-
locate adjacent fragments in the computer’s physical
memory map.

4.3 Three Discriminators
In this subsection we present three discriminators that

we have created. Each of these discriminators was devel-
oped in Java and tested on the NPS govdocs1 file corpus
[16], supplemented with a collection of MP3 and other
files that were developed for this project.

To develop each of these discriminators we started
with a reading of the file format specification and a vi-
sual examination of file exemplars using a hex editor (the
EMACS hexl mode), the Unix more command, and the
Unix strings command. We used our knowledge of file
types to try to identify aspects of the specific file format
that would be indicative of the type and would be unlikely
to be present in other file types. We then wrote short test
programs to look for the features or compute the relevant
statistics for what we knew to be true positives and true
negatives. For true negatives we used files that we thought

would cause significant confusion for our discriminators.
4.3.1 Tuning the discriminators

Many of our discriminators have tunable parameters.
Our approach for tuning the discriminators was to use a
grid search. That is, we simply tried many different possi-
ble values for these parameters within a reasonable range
and selected the parameter value that worked the best. Be-
cause we knew the ground truth we were able to calcu-
late the true positive rate (TPR) and the false positive rate
(FPR) for each combination of parameter settings. The
(FPR,TPR) for the particular set of values was then plot-
ted as an (X,Y) point, producing a ROC curve[25].
4.3.2 JPEG Discriminator

To develop our JPEG discriminator we started by read-
ing the JPEG specification. We then examined a number
of JPEGs, using as our source the JPEGs from the gov-
docs1 corpus[16].

JPEG is a segment-based container file in which each
segment begins with a FF byte followed by segment
identifier. Segments can contain metadata specifying the
size of the JPEG, quantization tables, Huffman tables,
Huffman-coded image blocks, comments, EXIF data, em-
bedded comments, and other information. Because meta-
data and quantization tables are more-or-less constant and
the number of blocks is proportional to the size of the
JPEG, small JPEGs are dominated by metadata while
large JPEGs are dominated by encoded blocks.

The JPEG format uses the hex character FF to indi-
cate the start of segments. Because this character may oc-
cur naturally in Huffman-coded data, the JPEG standard
specifies that naturally occurring FFs must be “stuffed”
(quoted) by storing them as FF00.

Our JPEG discriminator uses these characteristics to
identify Huffman-coded JPEG blocks. Our intuition was
to look for blocks that had high entropy but which had
more FF00 sequences than would be expected by chance.
We developed a discriminator that would accept a block as
JPEG data if the entropy was considered high—that is, if

7

. .
. .. .

. . ..
..

.

. .
. .. .

. . ..
..

.

Garfinkel, Simson, Vassil Roussev, Alex Nelson and Douglas White, Using purpose-built functions and
block hashes to enable small block and sub-file forensics, DFRWS 2010, Portland, OR

Young J., Foster, K., Garfinkel, S., and Fairbanks, K.,
Distinct sector hashes for target file detection, IEEE
Computer, December 2012

http://simson.net/clips/academic/2010.DFRWS.SmallBlockForensics.pdf
http://simson.net/clips/academic/2010.DFRWS.SmallBlockForensics.pdf
http://simson.net/clips/academic/2010.DFRWS.SmallBlockForensics.pdf
http://simson.net/clips/academic/2010.DFRWS.SmallBlockForensics.pdf
http://simson.net/clips/academic/2012.IEEE.SectorHashing.pdf
http://simson.net/clips/academic/2012.IEEE.SectorHashing.pdf

It takes 3.5 hours to read a 1TB hard drive.

12

In 5 minutes you can read:
• 36 GB in one strip
• 100,000 randomly chosen 64KiB strips (assuming 3 msec/seek)

Minutes 208 5 5

Data 1 TB 36 GB 6.5 GB

Seeks 1 1 100,000

% of data 100% 3.6% 0.65%

The statistics of a randomly chosen sample
predict the statistics of a population.

US elections can be
predicted by sampling
thousands of households:

13

Hard drive contents can be predicted by
sampling thousands of sectors:

The challenge is identifying the sector
content that is sampled.

The challenge is identifying
likely voters.

We think of computers as devices with files.

14

Data on computers is stored in fixed-sized sectors.

15

Data in a sector can be resident:

Files can be “deleted” but the data remains:

Sectors can be wiped clean:

Allocated Data

Deleted Data

No Data blank sectors

} user files
email messages
[temporary files]

Allocated data are the data you see from the root
directory. e.g. “visible” files.

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

16

Resident Data

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

“Deleted data” are on the disk,
but can only be recovered with forensic tools.

17

Deleted Data

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Some sectors are blank. They have “no data.”

18

No Data

.

.

Files

Deleted Files

Zero Blocks

Sampling can’t distinguish allocated from deleted.

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

19

Sampling can tell us about the content of the data

Sampling can tell us the proportion of...
—blank sectors; video; HTML files; other data types...
—data with distinct signatures...

...provided we can identify it

20

Challenge for sampling: interpreting each sector

—Easy:
0000000: ffd8 ffe0 0010 4a46 4946 0001 0201 0048 JFIF.....H
0000010: 0048 0000 ffe1 1d17 4578 6966 0000 4d4d .H......Exif..MM
0000020: 002a 0000 0008 0007 0112 0003 0000 0001 .*..............
0000030: 0001 0000 011a 0005 0000 0001 0000 0062 b
0000040: 011b 0005 0000 0001 0000 006a 0128 0003 j.(..
0000050: 0000 0001 0002 0000 0131 0002 0000 001b 1......
0000060: 0000 0072 0132 0002 0000 0014 0000 008d ...r.2..........
0000070: 8769 0004 0000 0001 0000 00a4 0000 00d0 .i..............
0000080: 0000 0048 0000 0001 0000 0048 0000 0001 ...H.......H....
0000090: 4164 6f62 6520 5068 6f74 6f73 686f 7020 Adobe Photoshop
00000a0: 4353 2057 696e 646f 7773 0032 3030 353a CS Windows.2005:
00000b0: 3035 3a30 3920 3136 3a30 313a 3432 0000 05:09 16:01:42..
00000c0: 0000 0003 a001 0003 0000 0001 0001 0000
00000d0: a002 0004 0000 0001 0000 00c8 a003 0004
00000e0: 0000 0001 0000 0084 0000 0000 0000 0006
00000f0: 0103 0003 0000 0001 0006 0000 011a 0005

—Hard:
000a000: 0011 fa71 57f4 6f5f ddff 00bd 15fb 5dfd ...qW.o_......].
000a010: a996 0fc9 dff1 ff00 b149 e154 97f4 efd5 I.T....
000a020: e3f5 7f47 71df 8ffb d5d7 da9e d87f c12f ...Gq........../
000a030: f8ff 00d8 b1f4 b1f8 ff00 c57e ab7a ff00 ~.z..

21

We use two approaches for identifying data type.

22

1 - SVMs with multiple feature types
• unigrams
• bigrams (selected)
• Other n-grams & complexity measures
• compressibility
• hand-tuned classifiers

2 - Known content
• Database of “sector hashes.”

Beebe, N.L.; Maddox, L.A.; Lishu Liu; Minghe Sun, "Sceadan: Using
Concatenated N-Gram Vectors for Improved File and Data Type
Classification,"Information Forensics and Security, IEEE Transactions on ,
vol.8, no.9, pp.1519,1530, Sept. 2013

Sceadan provides the “type” of fragments.

2327

*Additional model training has improved
classifier accuracy from 71.5% to 73.5%

0%

25%

50%

75%

100%

0 10 20 30 40

Number of Classes Predicted by Classifier

P
re

d
ic

ti
on

 A
cc

u
ra

cy

Higher Accuracy
But Few Classes

Typical Accuracy Degradation
As Multi-Class Challenge Increases

Sceadan v1.0
73.5% Accuracy*

40 Classes

NOTE: 9 lowest
performing types are
significantly under-

researched classes (e.g.
Office2010, FS data)

Improved performance comes from feature set.
Training is slow, but only needs to be done once.
Trigrams proved most accurate (70.19%)

• Much slower prediction time than competing alternatives
“FS5” (feature set 5) nearly as accurate (69.83%)

• Unigrams+Bigrams+Other
—Other features: entropy, Kolmogrov complexity, mean byte

value, Hamming weight, avg. contiguity between bytes,
longest byte streak

24

Some kinds of files have distinct contents.

Can you identify a JPEG file
from reading 4 sectors
in the middle?

25

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

JPEG File

We can identify “distinct” sectors.

In a compressed or encrypted file, each sector is different.

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

41,572 bytes

⬅︎ 4096 bytes
not repeated

elsewhere

Initial anomaly detection results are promising.

Successfully detecting univariate outliers
• Data by type most effective thus far

—File types (e.g., jpg, exe)
—Data types (e.g., PII, CCN)

• Median absolute deviation (MAD) based outlier detection with
conditional scaling procedures

Multivariate and time-series based outlier detection — on-going
• Cluster based, SOM based, etc.

27

This heatmap of anomalies let an analyst easily
identify clusters and outliers.

28

Current status — We’re making progress!

bulk_extractor updated v1.4 just released
• Added features & GRR integration preparation

Sceadan data type classifier updated v1.2 released

Extraction, transformation, loading of datesets
• M57 Patents (digitalcorpora.org) case

Progress on anomaly detection algorithm
• Real Data Corpus extraction, translation and loading near complete
• Theoretical development
• Empirical data descriptive analyses (test assumptions)
• Univariate anomaly detection performing well on synthetic data set

29

We are in year 1 of a 3-year effort.

30

NPS Lead UTSA Lead

Year 1 bulk_extractor upgrades
Outlier detection algorithm
Synthetic data experimentation
Real Data Corpus experimentation

Year 2
Integrate GRR
Develop/test management
console

Develop/test data outlier detection
Develop/test visualization
component

Year 3 Large-scale testing on partner
net

Final dev. of outlier detection
algorithm
Final dev. of visualization agent

Many challenges remain.

“Anomalous” suggests “normal” exists
• Large, diverse, dislocated organizations
• High fluidity and variety in workforce
• Remote, mobile, multi-device access requirements
• Uninterruptible, critical computational operations

Clustering algorithm selection/development
• Accuracy and speed trade-off of extant algorithms
• Develop combinatorial algorithm to improve accuracy
• Need for automated parameter selection amidst noise
• Feature selection

Engineering of visualization component

31

Outliers Matter

“Normal” Storage Profile

In conclusion, we are developing a system that uses
“lightweight media forensics” to find hostile insiders.
We use random sampling to build a storage profile of media

We collect these profiles on a central server

We cluster & data mine to find outliers.

Contact:
• Simson L. Garfinkel simsong@acm.org
• Nicole Beebe Nicole.Beebe@utsa.edu

32

AGENT

AGENT
Management ConsoleLightweight

Media Forensics
Reports

Outlier Analysis
and identification

AGENT

Hostile insider

Normal insiders

Outliers Matter

“Normal” Storage Profile

mailto:simsong@acm.org
mailto:simsong@acm.org
mailto:Nicole.Beebe@utsa.edu
mailto:Nicole.Beebe@utsa.edu

