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NPS is the Navy’s Research University.

Monterey, CA — 1500 students
• US Military & Civilian (Scholarship for Service & SMART)
• Foreign Military (30 countries)

Graduate Schools of 
Operational & Information Sciences (GSOIS)

• Computer Science
• Defense Analysis
• Information Sciences
• Operations Research
• Cyber Academic Group

National Capital Region (NCR) Office
• 900 N Glebe (Ballston)/Virginia Tech building
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“Evaluation” 
• Trusted hardware and software
• Cloud computing

“Exploitation” 
• MEDEX — “Media” — Hard drives, camera cards, GPS devices.
• CELEX — Cell phone
• DOCEX — Documents
• DOMEX — Document & Media Exploitation

Current Partners:
• Law Enforcement (FBI & Local)
• DHS (HSARPA; Video Games & Insider Threat)
• NSF (Courseware development)
• DoD

The Digital Evaluation and Exploitation (DEEP) Group:
Research in “trusted” systems and exploitation.
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Digital information is pervasive in today’s society,
but attorneys, judges and juries are not digital experts.
Many potential sources of digital evidence:

• Laptops; Cell Phones; Email messages

Many possible goals:
• Establish possession of contraband information (child pornography, credit card #s)
• Recover stolen information
• Document a conspiracy (stock fraud; murder-for-hire)
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The digital forensics process makes digital evidence 
available for [legal] decisions
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Most work to date focuses on the first half.

Training the force
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My focus is developing better analysis approaches

Identification of high-value data.
• What is important?  

—Contacts, calendar, documents?
—Software?
—Geolocation information?
—Temporal / time sequence?

Correlation — are there copies of the same or similar information?
• Identify previously unknown organizations or networks
• Identify data that is unusual or emerging

Presentation and Integration:
• Make the results understandable.
• Effect organizational change through adoption & integration
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1. Automation is essential.
• Today most forensic analysis is done manually.
• We are developing techniques & tools to allow automation.

2. Concentrate on the invisible.
• It’s easy to wipe a computer….

— but targets don’t erase what they can’t see.
• So we look for:

—Deleted and partially overwritten files.
—Fragments of memory in swap & hibernation.
—Tool marks.

3. Large amounts of data is essential.
• Most research is based on search & recognition

—10x the data produces 10x the false-positives
• We develop algorithms that work better with more data.

Three principles underly my research:
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corresponding to deleted files, the restart markers are
searched. After identifying any of the seven restart markers,
all the bits prior to marker position are discarded and resulting
data is merged with the first part of the file or with the header
extracted from the original JPEG file and decoded. Recovered
files are displayed in Fig. 5. It can be seen that fragments of the
original file can be successfully recovered. It should be noted
that because the stored image size in the header is not

modified, in all cases images appear in the right size, but the
content is shifted.

5.2. Recovery of stand-alone fragments by use of pseudo
headers

Obviously without a valid header, a JPEG file or a part of it
cannot be decoded. Given this fact, in this section, we pose the
question of what information one will need to reconstruct
a pseudo header that can be utilized in decoding of a stand-
alone file fragment. The information that can be inferred by

analysis of encoded file data will not be sufficient to recon-
struct a file header. Our premise is that image files stored on
a recovery medium will be interrelated to some extent. This
relation may exist because images may have been captured by
the same camera, edited by the same software tools, or
downloaded from the same Web pages. All these factors

induce different levels of shared information among the
neighboring files in terms of their encoding properties which
may vary from image quality settings to specifications of the
encoder. Therefore, in essence, we will investigate the
possible use of encoding related information from recovered
files in recovery of stand-alone fragments.

Considering only baseline JPEG/JFIF images, the most
common JPEG encoding method used by most digital cameras

and on the Web, the information needed to encode/decode an
image can be categorized into four types. These are:

1. the width and height of the image specified in number of
pixels;

2. the 8! 8 quantization tables used during compression;
3. the number of color components and type of chroma sub-

sampling used in composition of MCUs; and
4. the Huffman code tables.

Decoder essentially needs image size so that the number of

MCUs can be computed and the image blocks obtained by
decoding of each of the MCUs can be laid out at their proper
locations on the image. Since the encoded values are not the
quantized values, but the associated quantizer bin values,
quantization tables are needed to perform de-quantization
prior to inverse-DCT transformation. The composition of

Fig. 5 – Recovered files after erasure of random amounts of data from tail (upper left), center (upper center and right), and
both header and tail parts (lower row) of the original image.
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Sencar and Memon (2009)

Missing JPEG Header

Missing JPEG Footer

1 2 3



The Real Data Corpus (30TB)
• Disks, camera cards, & cell phones purchased on the secondary market.
• Most contain data from previous users.
• Mostly acquire outside the US:

—Canada, China, England, Germany, France, 
India, Israel, Japan, Pakistan, Palestine, etc.

• Thousands of devices (HDs, CDs, DVDs, flash, etc.)

Mobile Phone Application Corpus 
• Android Applications; Mobile Malware; etc.

The problems we encounter obtaining, curating and exploiting this 
data mirror those of national organizations

—Garfinkel, Farrell, Roussev and Dinolt, Bringing Science to Digital Forensics with 
Standardized Forensic Corpora, DFRWS 2009
http://digitalcorpora.org/ 
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We do science with “real data.”

http://www.simson.net/clips/academic/2009.DFRWS.Corpora.pdf
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http://www.simson.net/clips/academic/2009.DFRWS.Corpora.pdf
http://digitalcorpora.org
http://digitalcorpora.org


Files from US Government Web Servers (500GB)
• ≈1 million heterogeneous files

—Documents (Word, Excel, PDF, etc.); Images (JPEG, PNG, etc.)
—Database Files; HTML files; Log files; XML

• Freely redistributable; Many different file types
• This database was surprising difficulty to collect, curate, and distribute:

—Scale created data collection and management problems.
—Copyright, Privacy & Provenance issues.

Advantage over flickr & youtube: persistence & copyright
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We manufacture data that can be freely redistributed.

      <abstract>This data set contains data for birds caught 
with mistnets and with other means for sampling Avian 
Influenza (AI)….</abstract>

 <abstract>NOAA&apos;s National Geophysical Data Center 
(NGDC) is building high-resolution digital elevation models 
(DEMs) for select U.S. coastal regions. … </abstract>



✔

This talk presents today’s digital forensic challenges and 
presents a research project that helps address them.

Introducing digital forensics

" Today’s digital forensics challenges

" " " " Random sampling for
" " " " high speed forensics
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Challenges Facing
Digital Forensics



Extracting digital evidence was simple five years ago

“Imaging tools” extracted data without modification.

• "Forensic copy" or "disk image."
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Forensic copy  (“disk image”)
stored on a storage array.

Original device stored in 
evidence locker.

“Write Blocker” prevents 
accidental overwriting.



Analyzing digital evidence was simple five years ago

Commercial tools extracted files from disk images
• Display of allocated & deleted files.
• String search
• File extraction
• File “carving”
• Examining disk sectors

Job of analyst:
• Find interesting data
• Report on it.
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These approaches no longer work.

Hypothetical case
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Dead Body Cell Phone



All of the details matter

Operating system:
• Android?  iPhone?  Blackberry?  Feature Phone?

Access to the data:
• PIN lock?
• Encrypted Storage?
• Stored locally or in the cloud?

Applications:
• Built-in? Downloaded from “App Store”?
• Custom-written?
• Self-destruct / remote wipe?
• Malware?

Human Language: English? Korean? Chinese? 

16



Opening up the phone doesn’t guarantee the data.

A typical Android phone has:
• On-phone storage
• SD card
• SIM chip

Also:
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Digital forensics is fundamentally different from other 
kinds of scientific exploration...

There are five key challenges that we face...

18



1: Diversity —of systems, file and content

Our charter:
“Analyze any data that might be found on a computer.”

Non-DF research is typically confined to a single area:

DF must analyze any OS, application, protocol, encryption, etc...

19

energy math literature chemistry



2: Diversity over time

Today’s DF tools must process:
• Today’s computers / phones / cameras

—Because some criminals like to buy what’s new!
• Yesterday’s computers / phones / cameras

—Because criminals are using old devices too!

Implications for DF users and developers:
• Upgrade DF software as soon as possible.
• DF software will become geometrically more complicated over time....

—... or DF software will adapt on the fly to new data formats and representations.
—automated code analysis; pattern matching; hidden Markov models; etc.
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3: Data scale 

Every year we have more data to analyze

Moore’s law helps the adversary as much as us!
• We are using top-of-the-line system to analyze top-of-the-line systems
• We need to analyze in days what a subject spent weeks, months or years assembling

—We will never outpace the performance curve.

We must adopt “big data solutions”
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4: Human capital challenges — especially in DF

Users (examiners, analysts):
• Overwhelmingly in law enforcement.
• Little or no background in CS or IS
• Deadline-driven; over-worked
• Knowledgable users tend to focus in just one particular area.

—Result: It takes two years to train most DF examiners.

Researchers and Developers:
• Data diversity means developers need to know the whole stack

—opcodes & Unicode ⇒ OS & Apps ⇒ networking, encryption, etc.

• Scale issues means developers need to know HPC:
—threading, systems engineering, supercomputing, etc.

• Result: 
—It’s hard to find qualified developers
—Developers must be generalists
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5: The “CSI Effect” — unrealistic expectations.

TV digital forensics:
• Every investigator is trained on every tool.
• Correlation is easy and instantaneous.
• There are no false positives.
• Overwritten data can be recovered.
• Encrypted data can usually be cracked.
• It is impossible to delete anything.

The reality:
• Overwritten data cannot be recovered
• Encrypted data usually can't be decrypted
• Forensics rarely answers questions or establishes guilt
• Tools crash a lot

Result: 
—DF is a difficult process that looks easy
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DF must respond with new science.

Current approaches don’t scale.
• User spent years assembling email, documents, etc
• Analysts have days or hours to process it
• Police analyze top-of-the-line systems 

—with top-of-the-line systems
• National Labs have large-scale server farms 

—to analyze huge collections

Our new algorithms must leverage our advantage: massive data
• Outlier detection and correlation
• Operate autonomously on incomplete, heterogeneous datasets
• Automatically calibrate; have no false positives
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High speed forensic analysis 
with random sampling



US agents encounter hard drives at border crossings...

US agents might have a need to search a room of computers:

What can we learn about a 1TB drive in five minutes?
26

Traditionally forensic analysis was leisurely.
Today much analysis is under time pressure.



Random sampling is a powerful tool for analyzing data

Simple random sampling can determine % free space

" Data characterization can determine the kind of stored data

" " Sector hashing can identify specific target files
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Audio Data reported by iTunes: 2.25 GiB 2.42 GB
MP3 files reported by file system: 2.39 GB
Estimated MP3 usage with random sampling : 2.49 GB 10,000 random samples

2.71 GB 5,000 random samples

Figure 1: Usage of a 160GB iPod reported by iTunes 8.2.1 (6) (top), as reported by the file system (bottom center), and
as computing with random sampling (bottom right). Note that iTunes usage actually in GiB, even though the program
displays the “GB” label.

length offset. If a frame is recognized from byte pat-
terns and the next frame is found at the specified off-
set, then there is a high probability that the fragment
contains an excerpt of the media type in question.

Field validation Once headers or frames are recognized,
they can be validated by “sanity checking” the fields
that they contain.

n-gram analysis As some n-grams are more common
than others, discriminators can base their results
upon a statistical analysis of n-grams in the fragment.

Other statistical tests Tests for entropy and other statis-
tical properties can be employed.

Context recognition Finally, if a fragment cannot be
readily discriminated, it is reasonable to analyze the
adjacent fragments. This approach works for frag-
ments found on a hard drive, as most files are stored
contiguously[15]. This approach does not work for
identifying fragments in physical memory, however,
as modern memory systems make no effort to co-
locate adjacent fragments in the computer’s physical
memory map.

4.3 Three Discriminators
In this subsection we present three discriminators that

we have created. Each of these discriminators was devel-
oped in Java and tested on the NPS govdocs1 file corpus
[16], supplemented with a collection of MP3 and other
files that were developed for this project.

To develop each of these discriminators we started
with a reading of the file format specification and a vi-
sual examination of file exemplars using a hex editor (the
EMACS hexl mode), the Unix more command, and the
Unix strings command. We used our knowledge of file
types to try to identify aspects of the specific file format
that would be indicative of the type and would be unlikely
to be present in other file types. We then wrote short test
programs to look for the features or compute the relevant
statistics for what we knew to be true positives and true
negatives. For true negatives we used files that we thought

would cause significant confusion for our discriminators.
4.3.1 Tuning the discriminators

Many of our discriminators have tunable parameters.
Our approach for tuning the discriminators was to use a
grid search. That is, we simply tried many different possi-
ble values for these parameters within a reasonable range
and selected the parameter value that worked the best. Be-
cause we knew the ground truth we were able to calcu-
late the true positive rate (TPR) and the false positive rate
(FPR) for each combination of parameter settings. The
(FPR,TPR) for the particular set of values was then plot-
ted as an (X,Y) point, producing a ROC curve[25].
4.3.2 JPEG Discriminator

To develop our JPEG discriminator we started by read-
ing the JPEG specification. We then examined a number
of JPEGs, using as our source the JPEGs from the gov-
docs1 corpus[16].

JPEG is a segment-based container file in which each
segment begins with a FF byte followed by segment
identifier. Segments can contain metadata specifying the
size of the JPEG, quantization tables, Huffman tables,
Huffman-coded image blocks, comments, EXIF data, em-
bedded comments, and other information. Because meta-
data and quantization tables are more-or-less constant and
the number of blocks is proportional to the size of the
JPEG, small JPEGs are dominated by metadata while
large JPEGs are dominated by encoded blocks.

The JPEG format uses the hex character FF to indi-
cate the start of segments. Because this character may oc-
cur naturally in Huffman-coded data, the JPEG standard
specifies that naturally occurring FFs must be “stuffed”
(quoted) by storing them as FF00.

Our JPEG discriminator uses these characteristics to
identify Huffman-coded JPEG blocks. Our intuition was
to look for blocks that had high entropy but which had
more FF00 sequences than would be expected by chance.
We developed a discriminator that would accept a block as
JPEG data if the entropy was considered high—that is, if
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It takes 3.5 hours to read a 1TB hard drive.
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In 5 minutes you can read:
• 36 GB in one strip
• 100,000 randomly chosen 64KiB strips (assuming 3 msec/seek)

Minutes 208 5 5

Data 1 TB 36 GB 6.5 GB

# Seeks 1 1 100,000

% of data 100% 3.6% 0.65%



The statistics of a randomly chosen sample
predict the statistics of a population.
US elections can be predicted 
by sampling thousands of 
households:
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Hard drive contents can be predicted 
by sampling thousands of sectors:

The challenge is identifying the 
sector content that is sampled.

The challenge is identifying 
likely voters.



Challenge for political polls: interpreting each phone call

“On Tuesday, how will you vote for governor?”
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Challenge for forensic sampling: interpreting each sector

“What data do you have?”
• Easy:

0000000: ffd8 ffe0 0010 4a46 4946 0001 0201 0048  ......JFIF.....H
0000010: 0048 0000 ffe1 1d17 4578 6966 0000 4d4d  .H......Exif..MM
0000020: 002a 0000 0008 0007 0112 0003 0000 0001  .*..............
0000030: 0001 0000 011a 0005 0000 0001 0000 0062  ...............b
0000040: 011b 0005 0000 0001 0000 006a 0128 0003  ...........j.(..
0000050: 0000 0001 0002 0000 0131 0002 0000 001b  .........1......
0000060: 0000 0072 0132 0002 0000 0014 0000 008d  ...r.2..........
0000070: 8769 0004 0000 0001 0000 00a4 0000 00d0  .i..............
0000080: 0000 0048 0000 0001 0000 0048 0000 0001  ...H.......H....
0000090: 4164 6f62 6520 5068 6f74 6f73 686f 7020  Adobe Photoshop 
00000a0: 4353 2057 696e 646f 7773 0032 3030 353a  CS Windows.2005:
00000b0: 3035 3a30 3920 3136 3a30 313a 3432 0000  05:09 16:01:42..
00000c0: 0000 0003 a001 0003 0000 0001 0001 0000  ................
00000d0: a002 0004 0000 0001 0000 00c8 a003 0004  ................
00000e0: 0000 0001 0000 0084 0000 0000 0000 0006  ................
00000f0: 0103 0003 0000 0001 0006 0000 011a 0005  ................

• Hard:
000a000: 0011 fa71 57f4 6f5f ddff 00bd 15fb 5dfd  ...qW.o_......].
000a010: a996 0fc9 dff1 ff00 b149 e154 97f4 efd5  .........I.T....
000a020: e3f5 7f47 71df 8ffb d5d7 da9e d87f c12f  ...Gq........../
000a030: f8ff 00d8 b1f4 b1f8 ff00 c57e ab7a ff00  ...........~.z..
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We think of computers as devices with files.
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Data on computers is stored in fixed-sized sectors.
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Data in a sector can be resident:

Files can be “deleted” but the data remains:

Sectors can be wiped clean:

Resident Data

Deleted Data

No Data blank sectors 

} user files
email messages
[temporary files]



Resident data is the data you see from the root directory.
e.g. “allocated” files.

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth
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Resident Data



usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

“Deleted data” is on the disk, 
but can only be recovered with forensic tools.

35

Deleted Data



usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Some sectors are blank.
They have “No data.”
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No Data



.

.

Files

Deleted Files

Zero Blocks

Sampling can’t distinguish allocated from deleted data.

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8
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Sampling can tell us about the content of the data

Sampling can tell us the proportion of...
—blank sectors; video; HTML files; other data types...
—data with distinct signatures...

...provided we can identify it
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Many organizations discard used computers. 
Can we verify if a disk is properly wiped in 5 minutes?

Simple solution:
• 1. Read a random sector

—If there is data, the drive is not wiped.
• 2. Repeat until satisfied.

Simplify the problem.
Can we use statistical sampling to verify wiping?
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A 1TB drive has 2 billion sectors.
What if we read 10,000 and they are all blank?
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A 1TB drive has 2 billion sectors.
What if we read 10,000 and they are all blank?
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A 1TB drive has 2 billion sectors.
What if we read 10,000 and they are all blank?

Chances are good that they are all blank.
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If the disk has 1,999,999,999 blank sectors  (1 with data)
• The sample is representative of the population.

We will only find that 1 sector with exhaustive search.

.

Random sampling won't find a single written sector.
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If half of the sectors are blank...

The distribution of the data does not matter if sampling is random.
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Sectors Blank Data

Sampled 5,000 (50%) 5,000 (50%)

Total: 1,000,000,000 (50%) 1,000,000,000 (50%)



What if the the sampled sectors 
are the only blank sectors?

If the the only sectors read are blank...
—We are incredibly unlucky.
—Somebody has hacked our random number generator!

43

.
.

.
.

.
.

.
.

.
.

.
.

.

Sectors Blank Data

Sampled 10,000 (100%) 0 (0%)

Total: 10,000 (0.0005%) 1,999,990,000 (99%)



This is an example of the "urn" problem from statistics

Assume a 1TB disk has 10MB of data.
• 1TB = 2,000,000,000 = 2 Billion 512-byte sectors!
• 10MB = 20,000 sectors

Read just 1 sector; the odds that it is blank are:

44

2, 000, 000, 000� 20, 000

2, 000, 000, 000
= .99999
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2, 000, 000, 000� 20, 000

2, 000, 000, 000
= .99999

first pick second pick Odds we may have 
missed something

(
2, 000, 000, 000� 20, 000

2, 000, 000, 000
)(
1, 999, 999, 999� 20, 000

2, 000, 000, 000
) = .99998

Read 2 sectors. The odds that both are blank are:



The more sectors picked, the less likely we are to miss 
the data….
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stored in a database. Periodically, a subset of the meta-
data in the database is published as the NSRL Reference
Dataset (RDS), NIST Special Database 28.[22]

This paper does not address the possibility of retriev-
ing data from a disk sector that has been overwritten: we
assume that when a sector is written with new data the
previous contents of the sector are forever lost. Although
we understand that this issue is a subject to some matter
of debate, we know of no commercial or non-commercial
technology on the planet that can recover the contents of
an overwritten hard drive. Those who maintain otherwise
are invited to publish their experimental results.

1.2 Outline of this paper
Section 2 introduces the technique and applies it to the

problem of sanitization verification. Section 3 shows how
the technique can be extended to other important prob-
lems through the use of file fragment identification tools.
Section 5 discusses specific identifiers that we have writ-
ten and presents a new technique that we have developed
for creating these identifiers using a combination of in-
trospection and grid computing. Section 6 discusses our
application of this work to the classification of a test disk
image created with a 160GB Apple iPod. Section 7.1
presents opportunities for future research.

2 Random Sampling for Verification
Hard drives are frequently disposed of on the sec-

ondary market without being properly sanitized. Even
when sanitizing is attempted, it can be difficult to verify
that the sanitization has been properly performed.

A terabyte hard drive contains roughly 2 billion 512-
byte sectors. Clearly, the only way to verify that all of the
sectors are blank is to read every sector. In order to be sure
with a 95% chance of certainty (that is, with p < 0.05)
that there are no sectors with a trace of data, it would be
necessary to read 95% of the sectors. This would take
such a long amount of time that there is no practical reason
not to read the entire hard drive.

In many circumstances it is not necessary to verify that
all of a disk’s sectors are in fact blank: it may be sufficient
to determine that the vast majority of the drive’s storage
space has been cleared. For example, if a terabyte drive
has been used to store home mortgage applications, and if
each application is 10MB in size, it is sufficient to show
that less than 10MB of the 1TB drive contains sectors that
have been written to establish that the drive does not con-
tain a complete mortgage application. More generally, a
security officer may be satisfied that a drive has less than
10MB of data prior to disposal or repurposing.

2.1 Basic Theory
If the drive has 10MB of data, then 20,000 of the

drive’s 2 billion sectors have data. If a single sector is
sampled, the probability of finding one of those non-null

sectors is precisely:

20, 000
2, 000, 000, 000

= 0.00001 = 10�5 (1)

This is pretty dreadful. Put another way, the probability
of not finding the data that’s on the disk is

2, 000, 000, 000� 20, 000
2, 000, 000, 000

= 0.99999 (2)

Almost certainly the data will be missed by sampling a
single sector.

If two randomly chosen sectors are sampled, the prob-
ability of not finding the data on either sampling lowers
slightly to:

2, 000, 000, 000� 20, 000
2, 000, 000, 000

⇥ 1, 999, 999, 999� 20, 000
1, 999, 999, 999

= 0.99997999960000505 (3)

This is still dreadful, but there is hope, as each repeated
random sampling lowers the probability of not finding one
of those 20,000 sectors filled with data by a tiny bit.

This scenario is an instance of the well-known “Urn
Problem” from probability theory (described here with
nomenclature as in [7]). We are treating our disk as an
urn that has N balls (two billion disk sectors) of one of
two colors, white (blank sectors) and black (not-blank
sectors). We hypothesize that M (20,000) of those balls
are black. Then a sample of n balls drawn without re-
placement will have X black balls. The probability that
the random variable X will be exactly x is governed by
the hypergeometric distribution:

P (X = x) = h(x;n, M, N) =

�
M

x

⇥�
N�M

n�x

⇥
�
N

n

⇥ (4)

This distribution resolves to a form simpler to compute
when seeking the probability of finding 0 successes (disk
sectors with data) in a sample, which we also inductively
demonstrated above:

P (X = 0) =
n⇤

i=1

((N � (i� 1))�M)
(N � (i� 1))

(5)

Because this calculation can be computationally inten-
sive, we resort to approximating the hypergeometric dis-
tribution with the binomial distribution. This is a proper
simplification so long as the sample size is at most 5%
of the population size [7]. Analyzing a 1TB hard drive,
we have this luxury until sampling 50GB (which would
be slow enough to defeat the advantages of the fast anal-
ysis we propose). Calculating the probability of finding 0
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Sampled sectors Probability of not finding data
1 0.99999

100 0.99900
1000 0.99005

10,000 0.90484
100,000 0.36787
200,000 0.13532
300,000 0.04978
400,000 0.01831
500,000 0.00673

Table 1: Probability of not finding any of 10MB of data on
a 1TB hard drive for a given number of randomly sampled
sectors. Smaller probabilities indicate higher accuracy.

Non-null data Probability of not finding data
Sectors Bytes with 10,000 sampled sectors
20,000 10 MB 0.90484

100,000 50 MB 0.60652
200,000 100 MB 0.36786
300,000 150 MB 0.22310
400,000 200 MB 0.13531
500,000 250 MB 0.08206
600,000 300 MB 0.04976
700,000 350 MB 0.03018

1,000,000 500 MB 0.00673

Table 2: Probability of not finding various amounts
of data when sampling 10,000 disk sectors randomly.
Smaller probabilities indicate higher accuracy.

colors, white (blank) sectors and black (non-blank) sec-
tors. We hypothesize that M (20,000) of those balls are
black. A sample of n balls is drawn without replacement,
and X of these drawn balls are black. The probability that
X will be exactly x is governed by the hypergeometric
distribution:

P (X = x) = h(x;n, M, N) =

�
M

x

��
N�M

n�x

�
�
N

n

� (4)

This distribution resolves to a form that is simpler to
compute when seeking the probability of X = 0, that is,
of finding no black balls (or no disk sectors containing
data):

P (X = 0) =
nY

i=1

((N � (i� 1))�M)
(N � (i� 1))

(5)

This is the same formula that we demonstrated with
induction in (3).

While this formula is computationally intensive, it can
be approximated with the binomial distribution when the
sample size is less than 5% of the population size [4] with
this approximation:

P (X = 0) = b(0;n,

M

N

) =
✓

1� M

N

◆
n

(6)

Interperting this equation can be a bit difficult, as there
are two free variables and a double-negative. That is, the
user determines the number of sectors to be randomly
sampled and the hypothesis to be invalidated—in this
case, the hypothesis is that the disk contains more than
a certain amount of data. Then, if all of the sectors that
are read contain no data, the equation provides the proba-
bility that the data are on the disk but have been missed. If

this probability is small enough then we can assume that
the hypothesis is not valid and the data are not on the disk.

Tables 1 and 2 look at this equation in two different
ways. Table 1 hypothesizes 10MB of data on a 1TB drive
and examines the probability of missing the data with dif-
ferent numbers of sampled sectors. Table 2 assumes that
10,000 sectors will be randomly sampled and reports the
probability of not finding increasing amounts data.

In the social sciences it is common to use 5% as an
acceptable level for statistical tests. According to Table 2,
if 10,000 sectors are randomly sampled from a 1TB hard
drive and they are all blank, then one can say with 95%
confidence that the disk has less than 300MB of data (p <

.05). The drive may have no data (D0), or it may have one
byte of data (D1), but it probably has less than 300MB.1

For law enforcement and military purposes, we believe
that a better probability cutoff is p < .01—that is, we
would like to be wrong not with 1 chance in 20, but with
1 chance in 100. For this level of confidence, 500,000 sec-
tors on the hard drive must be sampled to be “sure” that
there is less than 10MB of data, and sampling 10,000 sec-
tors only allows one to maintain that the 1TB drive con-
tains at most 500MB of data.
2.3 In Defense of Random Sampling

In describing this work to others, we are sometimes
questioned regarding our decision to employ random sam-
pling. Some suggest that much more efficient sampling
can be performed by employing a priori knowledge of
the process that was used to write the data to the storage
device in the first place.

For example, if an operating system only wrote suc-

1Of course, the drive may have 1,999,980,000 sectors
of data and the person doing the sampling may just be
incredibly unlucky; this might happen if the Data Hider is
able to accurately predict the output of the random number
generator used for picking the sectors to sample.

3

—Pick 500,000 random sectors
—If are all NULL, the disk has p=(1-.00673) chance of having 10MB of non-NULL data
—The disk has a 99.3% chance of having less than 10MB of data



In practice, we use a modified algorithm...

Sample with 64KiB “blocks” instead of 512-byte sectors.
• It takes the same amount of time to read 65,536 bytes as 512 bytes
• Analyze 64KiB block with a 4KiB sliding window
• On a 1TB drive, there are 15,258,789 64KiB sections

Identify data “type”
• Blank
• JPEG
• Video
• Encrypted

Update results in real-time
• Provides immediate feedback
• Catches important data faster
• Stop when analyst is satisfied.
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We used this technique to calculate the size of the 
TrueCrypt volume on this iPod.
It takes 3+ hours to read all the data on a 160GB iPod.

• Apple bought very slow hard drives.
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We got a statistically significant sample in two minutes.
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The % of the sample will approach the % of the population.

Image

Encrypted

Blank



The challenge: identifying a file “type” from a fragment.

Can you identify a JPEG file
from reading 4 sectors
in the middle?
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One approach: hand-tuned discriminators based on a 
close reading of the specification.
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For example, the JPEG format "stuffs" FF with a 00.



We built detectors to recognize the different parts of a 
JPEG file.
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000107.jpg
Bytes: 41,572 

Sectors: 82



Nearly 50% of this 57K file identifies as “JPEG”
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000897.jpg
Bytes: 57596 Sectors: 113



This is called the file fragment classification problem.
We can reliably classify JPEG, MPEG, Huffman, and other types.

Nearly 100% of this file identifies as “JPEG.”
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000512.jpg
Bytes: 195,311 Sectors: 382



Our numbers from sampling are similar to those reported by iTunes.

We accurately determined:
• % of free space; % JPEG; % encrypted

—Simson Garfinkel, Vassil Roussev, Alex Nelson and Douglas White, 
Using purpose-built functions and block hashes to enable small block and sub-file 
forensics, DFRWS 2010, Portland, OR

Combine random sampling with sector ID to obtain the 
forensic contents of a storage device.
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Audio Data reported by iTunes: 2.25 GiB 2.42 GB
MP3 files reported by file system: 2.39 GB
Estimated MP3 usage with random sampling : 2.49 GB 10,000 random samples

2.71 GB 5,000 random samples

Figure 1: Usage of a 160GB iPod reported by iTunes 8.2.1 (6) (top), as reported by the file system (bottom center), and
as computing with random sampling (bottom right). Note that iTunes usage actually in GiB, even though the program
displays the “GB” label.

length offset. If a frame is recognized from byte pat-
terns and the next frame is found at the specified off-
set, then there is a high probability that the fragment
contains an excerpt of the media type in question.

Field validation Once headers or frames are recognized,
they can be validated by “sanity checking” the fields
that they contain.

n-gram analysis As some n-grams are more common
than others, discriminators can base their results
upon a statistical analysis of n-grams in the fragment.

Other statistical tests Tests for entropy and other statis-
tical properties can be employed.

Context recognition Finally, if a fragment cannot be
readily discriminated, it is reasonable to analyze the
adjacent fragments. This approach works for frag-
ments found on a hard drive, as most files are stored
contiguously[15]. This approach does not work for
identifying fragments in physical memory, however,
as modern memory systems make no effort to co-
locate adjacent fragments in the computer’s physical
memory map.

4.3 Three Discriminators
In this subsection we present three discriminators that

we have created. Each of these discriminators was devel-
oped in Java and tested on the NPS govdocs1 file corpus
[16], supplemented with a collection of MP3 and other
files that were developed for this project.

To develop each of these discriminators we started
with a reading of the file format specification and a vi-
sual examination of file exemplars using a hex editor (the
EMACS hexl mode), the Unix more command, and the
Unix strings command. We used our knowledge of file
types to try to identify aspects of the specific file format
that would be indicative of the type and would be unlikely
to be present in other file types. We then wrote short test
programs to look for the features or compute the relevant
statistics for what we knew to be true positives and true
negatives. For true negatives we used files that we thought

would cause significant confusion for our discriminators.
4.3.1 Tuning the discriminators

Many of our discriminators have tunable parameters.
Our approach for tuning the discriminators was to use a
grid search. That is, we simply tried many different possi-
ble values for these parameters within a reasonable range
and selected the parameter value that worked the best. Be-
cause we knew the ground truth we were able to calcu-
late the true positive rate (TPR) and the false positive rate
(FPR) for each combination of parameter settings. The
(FPR,TPR) for the particular set of values was then plot-
ted as an (X,Y) point, producing a ROC curve[25].
4.3.2 JPEG Discriminator

To develop our JPEG discriminator we started by read-
ing the JPEG specification. We then examined a number
of JPEGs, using as our source the JPEGs from the gov-
docs1 corpus[16].

JPEG is a segment-based container file in which each
segment begins with a FF byte followed by segment
identifier. Segments can contain metadata specifying the
size of the JPEG, quantization tables, Huffman tables,
Huffman-coded image blocks, comments, EXIF data, em-
bedded comments, and other information. Because meta-
data and quantization tables are more-or-less constant and
the number of blocks is proportional to the size of the
JPEG, small JPEGs are dominated by metadata while
large JPEGs are dominated by encoded blocks.

The JPEG format uses the hex character FF to indi-
cate the start of segments. Because this character may oc-
cur naturally in Huffman-coded data, the JPEG standard
specifies that naturally occurring FFs must be “stuffed”
(quoted) by storing them as FF00.

Our JPEG discriminator uses these characteristics to
identify Huffman-coded JPEG blocks. Our intuition was
to look for blocks that had high entropy but which had
more FF00 sequences than would be expected by chance.
We developed a discriminator that would accept a block as
JPEG data if the entropy was considered high—that is, if
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http://simson.net/clips/academic/2010.DFRWS.SmallBlockForensics.pdf
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Finding Known Content with 
Sector Hashing...

. .
. .. .

. . ...
.

.



Most forensics processing tries to understand the 
internal structure of data files...
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41,572 bytes



Files can also be viewed as a set of ordered blocks.
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41,572 bytes

Block # Byte Range Values...

0   0- 511
ffd8 ffe0 0010 
4a46 4946 0001 
0201 0048...

1 512-1023
0c0c 0c0c ffc0 
0011 0800 6a00 
a003 0122...

2 1024-1535
4fa7 7567 ded2 
cac5 8c82 2bf4 
9e1c 23f9...

3 1536-2047
fafd 1527 e459 
e934 c173 59ad 
9234 f09f...

4 ...



Compute the cryptographic hash of each block.
These are “block hashes.”

Question: how often do these block hashes occur in other JPEGs?
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Block # Byte Range MD5*(block(N))

0   0- 511 dc0c20abad42d487a74f308c69d18a5a

1 512-1023 9e7bc64399ad87ae9c2b545061959778

2 1024-1535 6e7f3577b100f9ec7fae18438fd5b047

3 1536-2047 4594899684d0565789ae9f364885e303

4 ...



Should these block hashes be in other files?

Specific byte sequences in high-entropy data are very rare.
• 512 bytes = 256512 =101,233 possible sectors

But metadata might be common:
• Specific headers
• Common color tables
• “all black”

You need to survey 
the datasphere to find out.
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MD5*(block(N))

dc0c20abad42d487a74f308c69d18a5a

9e7bc64399ad87ae9c2b545061959778

6e7f3577b100f9ec7fae18438fd5b047

4594899684d0565789ae9f364885e303
Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]



We examined sector hashes from ≃4 million files

≃ 1 million in GOVDOCS1 collection
= 109,282 JPEGs (including 000107)
≃ 3 million samples of Windows malware

Our results:
• Most of the block hashes in 000107.jpg did not appear elsewhere in the corpus.
• Some of the block hashes appeared in other JPEGs.
• None of the block hashes appeared in files that were not JPEGs
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The beginning of 000107.jpg contained distinct hashes...
dc0c20abad42d487a74f308c69d18a5a   offset 0-511            1 !
9e7bc64399ad87ae9c2b545061959778   offset 512-1023         1
6e7f3577b100f9ec7fae18438fd5b047   offset 1024-1535        1
4594899684d0565789ae9f364885e303   offset 1536-2047        1
4d21b27ceec5618f94d7b62ad3861e9a   offset 2048-2559        1
03b6a13453624f649bbf3e9cd83c48ae   offset 2560-3071        1
c996fe19c45bc19961d2301f47cabaa6   offset 3072-3583        1
0691baa904933c9946bbda69c019be5f   offset 3584-4095        1
1bd9960a3560b9420d6331c1f4d95fec   offset 4096-4607        1
52ef8fe0a800c9410bb7a303abe35e64   offset 4608-5119        1
b8d5c7c29da4188a4dcaa09e057d25ca   offset 5120-5631        1
3d7679a976b91c6eb8acd1bfa3414f96   offset 5632-6143        1
8649f180275e0b63253e7ee0e8fa4c1d   offset 6144-6655        1
60ebc8acb8467045e9dcbe207f61a6c2   offset 6656-7167        1
440c1c1318186ac0e42b2977779514a1   offset 7168-7679        1
72686172f8c865231e2b30b2829e3dd9   offset 7680-8191        1
fdff55c618d434416717e5ed45cb407e   offset 8192-8703        1
fcd89d71b5f728ba550a7bc017ea8ff1   offset 8704-9215        1
2d733e47c5500d91cc896f99504e0a38   offset 9216-9727        1
2152fdde0e0a62d2e10b4fecc369e4c6   offset 9728-10239       1
692527fa35782db85924863436d45d7f   offset 10240-10751      1
76dbb9b469273d0e0e467a55728b7883   offset 10752-11263      1
171310e61a8e78364b4965b995f16ff5   offset 11264-11775      1
6865477474f8a6011108c9cbf1fff0f9   offset 11776-12287      1
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The middle of 000107.JPG had hash collisions...
9df886fdfa6934cc7dcf10c04be3464a   offset 14848-15359         1
95399e7ecc7ba1b38243069bdd5c263a   offset 15360-15871         1
ef1ffcdc11162ecdfedd2dde644ec8f2   offset 15872-16383         1
7eb35c161e91b215e2a1d20c32f4477e   offset 16384-16895         1 
38f9b6f045db235a14b49c3fe7b1cec3   offset 16896-17407         1
edceba3444b5551179c791ee3ec627a5   offset 17408-17919         1
6bc8ed0ce3d49dc238774a2bdeb7eca7   offset 17920-18431         1 
5070e4021866a547aa37e5609e401268   offset 18432-18943        14
13d33222848d5b25e26aefb87dbdf294   offset 18944-19455      9198
0dfcde85c648d20aed68068cc7b57c25   offset 19456-19967      9076
756f0bbe70642700aafb2557bf2c5649   offset 19968-20479      9118
c2c29016d3005f7a1df247168d34e673   offset 20480-20991      9237
42ff3d72b2b25f880be21fac46608cc9   offset 20992-21503      9708
b943cd0ea25e354d4ac22b886045650d   offset 21504-22015      9615
a003ec2c4145b0bc871118842b74f385   offset 22016-22527      9564
1168c351f57aad14de135736c06665ea   offset 22528-23039         7
51a50e6148d13111669218dc40940ce5   offset 23040-23551        83
365b122f53075cb76b39ca1366418ff9   offset 23552-24063        83
9ad9660e7c812e2568aaf063a1be7d05   offset 24064-24575        84
67bd01c2878172e2853f0aef341563dc   offset 24576-25087        84
fc3e47d734d658559d1624c8b1cbf2c1   offset 25088-25599        84
cb9aef5b7f32e2a983e67af38ce8ff87   offset 25600-26111         1
531aea9e5b2987f923b0f0812bd5846e   offset 26112-26623         1
cef61251eb556fd095b3347dc87d8a24   offset 26624-27135         1
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Block 37 had 9198 collisions..
The sector is filled with blank lines 100 characters long...

13d33222848d5b25e26aefb87dbdf294   offset 18944-19455      9198
$ dd if=000107.jpg skip=18944 count=512 bs=1|xxd
0000000: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000010: 2020 2020 2020 2020 2020 2020 0a20 2020              .   
0000020: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000030: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000040: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000050: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000060: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000070: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000080: 200a 2020 2020 2020 2020 2020 2020 2020   .              
0000090: 2020 2020 2020 2020 2020 2020 2020 2020                  
00000a0: 2020 2020 2020 2020 2020 2020 2020 2020                  
00000b0: 2020 2020 2020 2020 2020 2020 2020 2020                  
00000c0: 2020 2020 2020 2020 2020 2020 2020 2020                  
00000d0: 2020 2020 2020 2020 2020 2020 2020 2020                  
00000e0: 2020 2020 2020 0a20 2020 2020 2020 2020        .         
00000f0: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000100: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000110: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000120: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000130: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000140: 2020 2020 2020 2020 2020 200a 2020 2020             .    
0000150: 2020 2020 2020 2020 2020 2020 2020 2020                  
0000160: 2020 2020 2020 2020 2020 2020 2020 2020
...                
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Block 45 had 83 collisions..
It appears to contain EXIF metadata

51a50e6148d13111669218dc40940ce5   offset 23040-23551        83
$ dd if=000107.jpg skip=23040 count=512 bs=1|xxd
0000000: 3936 362d 322e 3100 0000 0000 0000 0000  966-2.1.........
0000010: 0000 0000 0000 0000 0000 0000 0000 0000  ................
0000020: 0000 0000 0000 0000 0000 0000 0000 0000  ................
0000030: 0000 0000 0000 0000 0058 595a 2000 0000  .........XYZ ...
0000040: 0000 00f3 5100 0100 0000 0116 cc58 595a  ....Q........XYZ
0000050: 2000 0000 0000 0000 0000 0000 0000 0000   ...............
0000060: 0058 595a 2000 0000 0000 006f a200 0038  .XYZ ......o...8
0000070: f500 0003 9058 595a 2000 0000 0000 0062  .....XYZ ......b
0000080: 9900 00b7 8500 0018 da58 595a 2000 0000  .........XYZ ...
0000090: 0000 0024 a000 000f 8400 00b6 cf64 6573  ...$.........des
00000a0: 6300 0000 0000 0000 1649 4543 2068 7474  c........IEC htt
00000b0: 703a 2f2f 7777 772e 6965 632e 6368 0000  p://www.iec.ch..
00000c0: 0000 0000 0000 0000 0016 4945 4320 6874  ..........IEC ht
00000d0: 7470 3a2f 2f77 7777 2e69 6563 2e63 6800  tp://www.iec.ch.
00000e0: 0000 0000 0000 0000 0000 0000 0000 0000  ................
00000f0: 0000 0000 0000 0000 0000 0000 0000 0000  ................
0000100: 0000 0000 0000 0000 0000 0000 0064 6573  .............des
0000110: 6300 0000 0000 0000 2e49 4543 2036 3139  c........IEC 619
0000120: 3636 2d32 2e31 2044 6566 6175 6c74 2052  66-2.1 Default R
0000130: 4742 2063 6f6c 6f75 7220 7370 6163 6520  GB colour space 
0000140: 2d20 7352 4742 0000 0000 0000 0000 0000  - sRGB..........
0000150: 002e 4945 4320 3631 3936 362d 322e 3120  ..IEC 61966-2.1 
0000160: 4465 6661 756c 7420 5247 4220 636f 6c6f  Default RGB colo
0000170: 7572 2073 7061 6365 202d 2073 5247 4200  ur space - sRGB.
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Block 48 had 84 collisions..
It appears to contain part of a JPEG color table...

67bd01c2878172e2853f0aef341563dc   offset 24576-25087        84
$ dd if=000107.jpg skip=24576 count=512 bs=1 |xxd
0000000: 7a27 ab27 dc28 0d28 3f28 7128 a228 d429  z'.'.(.(?(q(.(.)
0000010: 0629 3829 6b29 9d29 d02a 022a 352a 682a  .)8)k).).*.*5*h*
0000020: 9b2a cf2b 022b 362b 692b 9d2b d12c 052c  .*.+.+6+i+.+.,.,
0000030: 392c 6e2c a22c d72d 0c2d 412d 762d ab2d  9,n,.,.-.-A-v-.-
0000040: e12e 162e 4c2e 822e b72e ee2f 242f 5a2f  ....L....../$/Z/
0000050: 912f c72f fe30 3530 6c30 a430 db31 1231  ././.050l0.0.1.1
0000060: 4a31 8231 ba31 f232 2a32 6332 9b32 d433  J1.1.1.2*2c2.2.3
0000070: 0d33 4633 7f33 b833 f134 2b34 6534 9e34  .3F3.3.3.4+4e4.4
0000080: d835 1335 4d35 8735 c235 fd36 3736 7236  .5.5M5.5.5.676r6
0000090: ae36 e937 2437 6037 9c37 d738 1438 5038  .6.7$7`7.7.8.8P8
00000a0: 8c38 c839 0539 4239 7f39 bc39 f93a 363a  .8.9.9B9.9.9.:6:
00000b0: 743a b23a ef3b 2d3b 6b3b aa3b e83c 273c  t:.:.;-;k;.;.<'<
00000c0: 653c a43c e33d 223d 613d a13d e03e 203e  e<.<.="=a=.=.> >
00000d0: 603e a03e e03f 213f 613f a23f e240 2340  `>.>.?!?a?.?.@#@
00000e0: 6440 a640 e741 2941 6a41 ac41 ee42 3042  d@.@.A)AjA.A.B0B
00000f0: 7242 b542 f743 3a43 7d43 c044 0344 4744  rB.B.C:C}C.D.DGD
0000100: 8a44 ce45 1245 5545 9a45 de46 2246 6746  .D.E.EUE.E.F"FgF
0000110: ab46 f047 3547 7b47 c048 0548 4b48 9148  .F.G5G{G.H.HKH.H
0000120: d749 1d49 6349 a949 f04a 374a 7d4a c44b  .I.IcI.I.J7J}J.K
0000130: 0c4b 534b 9a4b e24c 2a4c 724c ba4d 024d  .KSK.K.L*LrL.M.M
0000140: 4a4d 934d dc4e 254e 6e4e b74f 004f 494f  JM.M.N%NnN.O.OIO
0000150: 934f dd50 2750 7150 bb51 0651 5051 9b51  .O.P'PqP.Q.QPQ.Q
0000160: e652 3152 7c52 c753 1353 5f53 aa53 f654  .R1R|R.S.S_S.S.T
0000170: 4254 8f54 db55 2855 7555 c256 0f56 5c56  BT.T.U(UuU.V.V\V
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With blocks of 512 bytes and 4KiB, the vast majority of 
sectors had distinct hashes.
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randomly generated blocks would have the same 
content. The randomness of user-generated content 
is less than 8 bits per byte, of course, but even for 
content that has entropy of 2 bits per byte, a 512-
byte block still contains 1,024 bits of entropy, again 
making it very unlikely that two blocks will be the 
same.

As Table 1 shows, all kinds of user-generated con-
tent, including word processing files, photos, and 
video, contain sectors that are not seen elsewhere—
that is, distinct blocks according to our definition. 
The frequency of distinct blocks in the OpenMalware 
2012 and 2009 NSRL RDS datasets is significantly 
lower but still quite high. However, our experiments 
make it clear that it is impossible to assume a priori 
that a given singleton block is distinct.

Origin of nondistinct blocks 
To better understand the root causes of nondistinct 

blocks, we analyzed the most common blocks from each 
corpus. Our original intuition was that blocks that had low 
entropy or that contained repeating byte patterns would 
occur frequently. We found that many of the common 
blocks indeed had these characteristics.

As expected, the block of all NUL (0×00) bytes was 
the most common block across all corpora. But we found 
other examples as well. For instance, there were more than 
200,000 occurrences of an Adobe PDF internal data struc-
ture in the Govdocs corpus. Likewise, we found several 
common blocks that contained Microsoft Office internal 
structures.

Several high-entropy blocks were common in the 
OpenMalware 2012 dataset. We found that these blocks 
occurred in different files but always at the same byte 
offset. Further analysis revealed that the containing files 
were actually different variants of the same malware, as 
reported by several antivirus tools on VirusTotal.com. The 
repeated blocks did not appear in any legitimate files listed 
in the 2009 NSRL RDS corpus. Clearly, these blocks are 
unique to a specific malware family and not general ex-
ecutables or other system files.

Although traditional file identification techniques re-
quire each variant’s hash, our findings show that shared 
blocks can identify some malware variants. We suspect 
that these common malware blocks are the result of hand-
patching existing malware and code reuse, or elementary 
attempts to change a file hash by adding bytes to the end 
of the file. 

BLOCK HASH DATABASE
To develop a useful system for performing sector analy-

sis, it is not enough to choose which or what size blocks 
should be used to capture a target dataset. It is necessary 
to, first, efficiently store the hashes for the target blocks 

and, second, check quickly enough to determine whether 
disk sectors are present in the dataset.

Performance requirements 
Our goal is to create a database of one billion file block 

hashes that can be field deployed on a laptop. The data-
base should be fast enough to support searches of hashes 
that are created by reading a consumer hard drive at the 
maximum I/O transfer rate (assuming that hashing is free). 
Given that it takes approximately 200 minutes to read the 
contents of a Tbyte-size hard drive, this translates to a 
database that can perform roughly 150,000 hash lookups 
per second. With a billion 512-byte block hashes, the data-
base would allow identification of 512 gigabytes of known 
content, a number that is sufficient for many applications. 
Because hash values are evenly distributed, the database 
can be trivially parallelized using prefix routing.4 A cluster 
with 1,000 such databases could thus support 1012 block 
hashes and address half a petabyte of known content.

Instead of hashing every sector of the drive, it is possible 
to conduct an exhaustive investigation sampling only one 
million randomly chosen sectors. Although the sample con-
tains only 0.05 percent of the drive, there is a 98.17 percent 
chance of detecting 4 Mbytes of known content, provided 
that each of those 8,000 blocks is in the database. 

This is an instance of the well-known “urn problem” in 
statistics, which describes the probability of pulling some 
number of red beans out of an urn that contains a mix of 
randomly distributed red and black beans. In this case, the 
red beans are distinct sectors, there are 8,000 (C) of them 
distributed randomly, there are two billion beans in total 
(N), and one million (n) are selected randomly. The prob-
ability p of not finding even a single red bean in n draws is

  
p =1 − 

N  − (i  − 1)( ) − C( )
N  − (i  − 1)( )

i  −  1

n

∏ .

Applying this equation to 500,000 and 250,000 randomly 
selected sectors, we find that the chance of detecting  

Table 1. Incidence of singleton, paired, and common sectors  
in three file corpora. 

No. of blocks Govdocs OpenMalware 2012 2009 NSRL RDS

Block size: 512 bytes

Singleton 911.4 M   (98.93%) 1,063.1 M   (88.69%) N/A

Pair      7.1 M        (.77%)       75.5 M     (6.30%) N/A

Common     2.7 M        (.29%)       60.0 M     (5.01%) N/A

Block size: 4 kibibytes

Singleton  117.2 M   (99.46%)     143.8 M   (89.51%) 567.0 M   (96.00%)

Pair     0.5 M        (.44%)          9.3 M     (5.79%)   16.4 M      (2.79%)

Common     0.1 M        (.11%)          7.6 M     (4.71%)      7.1 M      (1.21%)

Young, Foster, Garfinkel & Fairbanks, IEEE Computer, Dec. 2012



File systems align large files on sector boundaries.
We hash file blocks and identify sectors that match.
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Figure 1.1: Because files are stored on sector boundaries, we can search disk sectors for file blocks, or fixed-sized
chunks of data equal in size to the disk sectors. We create a file block hash database that contains block hashes for
every file that we have ever seen during an investigation. A database with 1 billion 512 B block hashes can reference
476 GB of content. Sector hashing depends on the existence of distinct file blocks, or blocks that only occur as a
copy in the original file. With full media analysis, all 4 billion sectors from the 2 TB drive are compared to the file
block hash database. With media sampling, only 1 million of the 2 billion sectors from the 1 TB drive are compared to
identify a 4 MB file that has all distinct blocks with 98.17% accuracy. If block B is seen on a disk sector, then there
is a good chance that File 1 also exists on the disk. Block B only occurs in one file in our large corpus of known files
and is effectively distinct. If Block A is seen on a disk sector, then we are not sure if any of the files exist. Block A is
non-distinct. Sector hashing can quickly identify fully intact and incomplete files that contain distinct blocks.

This example demonstrates the use of sector hashing to identify the presence of three files (1,
2 & 3) on the subject media. The block hash database contains all of the blocks from a corpus
of every file that has ever been seen during an investigation. The database is a key-value store
where the key is a hash of a file block and the value is a list of every file in which the block
occurs.

Figure 1.1 is a graphical representation of a 2 TB disk that has four billion 512-byte sectors. It
contains three previously seen files; File 1, File 2 and File 3. File 1 and File 2 are both 60 KB
JPEG images that have 120 512-byte blocks, matching the sector size. The files are intact,
which means that every file block is currently stored in a disk sector. As shown in Figure 1.1,

2

Using distinct sectors in media sampling and full media analysis to detect presence of documents from a corpus, 
Kristina Foster, NPS Master’s Thesis, 2012



This means we can use distinct sectors to find known 
content.
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Method #1 — Full media sampling
• Read & hash every disk sector.
• Lookup hash values in a database of block hashes.
• Distinct hash imply presence of files.
• Advantage: Can find a single sector of target content

Method #2 — Random sampling
• Read & hash randomly chosen sectors.
• Lookup hash values in a database of block hashes.
• Distinct hash implies presence of files.
• Advantage: Can find presence of target content very quickly

Full Media Analysis

2 TB Drive
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Figure 1.1: Because files are stored on sector boundaries, we can search disk sectors for file blocks, or fixed-sized
chunks of data equal in size to the disk sectors. We create a file block hash database that contains block hashes for
every file that we have ever seen during an investigation. A database with 1 billion 512 B block hashes can reference
476 GB of content. Sector hashing depends on the existence of distinct file blocks, or blocks that only occur as a
copy in the original file. With full media analysis, all 4 billion sectors from the 2 TB drive are compared to the file
block hash database. With media sampling, only 1 million of the 2 billion sectors from the 1 TB drive are compared to
identify a 4 MB file that has all distinct blocks with 98.17% accuracy. If block B is seen on a disk sector, then there
is a good chance that File 1 also exists on the disk. Block B only occurs in one file in our large corpus of known files
and is effectively distinct. If Block A is seen on a disk sector, then we are not sure if any of the files exist. Block A is
non-distinct. Sector hashing can quickly identify fully intact and incomplete files that contain distinct blocks.

This example demonstrates the use of sector hashing to identify the presence of three files (1,
2 & 3) on the subject media. The block hash database contains all of the blocks from a corpus
of every file that has ever been seen during an investigation. The database is a key-value store
where the key is a hash of a file block and the value is a list of every file in which the block
occurs.

Figure 1.1 is a graphical representation of a 2 TB disk that has four billion 512-byte sectors. It
contains three previously seen files; File 1, File 2 and File 3. File 1 and File 2 are both 60 KB
JPEG images that have 120 512-byte blocks, matching the sector size. The files are intact,
which means that every file block is currently stored in a disk sector. As shown in Figure 1.1,

2



There are significant hash and database requirements.

1TB data in 208 minutes 
• ≃ 80 Mbyte/sec
• ≃ 150,000 512-byte sectors/sec
• ≃ 150,000 database lookups/sec

Alignment uncertainty gives 4096-byte sectors same performance 
requirements:

69

Minutes 208 5

Max Data 1 TB 36 GB

Max Seeks 90,000

?

512

(a)

(b) ?

4096

?

4096
4096

4096
4096

4096

(d)

?(c)

4096

4096
4096

4096

start of file on media?



By combining a Bloom filter & database, we can perform 
up to 2.7M TPS on low-cost hardware

Hardware: 8GiB Laptop; 250GB external SSD.
—“Distinct sector hashes for target file detection,” Young, Garfinkel, Foster & 

Fairbanks, IEEE Computer, Dec. 2012
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days to create a billion-record hash map, while it took less 
than four hours on a slower, AMD Opteron 6174-based 
system (2.2 GHz, 512-KiByte L2 cache) with 256 GiBytes 
of RAM. 

We found that creating some locality by first building 
the database as a flat map and then converting to either a 
B-tree or hash map was faster than generating the B-tree 
or hash map directly. Likewise, we found that tuning 
the Linux operating system parameters dirty_ratio, 
dirty_background_ratio, and dirty_expire_centisecs 
to allow dirty pages to stay in memory longer improved 
performance by helping the OS use the disk cache more 
efficiently. 

When fielding systems using the block hash database, 
system memory and I/O speed are the prime drivers. A 
drive triage system must be able to read disk sectors as fast 
as possible from a subject drive and test hashes of those 
sectors against the database. Large RAM allows caching 
more of the database, reducing I/O pressure. The database 
should be stored on a solid state drive (SSD) to further 
speed I/O, since every lookup will require one or more 
random seeks within the database file. 

For systems supporting fixed sites, such as a customs 
and immigration checkpoint, a large memory server or 
cluster can maintain the entire database in RAM and sup-
port several triage stations over a gigabit network.

Back-end testing
We performed back-end testing with databases contain-

ing 100 million and 1 billion records. The tests were done 
on a laptop with 8 GiBytes of RAM, a 2.67-GHz processor, 
and a 250-Gbyte SSD attached via eSATA and USB2 drives. 
We performed additional testing on a desktop system with 

24 GiBytes of RAM and spinning media. All runs were per-
formed with 50/50 random blends of database hits and 
misses, which might be unrealistically pessimistic. To 
guarantee that no part of the database was already loaded 
in memory, we directed the OS to stop caching all disk files 
by syncing the disks and then writing a “3” into /proc/sys/
vm/drop_caches between each run.

Table 2 shows the read transactions per second against 
the 100 million and one billion record databases after one 
million lookups (2-384 seconds, depending on the row) and 
at 1,200 seconds, obtained with the four back-end strate-
gies and B-tree with and without preload. Performance 
graphs for all of the runs are available at http://domex.
nps.edu/deep.

The hash map offered the best performance at 100 mil-
lion records, followed in order by the red/black tree, the flat 
map, and the B-trees. There was a factor-of-eight difference 
for queries that were present, but only a 40 percent spread 
for queries that were not present. In all cases, we observed 
that database misses were dramatically faster than hits, a 
result of prefiltering with the Bloom filter. The back-end 
performance is still relevant for misses, however, due to 
the false positives. We also observed that very large Bloom 
filters negatively impacted speed because of increased 
memory pressure. At one billion records, we obtained the 
best performance with M = 33 for the no-preload B-tree. 
Note that while the hash map outperformed the other strat-
egies at 100 million records, B-trees overall dominated all 
other strategies by a factor of almost 30 (300 times better 
than the classic databases). The USB2 drive was roughly 
half the speed of the eSATA drive.

In sum, for billion-record hash databases, the B-tree 
is the best choice. For smaller datasets, the hash map 

Table 2. Total transactions per second (TPS) for best execution. 

Bloom filter Database TPS at 1 M lookups TPS at 1,200 seconds

k M Size Strategy Size Present Absent Present Absent

100 million records

3 31 257 MiBytes B-tree (preload) 2.3 GiBytes 35.3 K 49.5 K 161.3 K 1.8 M

3 31 257 MiBytes B-tree 2.3 GiBytes 11.6 K 565.8 K 156.8 K 2.3 M

3 31 257 MiBytes Hash map 5.3 GiBytes 13.9 K 656.9 K 641.9 K 3.0 M

3 31 257 MiBytes Flat map 2.2 GiBytes 28.2 K 746.9 K 356.4 K 2.6 M

3 31 257 MiBytes Red/black tree 6.0 GiBytes 12.9 K 694.5 K 187.0 K 2.7 M

1 billion records

3 34 2.1 GiBytes B-tree (preload) 23 GiBytes 2.2 K 6.1 K 3.6 K 23.1 K

3 33 1.1 GiBytes B-tree 23 GiBytes 2.6 K 85.8 K 3.7 K 114.9 K

3 33 1.1 GiBytes Hash map 57 GiBytes – – 0.3 K 3.1 K

3 34 2.1 GiBytes Flat map 22 GiBytes – – 0.4 K 4.0 K

3 33 1.1 GiBytes Red/black tree 60 GiBytes – – 0.1 K 1.4 K
Dashes indicate that 1 million queries were not completed in the 1,200 seconds allowed.



Putting it all together, we have a significant innovation...
field deployable on a single laptop.
Use Case #1: Rapidly search for known contraband:

• 1TB subject hard drive.  
• 10 min x 60 min/sec x 1000 msec/sec / 3 msec/sample = 200,000 samples
• Searching for a sector from a corpus of 512GB
• 100% recognition of a single sector; 0% false positive rate

Use Case #2: Find a single sector of known contraband:
• Time to read data & search database: 208 minutes

Technique is file type and file system agnostic 
—JPEG; Video; MSWord; Encrypted PDFs...
—provided data is not modified when copied or otherwise re-coded
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Amount of Contraband p (prob of missing contraband)

5 MB 0.3654

10 MB 0.1335

15 MB 0.0488

20 MB 0.0178

25 MB 0.0065



Find out more!
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systems consisted of simple I/O devices that transmitted 
the signals between master and remote terminal units. In 
recent years, SCADA systems have evolved to communi-
cate over public IP networks.2 Some are also connected to a 
corporate intranet or directly to the Internet to seamlessly 
integrate SCADA data with external information such as 
corporate email or weather data. 

The integration of SCADA systems within a much wider 
network brings threats that were unimagined at the time 
these systems were conceived. During the past decade, 
vendors, asset owners, and regulators recognized this 
growing concern and began to address it through new 
laws and various security mechanisms, processes, and 
standards.3   

The discoveries in the wild of Stuxnet in June 2010 
and Flame in May 2012 were additional eye-openers for 
SCADA owners and operators. Stuxnet, the first known 
malware designed to target automation systems, has  
infected 50,000 to 100,000 computers worldwide,4 while 
Flame is a cyberespionage tool an order of magnitude more 
sophisticated than Stuxnet.5 

SCADA ARCHITECTURE
As Figure 1 shows, a typical SCADA system for control-

ling infrastructures for utilities such as power, gas, oil, 
or water generally consists of a control center and nu-
merous field sites. The sites are distributed over a wide 
geographical area and are connected to the control center 
by different communication media such as satellites, wide 

A n industrial automation and control system is 
a set of devices that regulate the behavior of 
physical processes. For example, a thermo-
stat is a simple control system that senses the 

temperature and turns a heater on or off to maintain 
the temperature at a set point. These systems are used 
to monitor and control industrial and infrastructure 
processes such as chemical plant and oil refinery opera-
tions, electricity generation and distribution, and water 
management. 

A control system that is spread over a wide area and 
can supervise its individual components is often called a 
supervisory control and data acquisition (SCADA) system.1 
However, here we use the term SCADA to refer to all kinds 
of control systems that share a common key characteristic: 
they are connected to physical processes and thus need 
to be continuously available and able to respond within a 
deterministic time bound.  

Early SCADA systems were intended to run as isolated 
networks, not connected to the Internet, and thus did not 
require any specific cybersecurity mechanisms. These 

When security incidents occur, several 
challenges exist for conducting an effective 
forensic investigation of SCADA systems, 
which run 24/7 to control and monitor  
industrial and infrastructure processes. 

Irfan Ahmed, University of New Orleans

Sebastian Obermeier and Martin Naedele, ABB Corporate Research

Golden G. Richard III, University of New Orleans

SCADA 
Systems: 
Challenges 
for Forensic 
Investigators
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2011, malware attacks on the Android platform increased 
3,325 percent.10 As the use of smartphones continues its 
rapid growth, subscribers must be assured that the services 
they offer are reliable, secure, and trustworthy.

SMARTPHONE THREATS AND ATTACKS
In a smartphone threat model, a malicious user publishes 

malware disguised as a normal application through an app 
store or website. Users will unintentionally download the 
malware to a smartphone, which carries a large amount of 
sensitive data. After infiltrating a smartphone, the malware 
attempts to control its resources, collect data, or redirect the 
smartphone to a premium account or malicious website. 

This model divides a smartphone into three layers:

 The application layer includes all of the smartphone’s 
apps, such as social networking software, email, text 
messaging, and synchronization software. 

 The communication layer includes the carrier net-
works, Wi-Fi connectivity, Bluetooth network, Micro 
USB ports, and MicroSD slots. Malware can spread 
through any of these channels. 

 The resource layer includes the flash memory, camera, 
microphone, and sensors within a smartphone. Be-
cause smartphones contain sensitive data, malware 
targets their resources to control them and manipu-
late data from them. 

An attack forms a loop starting with the launch of the 
malware, moving through the smartphone’s application, 
communication, and resource layers, on to premium ac-
counts/malicious websites, and back to the malicious user. 
Figure 1 shows such an attack. 

S martphones are quickly becoming the dominant 
device for accessing Internet resources. Sales of 
smartphones overtook PC sales in the global 
market in Q4 2010.1 Shipments of smartphones 

surpassed those of feature phones in Western Europe 
in Q2 2011.2 According to a May 2011 Nielsen survey, 
smartphones outsold feature phones in the US in this 
same period.3 Compared to 5.9 billion worldwide mobile 
phone subscribers, smartphone usage (835 million) is still 
steadily increasing.4 IDC predicts smartphone shipments 
will approach one billion in 2015.5

Smartphones offer many more functions than tradi-
tional mobile phones. In addition to a preinstalled mobile 
operating system, such as iOS, Android, or Windows 
Mobile, most smartphones also typically support carrier 
networks, Wi-Fi connectivity, and Bluetooth so that users 
can access the Internet to download and run various third-
party applications. Most smartphones support Multimedia 
Message Service (MMS) and include embedded sensors 
such as GPS, gyroscopes, and accelerometers, as well as 
a high-resolution camera, a microphone, and a speaker. 

Smartphones’ increasing popularity raises many secu-
rity concerns.6-9 Their central data management makes 
them easy targets for hackers. Since the first mobile phone 
viruses emerged in 2004, smartphone users have reported 
significant malware attacks. In the last seven months of 

Because of their unique characteristics, 
smartphones present challenges requiring 
new business models that offer counter-
measures to help ensure their security.

Yong Wang, Kevin Streff, and Sonell Raman, Dakota State University

Smartphone 
Security 
Challenges 

For further reading...

73

 28 COMPUTER Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

COVER FE ATURE

There are many limitations when using file hashes to 
identify known content. Because changing just a single 
bit of a file changes its hash, pornographers, malware au-
thors, and other miscreants can evade detection simply by 
changing a comma to a period or appending a few random 
bytes to a file. Likewise, hash-based identification will not 
work if sections of the file are damaged or otherwise un-
recoverable. This is especially a problem when large video 
files are deleted and the operating system reuses a few 
sectors for other purposes: most of the video is still present 
on the drive, but recovered video segments will not appear 
in a database of file hashes.

SECTOR HASHING
We are developing alternative systems for detecting 

target files in large disk images using cryptographic hashes 
on sectors of data rather than entire files. Modern file sys-
tems align the start of most files with the beginning of a 
disk sector. Thus, when a megabyte-sized video is stored on 
a modern hard drive, the first 4 kibibytes are stored in one 
disk sector, the second 4 KiBytes are stored in another disk 
sector, typically the adjacent one, and so on. (In our work, 
we distinguish between power-of-two-based sizes of digital 
artifacts, such as kibibytes, and power-of-ten-based sizes, 
such as kilobytes. See the “Decimal versus Binary Prefixes” 
sidebar for more details.) Furthermore, by sampling ran-
domly chosen sectors from the drive, it is only necessary 
to read a tiny fraction of the drive to determine with high 
probability if a target file is present. This enables rapid triage 
of drive images.  

We compare drive sector hashes to a hash database of 
fixed-sized file fragments, which we call blocks. The terms 
“sector” and “block” are often used incorrectly as syn-

F orensic examiners frequently search disk drives, 
cell phones, and even network flows to determine 
if specific known content is present. For example, 
a corporate security officer might examine a sus-

picious employee’s laptop for unauthorized documents; 
law enforcement officers might search a suspect’s home 
computer for illegal pornography; and network analysts 
might reconstruct Transmission Control Protocol streams 
to determine if malware was downloaded. In these and 
many other cases, examiners typically identify files by 
computing their cryptographic hash—often with MD5 or 
SHA1 hash algorithms—and then searching a database for 
the resulting hash value. 

Use of hash values for file identification is pervasive 
in digital forensics—every popular forensics pack-
age has built-in support. One of the most widely used 
databases is the National Software Reference Library 
(NSRL) Reference Data Set (RDS). Version 2.36, released 
in March 2012, contains 25,892,924 distinct file hashes 
(www.nsrl.nist.gov). Other databases are available to 
customers of specific companies and to law enforcement 
organizations.

Using an alternative approach to traditional 
file hashing, digital forensic investigators 
can hash individually sampled subject 
drives on sector boundaries and then 
check these hashes against a prebuilt da-
tabase, making it possible to process raw 
media without reference to the underlying 
file system. 

Joel Young, Kristina Foster, and Simson Garfinkel, Naval Postgraduate School

Kevin Fairbanks, Johns Hopkins University

Distinct 
Sector Hashes 
for Target File 
Detection



Please try our tools!

bulk_extractor, a high-performance stream-based feature extractor
• https://github.com/simsong/bulk_extractor" " (dev tree)
• http://digitalcorpora.org/downloads/bulk_extractor" (downloads)
• http://www.sciencedirect.com/science/article/pii/S0167404812001472 (paper)

—Computers & Security, 2013
—http://simson.net/clips/academic/2013.COSE.bulk_extractor.pdf

DFXML — An XML language for doing computer forensics
• provenance, file extraction, hashes and piecewise-hashes, registry values, etc.
• https://github.com/simsong/dfxml 
• http://www.sciencedirect.com/science/article/pii/S1742287611000910

—Digital Investigation, 2012
—http://simson.net/clips/academic/2012.DI.dfxml.pdf

Data!
• http://digitalcorpora.org/
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http://www.sciencedirect.com/science/article/pii/S0167404812001472
http://www.sciencedirect.com/science/article/pii/S0167404812001472
http://www.sciencedirect.com/science/article/pii/S1742287611000910
http://www.sciencedirect.com/science/article/pii/S1742287611000910


In summary,
there are many opportunities in digital forensics.
Math and Science:

• Algorithms tolerant of data that is dirty and damaged.
• New approaches for handling data that are compressed, encoded or encrypted
• Linguistics, Natural Language Processing & Machine Learning
• Visualization

Engineering:
• Reverse engineering & product development
• Approaches for dealing with large data volumes (100TB — 10PB)
• Software that doesn’t crash

Many of the techniques here are also applicable to:
• Social Network Analysis
• Personal Information Management
• Data mining unstructured information
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