
Working with Computer Forensics Data
July 20, 2011 (SOUPS 2011 Tutorial)

Simson L. Garfinkel, Ph.D
Associate Professor, Naval Postgraduate School
http://www.simson.net/

1

http://www.simson.net
http://www.simson.net

NPS is the Navy’s Research University.

Location: Monterey, CA
Students: 1500
■ US Military (All 5 services)
■ US Civilian (Scholarship for Service & SMART)
■ Foreign Military (30 countries)
■ All students are fully funded

Schools:
■ Business & Public Policy
■ Engineering & Applied Sciences
■ Operational & Information Sciences
■ International Graduate Studies

NCR Initiative:
■ 8 offices on 5th floor, 900N Glebe Road, Arlington
■ FY12 plans: 4 professors, 2 postdocs, 2 researchers
■ Immediate slots for .gov/.mil PhDs!

2

The DOMEX challenge is to turn digital bits into actionable
intelligence.
Recent publications:
■ DoD Risks from Facebook -

—http://simson.net/clips/academic/2011.CrossTalk.Facebook.pdf
■ Forensic Carving of Network Packets and Associated Data Structures

—DFRWS 2011 (August 2011)
■ Digital Forensics Research: The next 10 years

—http://simson.net/clips/academic/2010.DFRWS.Next10Years.pdf

My current research:
Automated Document & Media Exploitation

http://www.simson.net/clips/academic/2007.ACM.Domex.pdf

3

http://simson.net/clips/academic/2011.CrossTalk.Facebook.pdf
http://simson.net/clips/academic/2011.CrossTalk.Facebook.pdf
http://simson.net/clips/academic/2010.DFRWS.Next10Years.pdf
http://simson.net/clips/academic/2010.DFRWS.Next10Years.pdf
http://www.simson.net/clips/academic/2007.ACM.Domex.pdf
http://www.simson.net/clips/academic/2007.ACM.Domex.pdf

Current NPS research thrusts in digital forensics

Area #1: End-to-end automation of forensic processing
■ Digital Forensics XML Toolkit
■ Disk Image -> Power Point

Area #2: Bulk data analysis
■ Statistical techniques (sub-linear algorithms)
■ Similarity metrics
■ Sector hashing

Area #3: Data mining for digital forensics
■ Automated social network analysis
■ Cross-drive analysis

Area #4: Creating standardized forensic corpora
■ Freely redistributable disk and memory images, packet dumps, file collections.

4

You will find additional information on the Forenscs Wiki.

5

http://www.forensicswiki.org/

http://www.forensicswiki.org/
http://www.forensicswiki.org/
http://www.forensicswiki.org
http://www.forensicswiki.org

Forensics is used to understand a system’s past or current state.
■ What did the person do with the computer?
■ What did the user see?
■ How was the computer hacked?

Working with forensics data is hard:
■ Forensics data is typically raw, inconsistent, fragmented, and sometimes corrupt.
■ Data sets are large

—typically generated by last year’s top-tier computers and networks...
—... analyzed with this year’s top-tier computers and networks.

■ Forensics data is highly variable.
—Many file systems; applications; etc.

■ Forensics problems span the abstraction stack.
—machine code, HTML, JavaScript, Authentication, Naming, Storage, Networks, etc.

This tutorial introduces forensics and forensics data for
security & usability practitioners.

6

Introducing digital forensics &
investigations

Forensic definitions
The “magic camera”
Hypothesis-based investigation

forensic |fəәˈrenzik; -sik|
■ adjective
■ of, relating to, or denoting the application of scientific methods and techniques to the

investigation of crime : forensic evidence.
■ of or relating to courts of law.

noun (forensics)
■ scientific tests or techniques used in connection with the detection of crime.
■ (also forensic) [treated as sing. or pl.] informal a laboratory or department responsible for

such tests.
—ORIGIN mid 17th cent.: from Latin forensis ‘in open court, public,’ from forum (see

forum).

There are many kinds of investigations that might involve forensics:
■ Criminal — a murder.
■ Civil — a lawsuit between companies.
■ Internal corporate — employee termination.
■ Computer crime — understanding how a computer was hacked.

Today “forensics” means the application of scientific
methods to investigations.

8

Forensic evidence is critical to many civil and criminal cases:
■ Fingerprints & DNA
■ Photograph of a crime scene
■ SMS messages

But judges and juries can’t collect and examine physical evidence:
■ They don't have the time.
■ They don’t have the training.

Investigations need to be done by forensic examiners.

9

US courts employ an adversarial process.
■ Prosecution (or plaintiff) experts look for evidence of wrongdoing.
■ Defense experts refute the interpretation

—Evidence is not relevant (e.g. from a different crime)
—Evidence was improperly collected (contaminated)
—Evidence was misinterpreted (error in training or technique)

In some cases, the Court may hire its own expert.

Evidence may be open to interpretation.

10

Broadly speaking, evidence is either physical or digital.

Physical evidence is based on physical objects.
■ Blood & DNA
■ Bullets, guns and ballistics
■ Tire tread marks.

11

Digital evidence is evidence that has some kind of
connection to computers.
There are many definitions for digital evidence:
■ “Information stored or transmitted in binary form ... relied upon in court.” [Int02]
■ “Information of probative value ... stored or transmitted in binary form.” [Sci05]
■ “[D]ata of investigative value ... stored ... or transmitted by a computer.” [Ass05]
■ “[D]ata ... that support or refute a theory of how an offense occurred or that address

critical elements ... such as intent or alibi.” [Cas04]

Example: Digital files that show evidence of a physical crime.
■ JPEGs showing child exploitation.
■ Excel files tracking drug sales.
■ Emails documenting a conspiracy

12

File analysis should be done by a forensic expert.

The forensic expert might:
■ Authenticate the file.

—That it came from the subject’s device.
—That it is a true and accurate copy.

■ Examine the file.
—Note the file’s overt file contents.
—Look for hidden data within the file.
—Determine if the data was created through normal processes or modified through

some kind of extraordinary process (e.g. a hex editor).

■ Prepare a report.

■ Testify in court.

13

many of these sources, their credibility was difficult to assess and was often left to the foreign
government services to judge. Intelligence Community HUMINT efforts against a closed society
like Iraq prior to Operation Iraqi Freedom were hobbled by the Intelligence Community's
dependence on having an official U.S. presence in-country to mount clandestine HUMINT
collection efforts.

(U) When UN inspectors departed Iraq, the placement of HUMINT agents and the
development of unilateral sources inside Iraq were not top priorities for the Intelligence
Community. The Intelligence Community did not have a single HUMINT source collecting
against Iraq's weapons of mass destruction programs in Iraq after 1998. The Intelligence
Community appears to have decided that the difficulty and risks inherent in developing sources
or inserting operations officers into Iraq outweighed the potential benefits. The Committee
found no evidence that a lack of resources significantly prevented the Intelligence Community
from developing sources or inserting operations officers into Iraq.

When Committee staff asked why the CIA had not considered
placing a CIA officer in Iraq years before Operation Iraqi Freedom to investigate Iraq's weapons
of mass destruction programs, a CIA officer said, "because it's very hard to sustain . . . it takes a
rare officer who can go in . . . and survive scrutiny | ^ | [m | | | for a long time." The
Committee agrees that such operations are difficult and dangerous, but they should be within the
norm of the CIA's activities and capabilities. Senior CIA officials have repeatedly told the
Committee that a significant increase in funding and personnel will be required to enable to the
CIA to penetrate difficult HUMINT targets similar to prewar Iraq. The Committee believes,
however, that if an officer willing and able to take such an assignment really is "rare" at the CIA,
the problem is less a question of resources than a need for dramatic changes in a risk averse
corporate culture.

(U) Problems with the Intelligence Community's HUMINT efforts were also evident in
the Intelligence Community's handling of Iraq's alleged efforts to acquire uranium from Niger.
The Committee does not fault the CIA for exploiting the access enjoyed by the spouse of a CIA
employee traveling to Niger. The Committee believes, however, that it is unfortunate,
considering the significant resources available to the CIA, that this was the only option available.
Given the nature of rapidly evolving global threats such as terrorism and the proliferation of
weapons and weapons technology, the Intelligence Community must develop means to quickly
respond to fleeting collection opportunities outside the Community's established operating areas.
The Committee also found other problems with the Intelligence Community's follow-up on the

- 2 5 -

Even photographs may require interpretation

When were these photographs taken?
Were they faked?

14

Stalin's darkroom tampered with the past.

Abel Yenukidze:
■ Shot during the purges of 1936-1938
■ Photo removed from official photographs by Stalin’s darkroom

■ “The Commissar Vanishes: The Falsification of Photographs in Stalin’s Russia.”
—http://www.newseum.org/berlinwall/commissar_vanishes/
—http://www.hoover.org/publications/digest/3531641.html

15

http://www.newseum.org/berlinwall/commissar_vanishes/
http://www.newseum.org/berlinwall/commissar_vanishes/
http://www.hoover.org/publications/digest/3531641.html
http://www.hoover.org/publications/digest/3531641.html

Computer graphics are so realistic...
... that it’s easy to mistake a simulated photo for reality.

—Can Digital Photos Be Trusted, Steve Casimiro, 9/11/2005, popsci.com
—Seeing is Not Believing, Steve Casimiro, Popular Science, Oct. 2005,

16

Traditional forensics is dominated by the
Locard Exchange Principle
Dr. Edmund Locard (1877-1966) - "Every contact leaves a trace."

■ “Wherever he steps, whatever he touches, whatever he leaves, even unconsciously,
will serve as a silent witness against him.

Not only his fingerprints or his footprints, but his hair, the fibers from his clothes, the glass
he breaks, the tool mark he leaves, the paint he scratches, the blood or semen he
deposits or collects.

All of these and more, bear mute witness against him. This is evidence that does not
forget. It is not confused by the excitement of the moment.
It is not absent because human witnesses are. It is factual evidence.

Physical evidence cannot be wrong, it cannot perjure itself, it cannot be wholly
absent. Only human failure to find it, study and understand it, can diminish its
value.

17

Every contact leaves a trace...

18

Every contact leaves a trace...

18

Every contact leaves a trace...

18

Every contact leaves a trace...

18

Every contact leaves a trace...

18

Digital forensics applies these principles to computers.

Some definitions for computer forensics/digital forensics:
■ “Involves the preservation, identification, extraction, documentation, and interpretation of

computer data.”
—(Computer Forensics: Incident Response Essentials, Warren Kruse and Jay Heiser.)

■ “The scientific examination, analysis, and/or evaluation of digital evidence in legal
matters.”

—(Scientific Working Group on Digital Evidence, http://www.swgde.org)

Digital evidence is:
■ “Information stored or transmitted in binary form ... relied upon in court.” [Int02]
■ “Information of probative value ... stored or transmitted in binary form.” [Sci05]
■ “[D]ata of investigative value ... stored ... or transmitted by a computer.” [Ass05]
■ “[D]ata ... that support or refute a theory of how an offense occurred or that address

critical elements ... such as intent or alibi.” [Cas04]

If it involves computers, it's probably digital evidence

19

many of these sources, their credibility was difficult to assess and was often left to the foreign
government services to judge. Intelligence Community HUMINT efforts against a closed society
like Iraq prior to Operation Iraqi Freedom were hobbled by the Intelligence Community's
dependence on having an official U.S. presence in-country to mount clandestine HUMINT
collection efforts.

(U) When UN inspectors departed Iraq, the placement of HUMINT agents and the
development of unilateral sources inside Iraq were not top priorities for the Intelligence
Community. The Intelligence Community did not have a single HUMINT source collecting
against Iraq's weapons of mass destruction programs in Iraq after 1998. The Intelligence
Community appears to have decided that the difficulty and risks inherent in developing sources
or inserting operations officers into Iraq outweighed the potential benefits. The Committee
found no evidence that a lack of resources significantly prevented the Intelligence Community
from developing sources or inserting operations officers into Iraq.

When Committee staff asked why the CIA had not considered
placing a CIA officer in Iraq years before Operation Iraqi Freedom to investigate Iraq's weapons
of mass destruction programs, a CIA officer said, "because it's very hard to sustain . . . it takes a
rare officer who can go in . . . and survive scrutiny | ^ | [m | | | for a long time." The
Committee agrees that such operations are difficult and dangerous, but they should be within the
norm of the CIA's activities and capabilities. Senior CIA officials have repeatedly told the
Committee that a significant increase in funding and personnel will be required to enable to the
CIA to penetrate difficult HUMINT targets similar to prewar Iraq. The Committee believes,
however, that if an officer willing and able to take such an assignment really is "rare" at the CIA,
the problem is less a question of resources than a need for dramatic changes in a risk averse
corporate culture.

(U) Problems with the Intelligence Community's HUMINT efforts were also evident in
the Intelligence Community's handling of Iraq's alleged efforts to acquire uranium from Niger.
The Committee does not fault the CIA for exploiting the access enjoyed by the spouse of a CIA
employee traveling to Niger. The Committee believes, however, that it is unfortunate,
considering the significant resources available to the CIA, that this was the only option available.
Given the nature of rapidly evolving global threats such as terrorism and the proliferation of
weapons and weapons technology, the Intelligence Community must develop means to quickly
respond to fleeting collection opportunities outside the Community's established operating areas.
The Committee also found other problems with the Intelligence Community's follow-up on the

- 2 5 -

http://www.swgde.org
http://www.swgde.org

Residual data:
■ information left on a computer after processing is finished.
■ Examples:

—deleted files — unlink() doesn’t overwrite sectors when a file is deleted.
—memory and swap files — free() doesn’t overwrite memory no longer used.

Non-obvious data:
■ Web cache files
■ System Log files
■ Router log files.

These data sources are useful because:
■ Most data is not encrypted
■ The subject of the investigation is not aware of them.

Most forensics relies on the analysis of residual data or
non-obvious data.

20

A magic camera that can:
■ View previous versions of files
■ Recover “deleted” files
■ Find out what was typed
■ Report websites visited in the past

For example, The Sleuth Kit (TSK) can view and recover deleted
files that have not been overwritten:

$ fls -o 51 nps-2009-canon2-gen6.raw 517
r/r 1029:! IMG_0044.JPG
r/r 1030:! IMG_0042.JPG
r/r 1031:! IMG_0003.JPG
...
r/r 1052:! IMG_0024.JPG
r/r * 1053:!_MG_0025.JPG
r/r 1054:! IMG_0026.JPG
...
r/r 1057:! IMG_0029.JPG
r/r * 1058:!_MG_0030.JPG
r/r 1059:! IMG_0031.JPG

Digital Forensics lets investigators go back in time...

21

But digital evidence is easily faked!

It is relatively easy to create fake evidence:
■ Photoshop!
■ Log in with some else’s username and password.
■ Run an attack through an open proxy.

Most data are not "doctored."
■ But most data are not taken into court

If the interpretation is high-stakes...
■ ... then someone has an interest in an incorrect interpretation.

This is true of all evidence...
■ It’s especially easy to doctor digital data, because the tools

are widely available.

22

When we look at a computer system,
we build a hypothesis about the computer’s past.
The hypothesis makes assumptions about:
■ The system under investigation:

—hardware (stock hardware? modified? firmware?)
—software (stock? custom? patch level?)

■ The flow of time
■ The movement of evidence
■ The system being used to investigate the data

23

Initial Configuration Event Data Copied

Typical Forensics Workflow Process

!*&%

But any piece of digital evidence can be explained by
multiple explanations.

We assume:
■ The event didn’t fake the initial configuration
■ Vulnerabilities we find were used by the attacker.

—The attacker could have created a new vulnerability to hide what was actually used
■ We can can copy all of the computer’s data

—We can’t get stuff out of L2 cache, some firmware, coprocessor, etc.
■ Our forensic tools are reliable

—The attack might be invisible due to a bug in the forensic tool

The most likely explanation may not be correct one.
24

Initial Configuration Event Data Copied

Initial Configuration Event

Opportunities for tampering can be minimized by
proactively collecting evidence.
Systems can record and retain:
■ Log files — Recording events (syslog aggregation)
■ Disk images (Snapshots)

—Guidance Software’s EnCase Forensic
—Access Data’s FTK

■ Network packets and packet flows (Network Forensics)
—Network Flight Recorder (NFR)
—NetIntercept (Niksun)

Storage is cheap!
■ A 1TB drive holds more than a week’s worth of a consumer broadband traffic (@ 100%)

Proactive evidence allows investigators to discover:
■ How a crime was committed
■ Extent of damage / Presence of illegal activity
■ Confirm/disprove an alibi

25

The “CSI Effect” causes victims and juries to have
unrealistic expectations.
On TV:
■ Forensics is swift
■ Forensics is certain
■ Human memory is reliable
■ Presentations are highly produced

TV digital forensics:
■ Every investigator is trained on every tool
■ Correlation is easy and instantaneous
■ There are no false positives
■ Overwritten data can be recovered
■ Encrypted data can usually be cracked
■ It is impossible to delete anything

26

The reality of digital forensics is less exciting.

Every investigation is beset by problems:
■ Data that is overwritten cannot be recovered
■ Encrypted data usually can't be decrypted
■ Forensics rarely answers questions or establishes guilt
■ Forensics rarely provides specific information about a specific subject

Today’s Forensic tools are poor:
■ Tools need to be guided by users to complete their tasks.
■ Tools frequently chained together (A→B→C)
■ The best tool may not be available
■ Tools crash a lot

27

Forensics has many uses beyond the courtroom.

Data Recovery:
■ Recover deleted files
■ Recover data from physically damaged media

Testing and Evaluating:
■ System Performance
■ Privacy Properties & Tools
■ Security Policies

Spot-check regulatory compliance:
■ Internal information flows
■ Data flow across network boundaries
■ Disposal policies

Performance Evaluation

28

Conclusion:
Forensics and Digital Investigations
Scientific evidence requires interpretation to get it into a court room:
■ You give a disk image to a jury

Digital evidence is easy to fake
■ You can completely wipe a computer or restore its hard drive

—You can’t image and restore a physical crime scene
■ Digital tampering is intrinsically hard to detect
■ The original data may be unavailable

Main uses today of digital forensics:
■ Finding child pornography
■ Recovering deleted files

29

Forensic Data Modalities

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Where’s the digital forensic data?

31

Hard drives (and disk images) are the most common
form of digital evidence.
Typical hard drives store 250GB to 2TB.

A logical dump is a copy of all the files on the drive.
■ Typically 0-1M files, 0-2TB in size.
■ Frequently preserved as a ZIP or ZIP64 file.
■ Commonly used in e-discovery.

A physical dump or disk image is sector-for-sector copy of the data.
■ Created with a disk imaging tool or dd.

—FTK Imager
—EnCase Imager (filename.E01)
—dd:
dd if=/dev/sda of=myfile.raw bs=64k conv=noerror,sync

■ Typically authenticated with the MD5 hash of the disk image.
$ md5 nps-2009-canon2-gen6.raw
MD5 (nps-2009-canon2-gen6.raw) = 750b509d8fbed37a5213480aaccfdc61
$

32

If you mount a disk image, you will only see the
allocated (“resident” or “overt”) files.

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

33

Resident Data

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Data is on the disk that is not in the file system.
It can only be recovered with forensic tools.

34

Deleted Data

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Some sectors have “no data” and are blank.

35

No Data

Most forensic tools follow the same analysis steps.

Walk the file system to map out all the files (allocated & deleted).
For each file:
■ Seek to the file.
■ Read the file.
■ Hash the file (MD5).
■ Index file's text.

"Carve" space between files for other documents, text, etc.

Problem #1: Time
■ 1TB drive takes 3.5 hours to read

—10-80 hours to process!

Problem #2: Completeness
■ Lots of residual data is ignored.

—Many investigations don’t carve!

36

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

Disk images are easy to acquire, but hard to work with.

Easy to acquire:
■ Remove disk and image through a write blocker
■ Boot a Linux “live CD” (e.g. Cain, SIFT or DEFT) and image to an external drive.
■ Copy the diskname.VHD file from a Virtual Machine

Don’t forget the metadata:
■ Serial number; manufacturer
■ When the image was made
■ Who made the image

Hard to work with:
■ Files are BIG — typically ⅓ the size of the original disk image
■ Special software required to extract files from disk image
■ Special techniques required for most interesting data:

—Deleted files
—Data between files

37

RAM analysis

The computer's RAM may contain:
■ Discoverable evidence (e.g. logfiles, documents)
■ Encryption keys
■ Current network connections; Some kinds of malware

—“Cold boot” attack lets you move memory between computers.

Working with RAM is considerably harder than disk images:
■ RAM contents are in constant motion.
■ Physical memory map is radically different from logical map.
■ Important information may not be in physical memory.

—Registers
—Translation Lookaside Buffer (TLB)
—Swap File

Two approaches to analysis:
■ Understand the structures.
■ Treat memory as “bulk data” and use carving.

38

Main Memory

#3

#1

#2

Physical Memory Map

#3

#1

#2

Logical Memory Map

#4

SWAP FILE

#4

Process FOOBAR

#1

#2

Kernel Memory

#1

#2

Process OUT-TO-LUNCH

#1

#2

#1

#2

Cell phones are an important source of digital evidence.

Cell phones are frequently used in the commission of crimes:
■ Call history information & SMS messages
■ GPS tracking information
■ Apps and Documents

Cell cameras may:
■ Document a crime
■ Connect an image to the photographer

Cell phone data is exceedingly hard to work with:
■ Multiple CPUs and memory systems. (SIM Chip; Cell memory; MMC)
■ Multiple logical and physical dump formats.
■ Different tools work with different phones.

39

Cameras (esp. built-in cameras)

Each camera records:
■ An image (still or video)
■ Unique pattern of defects in photo sensor

Many cameras also record:
■ Manufacturer and Model number of camera.
■ Unique serial number
■ GPS location

JPEGs and MOV files are familiar, but:
■ Software must handle 100,000s of photos at a time.
■ JPEGs may be corrupt; contain attacks; etc.
■ The most important information may be invisible or ignored by consumer software.

40

iPods are full-blown computers with:
■ Storage
■ Cameras
■ Wireless networking

All manner of data can be stored:
■ Music; Documents; Contacts

Old technology doesn’t go away:
■ Computers are used long after they leave the market.
■ Forensic software must work with all versions of all computers.

iPods, iPads, MP3 music players, and old-style PDAs

41

USB storage devices:

USB devices are widely used and frequently encountered:
■ Overt files
■ Residual data from deleted files, applications, etc.
■ Malware

Most USB storage systems are in FAT32 format.

Things to beware:
■ A single USB device may contain multiple logical devices.
■ Devices can have hidden partitions.
■ Growing use of encryption.
■ Logical vs. Physical
■ Manufacturers do not release internal details

42

Where’s the digital forensic data?

43

Smart cards contain identity, cryptography, storage, and
even applications.
Most smart cards have:
■ Public and private keys.
■ Some storage (16K-1GB)

Smart cards can also have:
■ Loadable applications; Encrypted storage

GSM SIMs also have:
■ Integrated circuit card identifier (ICCID)
■ International mobile subscriber identity (IMSI)
■ Authentication Key K1
■ Phone book storage
■ Multimedia storage
■ IMEI - International mobile equipment identifier (*#06#)

Smart cards must be read with special readers.
■ Most readers cannot access all of the data that the cards contain.

44

Network Devices and Network Traffic:
Two kinds of forensic data.
Configuration data stored in the device.
■ Flash configuration
■ Volatile configuration

Data that moves over the network
■ Packets

—Full content
—Headers

■ Packet Flow Data
■ Compressed Data
■ Encrypted Data

Network data is examined for many purposes.
■ It is rarely if ever correlated with stored data or RAM.

45

Optical media and drives:
Most crime scenes have multiple discs.
Optical media is deceptively ordinary:
■ We all have experience with discs
■ It seems “so 1990s”

But Optical Storage is quite complex:
■ Multi-sessions may make older files invisible
■ Discs may present different files under Windows, MacOS or Linux
■ Blu-Ray has per-device encryption keys and content management

Optical discs are hard to work with:
■ Manual handling
■ Easily damaged
■ Many tools do not examine all of the data

46

USB Devices

USB devices typically have
■ Micro-controller & Firmware
■ Unique identifier

—“Tracing USB Device artefacts on Windows XP operating system for forensic
purpose”, Victor Chileshe Luo, School of Computing and Information Science, Edith
Cowan University, Dec. 2007.

The internals of USB devices are remarkably opaque:
■ What other features are in your USB mouse?
■ Why does a DROID phone present as a CDROM?
■ Firewire allows DMA; does USB?

47

Desk Phones (especially VoIP phones)

Today desk phones are full-blown computer systems:
■ CPU, RAM, Flash Storage & IP addresses
■ Remotely-controllable microphones
■ Built-in 100Mbps Ethernet Hub

Phones are examples of embedded devices

Other embedded devices include:
■ Car event data recorders
■ Smart meters
■ Anything with a computer.

Embedded devices of forensic interest must be identified!
■ They must be analyzed by individuals with domain-specific knowledge.

48

“Hidden” devices.

49

There are many different kinds of digital forensics data.

In practice, tools (and practitioners) specialize:
■ Disk Images
■ RAM
■ Configuration Information
■ Network Data
■ Cell Phones
■ Office Documents (Word; PDF; etc.)
■ Multimedia Content (JPEGs, MPEGs, etc)

There are many commonalities:
■ Logical vs. Physical
■ Overt vs. Hidden

It’s really hard to work with this data:
■ Data extraction can be hard.
■ Capacities are increasing — top-of-the-line computers to analyze top-of-the-line.
■ Data is frequently corrupt.

50

Forensic Tools and Formats

Forensics Software: Commercial or Open Source?

Commercial (e.g. EnCase, FTK, etc.)
■ Widely used in government & industry (+)
■ Educational pricing usually available (+)
■ Must be licensed for classroom (-)
■ Complex user interface can detract from instruction (-)
■ Typically runs just on Windows (-)
■ Requires hardware license management (dongle) (-)

Open Source (e.g. The SleuthKit — TSK)
■ Runs on Windows, Mac and Linux (+)
■ No dongle (+)
■ Good platform for further research (+)
■ Less functionality than proprietary programs (-)
■ Poor user interfaces (-)

We use both in our research.
52

Disk Images
■ Disk image files (MB to GB in size)

Packet Capture Files
■ libpcap files

Memory Images
■ raw files; debug files
■ Swap files
■ Hibernation Files

File Signatures
■ Lists of hash codes (typically MD5)

File Lists
■ Individual files (typically stored in a ZIP file or on a DVD).

53

There are many kinds of forensic data formats.

■ RAW (dd) —
—easiest format to work with; fast; very big
—Handled by all tools
—Many file systems (FAT32, ext2), cannot have files larger than 4GB

■ Split raw (file.000, file.001, file.002, etc.)
—Not all tools can handle.

■ Encase (.E01) — compressed format developed by Expert Witness / Guidance Software
—Compressed
—Evidence split across multiple “volumes” (file.E01, file.E02, etc.)
—Doesn't work with some tools (carvers, etc.)
—Supports "passwords" but not encryption.

■ AFF (Garfinkel 2005) — compressed open source format
—Can store image as a single file (>2GB) or as multiple files (.afd format)
—Supports encryption and digital signatures; Extensible
—Poorly supported.
—Poor performance on certain Windows NTFS disk images.

54

There are many different disk image formats.

libewf: an open source library for reading EnCase files.

Libewf decodes .E01 files.
■ libewf — C/C++ code
■ jlibewf — Java E01 implementation
■ cslibewf — C# implementation
■ http://sourceforge.net/projects/libewf/files/

libewf must be compiled and installed before building other tools.
■ Shared library (DLL or .so) or Static Library (.lib, .a)

libewf also includes command line tools:
■ ewfacquire

—simple disk imaging tool
—Will also convert RAW to E01

■ ewfinfo
—Prints information about E01 files

■ ewfverify
—Verifies the CRCs and MD5 of an E01 file

55

We distribute disk images multiple formats at
http://digitalcorpora.org
For disk images, we will use E01, AFF, and RAW (when reasonable)
■ nps-2009-canon2-gen6 A disk image from a 32MB Canon camera card.

 21039780294 2009-08-05 10:23 seed1.aff
 20904705677 2009-08-05 00:10 seed1-redacted.aff
 1572833864 2011-07-16 08:39 seed1-redacted.E01
 1572846889 2011-07-16 08:47 seed1-redacted.E02
 1572832091 2011-07-16 08:53 seed1-redacted.E03
 1572831194 2011-07-16 08:59 seed1-redacted.E04
 1572861677 2011-07-16 09:05 seed1-redacted.E05
 1572850590 2011-07-16 09:10 seed1-redacted.E06
 1572835580 2011-07-16 09:14 seed1-redacted.E07
 1572849292 2011-07-16 09:18 seed1-redacted.E08
 1572839306 2011-07-16 09:21 seed1-redacted.E09
 1572840799 2011-07-16 09:23 seed1-redacted.E10
 1572862200 2011-07-16 09:27 seed1-redacted.E11
 1572859886 2011-07-16 09:32 seed1-redacted.E12
 1572833699 2011-07-16 09:38 seed1-redacted.E13
 713128482 2011-07-16 09:56 seed1-redacted.E14
 80000000000 2009-08-05 08:02 seed1-redacted.raw
 93954789 2009-08-05 10:23 seed1.xml
11:07 ps14412:/corp/drives/nps/nps-2008-seed1$

The file extension describes the file format.

56

http://digitalcorpora.org
http://digitalcorpora.org

The file formats are incompatible but interconvertable.
 21039780294 2009-08-05 10:23 seed1.aff
 20904705677 2009-08-05 00:10 seed1-redacted.aff
 1572833864 2011-07-16 08:39 seed1-redacted.E01
...
 713128482 2011-07-16 09:56 seed1-redacted.E14
 80000000000 2009-08-05 08:02 seed1-redacted.raw
 93954789 2009-08-05 10:23 seed1.xml
11:07 ps14412:/corp/drives/nps/nps-2008-seed1$

The file extension describes the file format.
■ E01 — Expert Witness File Format (Guidance Software’s EnCase)

—Basic compression (although not much here, as the card is filled)
—Some metadata: Examiner, Notes, MD5 of disk image.

■ AFF — Advanced Forensic Format (Garfinkel)
—Better compression
—Arbitrary metdata

■ RAW — Raw disk image (dd)
■ XML — Digital Forensics XML

— “map” of the files in the disk.

57

You can verify the integrity by computing the MD5 hash
of the disk sectors.
Easiest approach — compute the MD5 of the raw file.

There are many MD5 commands:
$ md5 nps-2009-canon2-gen6.raw
MD5 (nps-2009-canon2-gen6.raw) = 750b509d8fbed37a5213480aaccfdc61

$ md5deep nps-2009-canon2-gen6.raw
750b509d8fbed37a5213480aaccfdc61 nps-2009-canon2-gen6.raw

$ openssl md5 nps-2009-canon2-gen6.raw
MD5(nps-2009-canon2-gen6.raw)= 750b509d8fbed37a5213480aaccfdc61

But you must validate the MD5 code using out-of-band information.
■ It may be posted on the website.
■ In actual practice, forensic examiners write the MD5 in their notebook.

58

The E01 file has a built-in MD5.
You can display it with “ewfinfo”

$ ewfinfo nps-2009-canon2-gen6.E01
ewfinfo 20100805 (libewf 20100805, libuna 20100505,... , libcrypto 0.9.8)

Acquiry information
! Acquiry date:! ! Mon Apr 12 11:12:32 2010
! System date:! ! Mon Apr 12 11:12:32 2010
! Operating system used:! Darwin
! Software version used:! 20090927
! Password:!! N/A

EWF information
! File format:! ! EnCase 6
! Sectors per chunk:!64
! Error granularity:!64
! Compression type:! no compression
! GUID:! ! ! dc032794-bef0-2c45-8ede-8cc01ed31683

Media information
! Media type:! ! removable disk
! Is physical:! ! no
! Bytes per sector:! 512
! Number of sectors:!60800
! Media size:! ! 29 MiB (31129600 bytes)

Digest hash information
! MD5:! ! ! 750b509d8fbed37a5213480aaccfdc61

59

The ewfverify command will verify the image integrity.
$ ewfverify nps-2009-canon2-gen6.E01
ewfverify 20100805 (libewf 20100805, libuna 20100505, ..., libcrypto 0.9.8)
Verify started at: Fri Jul 15 00:13:20 2011

This could take a while.

Status: at 0%.
 verified 32 KiB (32768 bytes) of total 29 MiB (31129600 bytes).

Status: at 1%.
 verified 320 KiB (327680 bytes) of total 29 MiB (31129600 bytes).
 completion in 18 minute(s) and 9 second(s) with 27 KiB/s (28299
bytes/second).

Status: at 64%.
 verified 19 MiB (20086784 bytes) of total 29 MiB (31129600 bytes).
 completion in 6 second(s) with 1.6 MiB/s (1729422 bytes/second).

Verify completed at: Fri Jul 15 00:13:32 2011

Read: 29 MiB (31129600 bytes) in 12 second(s) with 2.4 MiB/s (2594133 bytes/
second).

MD5 hash stored in file:! 750b509d8fbed37a5213480aaccfdc61
MD5 hash calculated over data:!750b509d8fbed37a5213480aaccfdc61

ewfverify: SUCCESS

60

Likewise, the affinfo command will print information
about an AFF file

$ affinfo nps-2009-canon2-gen6.aff
nps-2009-canon2-gen6.aff is a AFF file

nps-2009-canon2-gen6.aff
[skipping data segments]
 data
Segment arg length data
======= ========= ======== ====
badflag 0 512 BAD SECTOR....9....5}..:.7.>....
badsectors 2 8 = 0 (64-bit value)
afflib_version 0 7 "3.5.5"
creator 0 9 afconvert
aff_file_type 0 3 AFF
acquisition_commandline 0 67 afconvert /corp/drives/nps/nps-2
pagesize 16777216 0
sectorsize 512 0
imagesize 2 8 = 31129600 (64-bit value)
md5 0 16 750B 509D 8FBE D37A 5213 480A ACCF DC61
sha1 0 20 4742 C325 F105 83DA B1EB 4C55 D0D4
 5AB3 BEB9 9EB3
image_gid 0 16 258E FE7D 86A0 B08C BD89 8123 A206 9E22
acquisition_date 0 20 2009-04-13 20:09:54.

Total segments: 15 (15 real)
 Page segments: 2
 Hash segments: 0
 Signature segments: 0
 Null segments: 0
$

61

The affverify will verify the file’s integrity.
$ affverify nps-2009-canon2-gen6.aff
nps-2009-canon2-gen6.aff: no signing certificate present.

SHA1 stored in file: 4742c325f10583dab1eb4c55d0d45ab3beb99eb3
MD5 stored in file: 750b509d8fbed37a5213480aaccfdc61

 Read 0/ 31129600 bytes; done in n/a
 Read 16777216/ 31129600 bytes; done in 0:00:00

Calculated SHA1: 4742c325f10583dab1eb4c55d0d45ab3beb99eb3 VERIFIES
Calculated MD5: 750b509d8fbed37a5213480aaccfdc61 VERIFIES
$

62

Convert RAW to E01 with ewfacquire.
$ ewfacquire seed1-redacted.raw
ewfacquire 20101215

Storage media information:
Media size:! ! 80 GB (80000000000 bytes)

Acquiry parameters required, please provide the necessary input
Image path and filename without extension: seed1-redacted
Case number:
Description: Multi-user Windows XP machine
Evidence number:
Examiner name: Simson Garfinkel
Notes:
Media type (fixed, removable, optical, memory) [fixed]: fixed
Media characteristics (logical, physical) [physical]: physical
Use compression (none, empty-block, fast, best) [none]: best
Use EWF file format (ewf, smart, ftk, encase1, encase2, encase3, encase4,
encase5, encase6, linen5, linen6, ewfx) [encase6]: encase6
Start to acquire at offset (0 >= value >= 80000000000) [0]:
The number of bytes to acquire (0 >= value >= 80000000000) [80000000000]:
Evidence segment file size in bytes (1.0 MiB >= value >= 7.9 EiB) [1.4 GiB]:
The number of bytes per sector (1 >= value >= 4294967295) [512]:
The number of sectors to read at once (64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384, 32768) [64]:
The number of sectors to be used as error granularity (1 >= value >= 64) [64]:
The number of retries when a read error occurs (0 >= value >= 255) [2]:
Wipe sectors on read error (mimic EnCase like behavior) (yes, no) [no]:

63

AFF to RAW and vice-versa with affconvert:

RAW to AFF:
$ affconvert nps-2009-canon2-gen6.raw
convert nps-2009-canon2-gen6.raw --> nps-2009-canon2-gen6.aff
Converting page 1 of 1
md5: 750b509d8fbed37a5213480aaccfdc61
sha1: 4742c325f10583dab1eb4c55d0d45ab3beb99eb3
bytes converted: 31129600
Total pages: 2 (2 compressed)
Conversion finished.
$

AFF to RAW:
$ affconvert -e raw nps-2009-canon2-gen6.aff
convert nps-2009-canon2-gen6.aff --> nps-2009-canon2-gen6.raw
Converting page 1 of 1
bytes converted: 31129600
Conversion finished.
$

64

AFFLIB v3 added encryption & digital signatures

Encryption: each segment can be encrypted with a 256-bit AES key.
■ AFFLIB automatically encrypts & decrypts each segment on read if possible.

Key can be specified as:
■ passphrase that decrypts an afkey_aes256 segment.
■ X.509 certificate that decrypts a afkey_evp0 segment.

Passphrase can be specified two ways:
$ export AFFLIB_PASSPHRASE='mypassphrase'
$ afinfo file://:mypassphrase@/filename.aff

Convert an encrypted AFF file to RAW:
$ export AFFLIB_PASSPHRASE='mypassphrase'
$ affconvert -e raw nps-2009-canon2-gen6.aff

—or
$ affconvert -e raw file://:mypassphrase@/nps-2009-canon2-gen6.aff

65

AFFLIB encryption example.
$ export AFFLIB_PASSPHRASE='password'
$./demo
$ afinfo file.aff
file.aff is a AFF file
file.aff: has encrypted segments

file.aff
 data
Segment arg length data
======= ========= ======== ====
badflag 0 512 BAD SECTOR..2w..a.....A. ;...
badsectors 2 8 = 0 (64-bit value)
afflib_version 0 7 "3.5.8"
creator 0 5 a.out
aff_file_type 0 3 AFF
pagesize 16777216 0
page0 51 4
imagesize 2 8 = 65536 (64-bit value)
Bold indicates segments that were decrypted.

Total segments: 9 (9 real)
 Page segments: 1
 Hash segments: 0
 Signature segments: 0
 Null segments: 0

66

Without the passphrase, decryption is not possible.
$ unset AFFLIB_PASSPHRASE
$ afinfo -a file.aff
file.aff is a AFF file
file.aff: has encrypted segments

Segment arg length data
======= ========= ======== ====
badflag 0 512 BAD SECTOR..2w..a.....A. ;...+
badsectors 2 8 = 0 (64-bit value)
afflib_version 0 7 "3.5.8"
creator 0 5 a.out
aff_file_type 0 3 AFF
affkey_aes256 0 52 _.....4>.Nf..q..N..d.
pagesize/aes256 16777216 0
page0/aes256 51 20 dswS.K...NL+....
imagesize/aes256 2 24 +Y6..3f.......n.........

Total segments: 9 (9 real)
 Encrypted segments: 3
 Page segments: 0
 Hash segments: 0
 Signature segments: 0
 Null segments: 0
 Empty segments: 0

Total data bytes in segments: 631
Total space in file dedicated to segment names: 107
Total overhead for 9 segments: 216 bytes (9*(16+8))
Overhead for AFF file header: 8 bytes
$

67

AFFLIBv3 also adds digital signatures and parity pages.

Signatures are as signed SHA256 values.
■ Each segment's SHA256 is calculated.
■ SHA256 values are signed using OpenSSL's EVP_Sign functions.

Signatures can be stored:
■ In individual signature segments.
■ In a new Bill Of Materials (BOM) segment.

■ Multiple signatures can provide for chain-of-custody.
■ afsign can also create a "parity page" for RAID-like reconstruction.

68

page0
page1
page2
page3
SN

afsign

page0
page1
page2
page3
SN
bom1

afsign

page0
page1
page2
page3
SN
bom1
bom2

AFFLIBv3 status

AFFLIBv3 is in use today for research and education.
■ Integrated with SleuthKit.

AFFLIB tools - A set of utilities for manipulating disk images.
■ affcat — outputs an AFF file to stdout as a raw file
■ affcopy & affconvert — segment-by-segment copying and verification (optional

encryption)
■ affinfo — prints details about the segments
■ affrecover & affix — recovery of data within a corrupted AFF file
■ affsign — signature tool
■ affverify — verifies signatures
■ affcompare — compares two disk images
■ affcrypto — encrypt or decrypt a disk image in place
■ affdiskprint — generates an XML-based "diskprint" for fast image comparison
■ affuse — allows AFF images to be "mounted" as raw files on Linux
■ affsegemnt — view or modify an individual segment

69

AFFLIBv3: strengths and weaknesses

Strengths:
■ Single archive for storing all of the data and metadata
■ Strong data integrity
■ Compact archiving format (16MB segment size, optional LZMA)
■ Supported by AccessData’s FTK

Weaknesses:
■ Performance.

—16MB page size is problematic for some disk images due to MFT fragmentation.
—Caching is only solution at the present:
export AFFLIB_CACHE_PAGES=24 # Dedicates 24*16=384MB to cache
export AFFLIB_CACHE_PAGES=64 # Dedicates 64*16=1GB to cache

■ Only one disk image per file
—Problem for lots of small devices

■ No way to package extracted files as a "logical" evidence file. (e.g. FILE.L01)
■ Not supported by Guidance Software’s EnCase

AFFv4 (under development) improves performance, provides for
Logical files.

70

Working with Disk Images
using The Sleuth Kit (TSK)

The Sleuth Kit (TSK) is a
tool for working with disk images.
Open source computer forensics toolkit
■ Originally “The Coroner's Toolkit,” developed by Dan Farmer & Wietse Venema
■ Rewritten and maintained by Brian Carrier:
■ http://www.sleuthkit.org/

SleuthKit works directly with disk images:
■ View files & directories in a forensically sound manner (without modifying evidence)
■ View deleted files
■ Physical location of information

Without forensic tools, viewing data can change it!
■ "last viewed" and "last modified" times can be changed

—simply mounting a file system changes it.
■ Entries can be put into the registry
■ Temp files can be created

72

http://www.sleuthkit.org
http://www.sleuthkit.org

TSK is the open source forensic standard.

Current Shortcomings:
■ No support for EXT4 or YAFFS2
■ No support for encrypted file systems
■ No support for RAID

Image Formats raw, split-raw, AFF, EWF, etc.

Partitioning Schemes DOS MBR, GPT, Apple, BSD,
Solaris

File Systems FAT 12/16/32; NTFS; ext2/3;
UFS 1/2; ISO9660

Platforms Linux, OSX, Windows, *BSD,
Cygwin, Solaris

73

SleuthKit works with both data and metadata.

Data is the content of files.

Metadata tells how to work with
the disk and the data.
■ Partition table
■ List of available sectors
■ Directory information

■ Note: "Metadata" like EXIF and Word "properties"
are considered data here.

Root Dir

Data

readme.txt

config.sys

motd

home

File Allocation
Table

master
boot record

cylinder 0, head 0, sector 1

4 16-byte entries

readme.txt

config.sys

motdHome Dir

FAT

FAT

FAT

FAT

file1.txt

file2.txt

...

file1.txt

file2.txt

FAT

FAT

74

Most TSK commands are run from the command line.
■ You can also write programs that call the library directly.

The Autopsy Forensic Explorer runs
the commands and shows you the results in a web browser.
■ Autopsy is being rewritten as a Java application.

The most commonly used commands are:
■ mmls — list file systems
■ fsstat — Status of a file system
■ fls — list a directory
■ istat — Status of a file
■ icat — extract files

Disk
Image

TSK
Library

CLI
Tools

Autopsy

TSK is a modular system

75

mmls: list the partitions

Disks contain one or more partitions.
■ Each partition can contain one or more file systems

The mmls command will list the partitions:
$ mmls nps-2009-domexusers.raw
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000062 0000000063 Unallocated
02: 00:00 0000000063 0083859299 0083859237 NTFS (0x07)
03: ----- 0083859300 0083886079 0000026780 Unallocated
$

Type “mmls -i list” to list the disk image formats your mmls supports:
$ mmls -i list
Supported image format types:
! raw (Single raw file (dd))
! aff (Advanced Forensic Format)
! afd (AFF Multiple File)
! afm (AFF with external metadata)
! afflib (All AFFLIB image formats (including beta ones))
! ewf (Expert Witness format (encase))
! split (Split raw files)

76

fsstat will give you the “statistics” about a file system.
Be sure to use “-o offset” for partitioned disk images.

$ fsstat nps-2009-domexusers.raw
Cannot determine file system type
$ mmls nps-2009-domexusers.raw
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000062 0000000063 Unallocated
02: 00:00 0000000063 0083859299 0083859237 NTFS (0x07)
03: ----- 0083859300 0083886079 0000026780 Unallocated
$ fsstat -o 63 nps-2009-domexusers.raw
FILE SYSTEM INFORMATION
--
File System Type: NTFS
Volume Serial Number: 3CFCCD01FCCCB684
OEM Name: NTFS
Version: Windows XP

METADATA INFORMATION
--
First Cluster of MFT: 786432
First Cluster of MFT Mirror: 5241202
Size of MFT Entries: 1024 bytes
Size of Index Records: 4096 bytes
Range: 0 - 36880

77

The “fls” command lets you list directories.

By default, fls shows the root directory:
$ fls -o 63 nps-2009-domexusers.raw
r/r 4-128-4:! $AttrDef
r/r 8-128-2:! $BadClus
r/r 8-128-1:! $BadClus:$Bad
r/r 6-128-1:! $Bitmap
r/r 7-128-1:! $Boot
...
r/r 7445-128-1:! AUTOEXEC.BAT
r/r 3516-128-3:! boot.ini
r/r 7444-128-1:! CONFIG.SYS
d/d 3524-144-6:! Documents and Settings
r/r 7446-128-1:! IO.SYS
r/r 25743-128-1:! IPH.PH
r/r 7447-128-1:! MSDOS.SYS
d/d 29222-144-1:! MSOCache
r/r 3487-128-3:! NTDETECT.COM
r/r 3483-128-3:! ntldr
r/r 27-128-1:! pagefile.sys
d/d 3993-144-6:! Program Files
d/d 29184-144-1:! RECYCLER
d/d 3522-144-6:! System Volume Information
d/d 28-144-6:! WINDOWS
d/d 36880:! $OrphanFiles
$

78

fls takes an optional directory argument:
...
d/d 3524-144-6:! Documents and Settings
...
$ fls -o 63 nps-2009-domexusers.raw 3524-144-6
d/d 10219-144-6:! Administrator
d/d 3526-144-6:! All Users
d/d 3525-144-7:! Default User
d/d 27708-144-5:! domex1
d/d 28463-144-5:! domex2
d/d 10146-144-6:! LocalService
d/d 3370-144-6:! NetworkService
$
$ fls -o 63 nps-2009-domexusers.raw 27708-144-5
d/d 27748-144-6:! Application Data
d/d 27747-144-5:! Cookies
d/d 27746-144-1:! Desktop
d/d 27745-144-1:! Favorites
d/d 27730-144-6:! Local Settings
d/d 27729-144-6:! My Documents
...
$ fls -o 63 nps-2009-domexusers.raw 27729
r/r 27820-128-1:! desktop.ini
d/d 27824-144-1:! My Music
d/d 27821-144-1:! My Pictures
r/r 35419-128-3:! This is a spreadsheet by domex user 1.xlsx
r/r 35424-128-3:! This is a spreadsheet sent by domex user 1.xlsx
r/r 35395-128-3:! This is a word document by domex user 1.docx

79

27708 = NTFS File #
144-5 = MFT Entry Attribute

The istat command gives information about an inode
r/r 35419-128-3:! This is a spreadsheet by domex user 1.xlsx
...
$ istat -o 63 nps-2009-domexusers.raw 35419-128-3
MFT Entry Header Values:
Entry: 35419 Sequence: 2
$LogFile Sequence Number: 157027741
Allocated File
Links: 2

$STANDARD_INFORMATION Attribute Values:
Flags: Archive
Owner ID: 0
Security ID: 1060 ()
Created:! Wed Oct 29 12:16:27 2008
File Modified:! Wed Oct 29 12:16:28 2008
MFT Modified:! Wed Oct 29 12:16:28 2008
Accessed:! Wed Oct 29 22:04:32 2008

$FILE_NAME Attribute Values:
Flags: Archive
Name: This is a spreadsheet by domex user 1.xlsx
Parent MFT Entry: 27729 ! Sequence: 1
Allocated Size: 12288 ! Actual Size: 8230
Created:! Wed Oct 29 12:16:27 2008
File Modified:! Wed Oct 29 12:16:28 2008
MFT Modified:! Wed Oct 29 12:16:28 2008
Accessed:! Wed Oct 29 12:16:28 2008

80

There is a lot more istat information than you expect.
r/r 35419-128-3:! This is a spreadsheet by domex user 1.xlsx
...
$ istat -o 63 nps-2009-domexusers.raw 35419-128-3
...
$OBJECT_ID Attribute Values:
Object Id: cdbb2629-0c00-aca6-11dd-a50ef743eede

Attributes:
Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 72
Type: $FILE_NAME (48-5) Name: N/A Resident size: 90
Type: $FILE_NAME (48-4) Name: N/A Resident size: 150
Type: $OBJECT_ID (64-6) Name: N/A Resident size: 16
Type: $DATA (128-3) Name: N/A Non-Resident size: 8230 init_size: 8230
139149 139150 139372
$

81

The icat command outputs inode contents to stdout:
$ icat -o 63 nps-2009-domexusers.raw 35419-128-3 > /tmp/sheet.xlsx
$ ls -l /tmp/sheet.xlsx
-rw-r--r-- 1 simsong wheel 8230 Jul 16 12:58 /tmp/sheet.xlsx

You can use the “file” command to verify the file type:
$ file /tmp/sheet.xlsx
/tmp/sheet.xlsx: Zip archive data, at least v2.0 to extract
$

82

Once you have a file, you can open it or view it.

On a Mac, you can “open” the file with the “open” command.
—This is usually a bad idea...
$ open /tmp/sheet.xlsx

You can generate HTML with qlmanage:
$ mkdir sheet
$ qlmanage -o sheet -p /tmp/sheet.xlsx
Testing Quick Look preview with files:
! /tmp/sheet.xlsx
* /tmp/sheet.xlsx produced a preview with data of type public.html
$ ls -l sheet/sheet.xlsx.qlpreview/
total 64
-rw-r--r-- 1 simsong wheel 189 Jul 16 13:02 Attachment1.png
-rw-r--r-- 1 simsong wheel 3456 Jul 16 13:02 Attachment2.png
-rw-r--r-- 1 simsong wheel 8115 Jul 16 13:02 Attachment3.js
-rw-r--r-- 1 simsong wheel 336 Jul 16 13:02 Attachment4.html
-rw-r--r-- 1 simsong wheel 569 Jul 16 13:02 Attachment5.html
-rw-r--r-- 1 simsong wheel 336 Jul 16 13:02 Attachment6.html
-rw-r--r-- 1 simsong wheel 3729 Jul 16 13:02 Attachment7.css
-rw-r--r-- 1 simsong wheel 1044 Jul 16 13:02 Preview.html
-rw-r--r-- 1 simsong wheel 26328 Jul 16 13:02 PreviewProperties.plist

83

Many forensic applications require PDFs.

You can convert HTML to PDF with wkhtmltopdf and pdftk:
$ grep Attachment..html sheet/sheet.xlsx.qlpreview/PreviewProperties.plist
! ! ! <string>Attachment6.html</string>
! ! ! <string>Attachment4.html</string>
! ! ! <string>Attachment5.html</string>
$ wkhtmltopdf sheet/sheet.xlsx.qlpreview/Attachment5.html output1.pdf
Loading pages (1/6)
Counting pages (2/6)
Resolving links (4/6)
Loading headers and footers (5/6)
Printing pages (6/6)
Done
$ pdftk output1.pdf output2.pdf output3.pdf output.pdf
$ open output.pdf

84

Digital Forensics XML

<dfxml>

Remember that XML file?
 21039780294 2009-08-05 10:23 seed1.aff
 20904705677 2009-08-05 00:10 seed1-redacted.aff
 1572833864 2011-07-16 08:39 seed1-redacted.E01
 1572846889 2011-07-16 08:47 seed1-redacted.E02
 1572832091 2011-07-16 08:53 seed1-redacted.E03
 1572831194 2011-07-16 08:59 seed1-redacted.E04
 1572861677 2011-07-16 09:05 seed1-redacted.E05
 1572850590 2011-07-16 09:10 seed1-redacted.E06
 1572835580 2011-07-16 09:14 seed1-redacted.E07
 1572849292 2011-07-16 09:18 seed1-redacted.E08
 1572839306 2011-07-16 09:21 seed1-redacted.E09
 1572840799 2011-07-16 09:23 seed1-redacted.E10
 1572862200 2011-07-16 09:27 seed1-redacted.E11
 1572859886 2011-07-16 09:32 seed1-redacted.E12
 1572833699 2011-07-16 09:38 seed1-redacted.E13
 713128482 2011-07-16 09:56 seed1-redacted.E14
 80000000000 2009-08-05 08:02 seed1-redacted.raw
 93954789 2009-08-05 10:23 seed1.xml

The XML file contains a “map” of every file in the disk image.
■ The format is Digital Forensics XML (DFXML), an XML application we have been

developing for the past four years.

86

These tools are great for:
■ File recovery
■ Search

Not so great for automation, interoperability, or research.

Today's forensic tools are designed for performing
forensic investigations.

87

Encase:
- GUI Closed Source

- EnScript

SleuthKit:
- Command-line Open Source

- C/C++ API

Today we have limited formats and abstractions:
■ Disk images — raw & EnCase E01 files
■ Packet Capture files — BPF format
■ Files — distributed as files or as ZIP for collections of files
■ File Signatures — List of MD5 (or SHA1) hashes in hex with no context.
■ “Selector Lists” — Lists of email address, CCNs, etc. (typically ASCII, rarely in Unicode)

We need new structured formats for distributing:
■ Signatures Metrics (parts of files; n-grams; piecewise hashes; similarity metrics)
■ File Metadata (e.g. Microsoft Office document properties)
■ File system metadata (MAC times, etc.)
■ Application Profiles (e.g. collections of files that make up an application.)
■ Internet and social network information

Creating, testing, and adopting schema and formats is hard work.

88

Automation requires a forensics “language.”
Standardized formats and abstractions.

Several of today's tools allow some degree of programmability:
■ EnCase — EScript
■ PyFlag — Flash Script & Python
■ Sleuth Kit — C/C++

Writing programs for these systems is hard:
■ Many of the forensic tools are not designed for easy automation.
■ Programming languages are procedural and mechanism-oriented.
■ Data is separated from actions on the data.

89

Today there is no good match between forensic tools
and the needs of researchers.

tsk_loaddb:
■ Walks all file systems in an image; extracts metadata into an SQLite3 database.
■ Use multiple SELECT statements, you can generate reports:

$ tsk_loaddb
usage: tsk_loaddb [-vVk] [-i imgtype] [-b dev_sector_size] [-d output_dir]
image [image]
! -k: Don't create block data table
$ mkdir out
$ tsk_loaddb -k -d out nps-2009-domexusers.raw
$ ls -l out
total 3784
-rw-r--r-- 1 simsong staff 3872768 Jul 16 14:29 nps-2009-domexusers.raw.db
$ sqlite3 out/nps-2009-domexusers.raw.db
...
sqlite> .tables
tsk_db_info tsk_fs_info tsk_image_names tsk_vs_parts
tsk_fs_files tsk_image_info tsk_vs_info
sqlite> select * from tsk_fs_files limit 1000,3;
1|11399|128|5|download-page[2].css|10243|5|1|1|5|790|1224542464|1224542464|
1224542674|1224542464|511|0|0
1|11531|128|5|downloading[1].htm|10243|5|1|1|5|29158|1224542571|1224542570|
1224542571|1224542571|511|0|0
1|11489|128|4|downloading[2]|10243|5|1|1|5|395|1224542571|1224542571|
1224542571|1224542571|511|0|0
sqlite>

90

TSK 3.2 introduced tsk_loaddb,
a tool for saving file information into an SQLlite DB.

Digital Forensics XML:
An approach for standardizing forensic metadata
XML is well suited to forensics:
■ We can represent a wide variety of data today.
■ As our techniques improve, we can add new XML tags.
■ More programmers speak XML than “forensics.”

Today we have XML tags to describe:
■ Files and file metadata.
■ Hash codes.
■ Partitioning schemes.
■ Application metadata.

—We can use the same XML tags in many different applications.
—We can develop APIs to leverage the XML from python, perl, Java, etc.

More expressive than SQL; our implementation has more data.

91

The <fileobject> tag is the most important in disk
forensics.
The DFXML <fileobject> tag describes information about a file.
■ File name, size, and hash codes.
■ Physical Location on the disk.
■ Provenance

Simple example:
<fileobject>
<filename>samplefile.bin</filename>
<filesize>9014</filesize>
<mtime format='time_t'>1297835303.0</mtime>
<ctime format='time_t'>1297835303.0</ctime>
<atime format='time_t'>1299631657.0</atime>
<hashdigest type='MD5'>8dfcbdce6562602911990bdfd661415a</hashdigest>
<byte_runs>
 <run file_offset='0' len='9014' fs_offset='6553600' img_offset='6585856'/>
</byte_runs>
</fileobject>

92

Multiple <fileobject>s can be used for a list of hashes.

A hash list might be include metadata about the hashes, but lack
timestamp and physical placement info:

<?xml version='1.0' encoding='UTF-8'?>
<dfxml xmloutputversion='0.3'>
<metadata xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns='http://afflib.org/fiwalk/'
 xmlns:dc='http://purl.org/dc/elements/1.1/'>

<classification>UNCLASSIFIED</classification>
<dc:type>Hash Set</dc:type>
<dfxml xmloutputversion='0.3'>

<fileobject>
<filename>demo1.bin</filename>
<filesize>1718</filesize>
<hashdigest type='MD5'>8e008247fde7bed340123f617db6a909</hashdigest>
</fileobject>

<fileobject>
<filename>demo2.bin</filename>
<hashdigest type='MD5'>c44293fdb35b6639bdffa9f41cf84626</hashdigest>
</fileobject>

</dfxml>

93

http://www.w3.org/2001/XMLSchema-instance'
http://www.w3.org/2001/XMLSchema-instance'
http://afflib.org/fiwalk/'
http://afflib.org/fiwalk/'
http://purl.org/dc/elements/1.1/'
http://purl.org/dc/elements/1.1/'

DFXML is a convenient way to annotate disk images
that we distribute.
With DFXML we can quickly describe:
■ File systems in the image.
■ Number of files on a disk, their names and hash values.
■ Human languages in use.
■ Distribution of file types.
■ Location of files on the disk.
■ Etc.

This is more extensible than SQLite.

94

We have a growing list of tools that use DFXML

Generating DFXML:
■ fiwalk — Creates DFXML from disk images. (Based on SleuthKit)
■ frag_find — Hash-based carving; DFXML indicates where the files are in the disk image.

—Used for malware detection, reassembling RAIDs, data exfiltration detection.
■ dfxml_tool — Generates DFXML hash lists from files.

Consuming DFXML:
■ imap.py – Prints a “map” of a disk image.
■ iverify.py — Reports if the DFXML file matches a disk image.
■ iredact.py — Removes or alters sensitive files in a disk image.
■ iblkfind.py — Reports the file that maps to a given disk sector.
■ idifference.py — Reports difference between two disk images.
■ iexport.py — Exports the unallocated sectors.
■ iextract.py — Extracts files of a given type.
■ igrep.py — Reports the files in a disk image that match a string
■ ihistogram.py — Fast histograms of the files on the disk

This is part of the fiwalk distribution, at http://afflib.org/

95

http://afflib.org
http://afflib.org

fiwalk is a C++ program built on top of SleuthKit

$ fiwalk [options] -X file.xml imagefile

Features:
■ Finds all partitions & automatically processes each.
■ Handles file systems on raw device (partition-less).
■ Creates a single output file with forensic data data from all.

Single program has multiple output formats:
■ XML (for automated processing)
■ ARFF (for data mining with Weka)
■ "walk" format (easy debugging)
■ SleuthKit Body File (for legacy timeline tools)
■ CSV (for spreadsheets)*

fiwalk extracts metadata from disk images.

96

XML ARFF Body

<XML> Output

1 32

fiwalk provides limited control over extraction.

Include/Exclude criteria:
■ Presence/Absence of file SHA1 in a Bloom Filter
■ File name matching.

fiwalk -n .jpeg /dev/sda # just extract the .jpeg files

File System Metdata:
■ -g — Report position of all file fragments
■ -O — Do not report orphan or unallocated files

Full Content Options:
■ -m — Report the MD5 of every file
■ -1 — Report the SHA1 of every file
■ -s dir — Save files to dir

97

<XML> Output

1 32

fiwalk has a plugable metadata extraction system.

Configuration file specifies Metadata extractors:
■ Currently the extractor is chosen by the file extension.

*.jpg dgi ../plugins/jpeg_extract
*.pdf dgi java -classpath plugins.jar Libextract_plugin
*.doc dgi java -classpath ../plugins/plugins.jar word_extract

■ Plugins are run in a different process for safety.
■ We have designed a native JVM interface which uses IPC and 1 process.

Metadata extractors produce name:value pairs on STDOUT
Manufacturer: SONY
Model: CYBERSHOT
Orientation: top - left

Extracted metadata is automatically incorporated into output.

98

<XML> Output

1 32

fiwalk produces four kinds of XML tags.

Per-Run (provenance) tags:
<fiwalk_version>0.4</fiwalk_version>
<Start_time>Mon Oct 13 19:12:09 2008</Start_time>
<library name="tsk" version="3.1.0b1"></library>

Per-Image tags:
<Imagefile>dosfs.dmg</Imagefile>
<volume startsector=”512”>

<volume> tags:
<Partition_Offset>512</Partition_Offset>
<block_size>512</block_size>
<ftype>4</ftype>
<ftype_str>fat16</ftype_str>
<block_count>81982</block_count>

<fileobject> tags:
<filesize>4096</filesize>
<partition>1</partition>
<filename>linedash.gif</filename>
<libmagic>GIF image data, version 89a, 410 x 143</libmagic>

99

<XML> Output

1 32

<byte_runs> specifies data's physical location.

One or more <run> elements may be present:
<byte_runs type=’resident’>

 <run file_offset='0' len='65536'
 fs_offset='871588864' img_offset='871621120'/>

 <run file_offset='65536' len='25920'
 fs_offset='871748608' img_offset='871780864'/>

</byte_runs>

This file has two fragments:
■ 64K starting at sector 1702385 (871621120 ÷ 512)
■ 25,920 bytes starting at sector 1702697 (871780864 ÷ 512)

Additional XML attributes may specify compression or encryption.

100

<XML> Output

1 32

XML incorporates the extracted metadata.

fiwalk metadata extractors produce name:value pairs:
Manufacturer: SONY
Model: CYBERSHOT
Orientation: top - left

These are incorporated into XML:
<fileobject>
...
<Manufacturer>SONY</Manufacturer>
<Model>CYBERSHOT</Model>
<Orientation>top - left</Orientation>
...
</fileobject>

—UTF-8 — Special characters are automatically escaped.

101

<XML> Output

1 32

Resulting XML files can be distributed with images.

The XML file provides a key to the disk image:
$ ls -l /corp/images/nps/nps-2009-domexusers/
-rw-r--r-- 1 simsong admin 4238912226 Jan 20 13:16 nps-2009-realistic.aff
-rw-r--r-- 1 simsong admin 38251423 May 10 23:58 nps-2009-realistic.xml
$

XML files:
■ Range from 10K — 100MB.

—Depending on the complexity of the disk image.
■ Only have files & orphans that are identified by SleuthKit

—You can easily implement a "smart carver" that only carves unallocated sectors.

102

<XML> Output

1 32

fiwalk.py and dfxml.py:
Python modules for automated forensics.

Key Features:
■ Can automatically run fiwalk with correct options if given a disk image
■ Reads XML file if present (faster than regenerating)
■ Creates and consumes fileobject objects.

Multiple interfaces:
■ SAX callback interface

fiwalk_using_sax(imagefile, xmlfile, flags, callback)

—Very fast and minimal memory footprint

■ SAX procedural interface
objs = fileobjects_using_sax(imagefile, xmlfile, flags)

—Reasonably fast; returns a list of all file objects with XML in dictionary

■ DOM procedural interface
(doc,objs) = fileobjects_using_dom(imagefile, xmlfile, flags)

—Allows modification of XML that’s returned.
—Slow and memory intensive.

103

<XML> Output

1 32

The SAX and DOM interfaces both return fileobjects!

The Python dfxml.fileobject class is an easy-to-use
abstract class for working with file system data.

Objects belong to one of two subclasses:
fileobject_sax(fileobject)! # for the SAX interface
fileobject_dom(fileobject)! # for the DOM interface

Both classes support the same interface:
fi.partition()
fi.filename(), fi.ext()
fi.filesize()
fi.uid(), fi.gid(), fi.metatype(), fi.mode()
fi.ctime(), fi.atime(), fi.crtime(), fi.mtime(), fi.dtime(), fi.times()
fi.sha1(), fi.md5()
fi.byteruns(), fi.fragments()
fi.content()
fi.tempfile()

Don’t use DOM unless you need to modify the DOM.

104

Example: igrep.py
import fiwalk

if __name__=="__main__":
 import sys

 from optparse import OptionParser
 parser = OptionParser()
 parser.usage = '%prog [options] image.iso s1'
 parser.add_option("-d","--debug",help="debug",action="store_true")
 (options,args) = parser.parse_args()

 if len(args)!=2:
 parser.print_help()
 sys.exit(1)

 (image,data) = args

 def process(fi):
 offset = fi.contents().find(data)
 if offset>0:
 print "%s (offset=%d)" % (fi.filename(),offset)

 fiwalk.fiwalk_using_sax(imagefile=image),callback=process)

105

igrep.py in action
$ python igrep.py nps-2009-canon2-gen6.raw Firmware
DCIM/100CANON/IMG_0044.JPG (offset=1228)
DCIM/100CANON/IMG_0042.JPG (offset=1228)
DCIM/100CANON/IMG_0003.JPG (offset=1228)
DCIM/100CANON/IMG_0043.JPG (offset=1228)
DCIM/100CANON/IMG_0045.JPG (offset=1228)
DCIM/100CANON/IMG_0046.JPG (offset=1228)
DCIM/100CANON/IMG_0007.JPG (offset=1228)
DCIM/100CANON/IMG_0047.JPG (offset=1228)
DCIM/100CANON/IMG_0009.JPG (offset=1228)
DCIM/100CANON/IMG_0038.JPG (offset=1228)
DCIM/100CANON/IMG_0011.JPG (offset=1228)
DCIM/100CANON/IMG_0048.JPG (offset=1228)
DCIM/100CANON/IMG_0013.JPG (offset=1228)
DCIM/100CANON/IMG_0049.JPG (offset=1228)
DCIM/100CANON/IMG_0050.JPG (offset=1228)
DCIM/100CANON/IMG_0016.JPG (offset=1228)
DCIM/100CANON/IMG_0017.JPG (offset=1228)
DCIM/100CANON/IMG_0018.JPG (offset=1228)
DCIM/100CANON/IMG_0019.JPG (offset=1228)
DCIM/100CANON/IMG_0051.JPG (offset=1228)
DCIM/100CANON/IMG_0021.JPG (offset=1228)
DCIM/100CANON/IMG_0022.JPG (offset=1228)
DCIM/100CANON/IMG_0023.JPG (offset=1228)
DCIM/100CANON/IMG_0024.JPG (offset=1228)
DCIM/100CANON/IMG_0026.JPG (offset=1228)

106

Example:
Get all of the file objects for files < 100 bytes in length.
Using SAX interface:

import fiwalk,dfxml

imagefile = open("/corp/drives/nps/nps-2008-jean/nps-2008-jean.E01")
def process(fi):
 if fi.filesize()<100:
 print fi.filename(),fi.filesize()

fiwalk.fiwalk_using_sax(imagefile=imagefile,callback=process)

Produces:
$ python x.py
$BadClus 0
$Extend/.. 56
$Extend/$ObjId 0
$Extend/$Quota 0
$Extend/$Reparse 0
$Secure 0
$Volume 0
. 56
...
Documents and Settings/Administrator/Cookies/administrator@ads.cnn[2].txt 96
Documents and Settings/Administrator/Cookies/administrator@c.msn[2].txt 68
...
Documents and Settings/Administrator/Cookies/administrator@www.msn[1].txt 85
...

107

<XML> Output

1 32

mailto:administrator@ads.cnn
mailto:administrator@ads.cnn
mailto:administrator@c.msn
mailto:administrator@c.msn
http://www.msn
http://www.msn

The fileobject class allows direct access to file data.

byteruns() is an array of “runs.”
<byte_runs type=’resident’>

 <run file_offset='0' len='65536'
 fs_offset='871588864' img_offset='871621120'/>

 <run file_offset='65536' len='25920'
 fs_offset='871748608' img_offset='871780864'/>

</byte_runs>

Becomes:
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Each byterun object has:
run.start_sector() ! — Starting Sector #
run.sector_count()
run.img_offset! - Disk Image offset
run.fs_offset! - File system offset
run.bytes! ! - number of bytes
run.content()! - content of file

108

<XML> Output

1 32

The fileobject class allows direct access to file data.

byteruns() returns that array of “runs”
for both the DOM and SAX-based file objects.

>>> print fi.byteruns()
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Accessor Methods:
fi.contents_for_run(run) ! — Returns the bytes from the linked disk image
fi.contents() ! ! — Returns all of the contents
fi.file_present(imagefile=None)— Validates MD5/SHA1 to see if image has file
fi.tempfile(calMD5,calcSHA1)! — Creates a tempfile, optionally calc. hash

109

<XML> Output

1 32

Question: how much time can we save in forensic
analysis by processing files in sector order?
Currently, forensic programs process in directory order.

for (dirpath,dirnames,filenames) in os.walk(“/mnt”):
 for filename in filenames:
 process(dirpath+”/”+filename)

Advantages of processing by sector order:
■ Minimizes head seeks.

Disadvantages:
■ Overhead to obtain file system metadata (but you only need to do it once).
■ File fragmentation means you can’t do a perfect job:

110

file 1 part 1 file 1 part 2file 2 file 3 file 4

Using the architecture presented here,
I performed the experiment.
Here’s most of the program:

 t0 = time.time()
 fis = fiwalk.fileobjects_using_sax(imagefile)
 t1 = time.time()
 print "Time to get metadata: %g seconds" % (t1-t0)

 print "Native order: "
 calc_jumps(fis,"Native Order")
 fis.sort(key=lambda(a):a.byteruns()[0].img_offset)
 calc_jumps(fis,"Sorted Order")

With this XML framework, it took less than 10 minutes to write the
program that conducted the experiment.

111

Answer: Processing files in sector order can improve
performance dramatically.

112

Unsorted Sorted

Files processed: 23,222 23,222

backwards seeks 12,700 4,817

Time to extract
metadata: 19 seconds 19 seconds

Time to read files: 441 seconds 38 seconds

Total time: 460 seconds 57 seconds

disk image: nps-2009-domexusers1

DFXML: Current Status

Working today:
■ Programs for producing and consuming DFXML.
■ A set of tags that can represent:

—Files & Metadata
—Hashes
—Time
—Bloom Filters

■ Coming:
—Windows Registry

What we are doing with DFXML:
■ Using DFXML to annotate disk images
■ Using DFXML in a cluster/HPC environment.

What we need:
■ Support from tool vendors (primary carvers)
■ Increased use within the research community.

113

Understanding Unicode

InaiMathi Regular: ! ! ! ! ! ௹

Latin Small Letter Phi: " " " " ɸ
White Chess Queen: ♕

Snowman: ☃
Negative Circled Number Eleven: 11
Eject Symbol: ⏏
Arabic Letter Seen with Three Dots Below and Three Dots Above: ڜ
Katakana Letter Zu: ズ

We no longer live in an ASCII world.

One of the great things about DFXML is you can grep for filenames:
$ grep filename nps-2009-domexusers.xml |grep domexuser2
...
nps-2009-domexusers.xml: <filename>Documents and Settings/domex2/Local
Settings/Temporary Internet Files/Content.IE5/0LYRGTUN/CASRADUP.com
%25252Fmail%25252F%25253F%2526service%253Dmail%2526ltmpl%253Ddefault%26hl
%3Den%26dEM%3Ddomexuser2</filename>
nps-2009-domexusers.xml: <filename>Documents and Settings/domex2/Local
Settings/Temporary Internet Files/Content.IE5/W1QV09Y3/CANALGTL.com
%25252Fmail%25252F%25253F%2526service%253Dmail%2526ltmpl%253Ddefault%26hl
%3Den%26dEM%3Ddomexuser2</filename>
$

With drives from China, you sometimes see this:
$ grep filename cn1-1-10.xml | sed s/<filename.?>//g
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔法天尊II.htm
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔幻精灵2.htm
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔幻精灵二.htm
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔幻天下.htm
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔唤精灵.htm
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔唤精灵C.htm
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔界之泉.htm
cn1-1-10.xml: Program Files/Kingsoft/KnightV/HTM/GONGLUE/魔神战记2.htm

115

When you see words like 魔法天尊, you ask questions...

What does KnightV/HTM/GONGLUE/魔法天尊II.htm mean?
■ Use Google Translate:

How can 魔法天尊 display in Terminal?

How can I copy&paste 魔法天尊?

116

Counting the bytes just adds to one’s confusion.

Let’s put it in a file.
■ The Kanji behaves like regular characters:

$ cat “KnightV/HTM/GONGLUE/魔法天尊II.htm“ > filename.txt
$ ls -l filename.txt
-rw-r--r-- 1 simsong staff 39 Jul 16 19:47 filename.txt
$ cat filename.txt
KnightV/HTM/GONGLUE/魔法天尊II.htm

■ But if you count the number of characters, there are only:
— 22 Letters (“KnightVHTMGONGLUEIIhtm”)
— + 3 slashes (“///”)
— + 1 period (“.”)
— + 1 newline (“\n”)
— + 4 Kanji (“魔法天尊”)

— = 30 characters, not 39
■ You only get 39 if you count 3 bytes for each Kanji.

— 22+3+1+1+4*3 = 39

117

Looking at the byte level is more confusing still.
$ cat filename.txt
KnightV/HTM/GONGLUE/魔法天尊II.htm
$ xxd filename.txt
0000000: 4b6e 6967 6874 562f 4854 4d2f 474f 4e47 KnightV/HTM/GONG
0000010: 4c55 452f e9ad 94e6 b395 e5a4 a9e5 b08a LUE/............
0000020: 4949 2e68 746d 0a II.htm.
$

Assuming 3 bytes per Kanji, we get:
魔 = e9 ad 94
法 = e6 b3 95
天 = e5 a4 a9
尊 = e5 b0 8a

118

魔法天尊 are examples of Unicode characters.

Unicode was created as a single system to represent all the
characters of all the world’s languages.

Currently we are on Unicode version 6.0.

119

A "Code" is a system for converting one piece of
information to another.

There are many codes:
■ "Modem Codes" — Values that a modem returns

to identify itself.
■ ASCII — American Standard Code for Information

Interchange
■ Unicode — Modern interchange code.

—Note: These days codes are rarely used for
security because they are easily broken.

A code book is a list of codes and their
meanings.

In computing, a code point is a
particular number and its graphical
representation.

120

American Standard Code for Information Interchange
(ASCII) was developed in the early 1960s.
ASCII improved on codes in use at the time (e.g. Baudot):
■ UPPERCASE and lowercase letters.
■ No “shift” character to switch from letters to numbers.
■ Many more symbols — !”#$%&’ ()*+,-./:;<=>?@[\]^_`{|}~
■ 32 control characters — many to support interactive computing.
■ 7-level code allows 1 bit for parity on 8-bit systems.

121

ASR 33
7-bit ASCII

 The decimal set:

 0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel
 8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si
 16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb
 24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us
 32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 '
 40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
 48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
 56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
 64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
 72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
 80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
 88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _
 96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g
 104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
 112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
 120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

0-25 = ^A through ^Z
 1 = 0000 0001 = ^A
 65 = 0010 0001 = A
 96 = 0110 0001 = a

7-bit ASCII was used on 8-bit computers.

122

ASCII was a 7-bit code.
■ By the 1980s, transmission was reliable enough to use all 8 bits without parity.
■ Bottom 128 codes were usually ASCII.
■ The top 128 codes were used for different purposes in different areas:

—European accents.
—Line drawing
—Greek, Cyrillic, Hebrew, etc.

When IBM introduced the IBM PC in 1981, it used “Code Page 437”
for the top 128 characters.

Code page 850: Latin 1

Code page 737: Greek:

IBM gave each region of the world a different code page.

Codes 0-127: ASCII

Codes 128-255:
Localized Codes

5/19/09 12:32 PMCode page 737 - Wikipedia, the free encyclopedia

Page 1 of 1http://en.wikipedia.org/wiki/Code_page_737

Code page 737

From Wikipedia, the free encyclopedia

Code page 737 (CP 737, IBM 737, OEM 737) is a code page to be used under MS-DOS to write Greek

language. It was much more popular than CP869.

Code page layout

Only the upper half (128–255) of the table is shown, the lower half (0–127) being plain ASCII.

–0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –A –B –C –D –E –F

8!

!
391

"
392

#
393

$
394

%
395

&
396

'
397

(
398

)
399

*
39A

+
39B

,
39C

-
39D

.
39E

/
39F

0
3A0

9!

1
3A1

2
3A3

3
3A4

4
3A5

5
3A6

6
3A7

7
3A8

8
3A9

9
3B1

:
3B2

;
3B3

<
3B4

=
3B5

>
3B6

?
3B7

@
3B8

A!

A
3B9

B
3BA

C
3BB

D
3BC

E
3BD

F
3BE

G
3BF

H
3C0

I
3C1

J
3C3

K
3C2

L
3C4

M
3C5

N
3C6

O
3C7

P
3C8

B!

!
2591

!
2592

!
2593

"
2502

#
2524

╡
2561

"
2562

#
2556

$
2555

%
2563

&
2551

'
2557

(
255D

)
255C

*
255B

$
2510

C!

%
2514

&
2534

'
252C

(
251C

)
2500

*
253C

╞
255E

+
255F

,
255A

-
2554

.
2569

/
2566

0
2560

═
2550

1
256C

2
2567

D!

3
2568

4
2564

5
2565

6
2559

7
2558

8
2552

9
2553

:
256B

╪
256A

+
2518

,
250C

-
2588

▄
2584

▌
258C

"
2590

#
2580

E!

Q
3C9

R
3AC

S
3AD

T
3AE

U
3CA

V
3AF

W
3CC

X
3CD

Y
3CB

Z
3CE

[
386

\
388

]
389

^
38A

_
38C

`
38E

F!

a
38F

b
B1

c
2265

d
2264

e
3AA

f
3AB

g
F7

h
2248

i
B0

j
2219

j
B7

k
221A

.
207F

l
B2

!

25A0

m
A0

Retrieved from "http://en.wikipedia.org/wiki/Code_page_737"
Categories: DOS code pages

This page was last modified on 26 June 2008, at 08:02 (UTC).
All text is available under the terms of the GNU Free Documentation License. (See Copyrights for
details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3)
tax-deductible nonprofit charity.

5/19/09 12:34 PMCode page 850 - Wikipedia, the free encyclopedia

Page 2 of 3http://en.wikipedia.org/wiki/Code_page_850

6!

!
0060

96

"
0061

97

#
0062

98

$
0063

99

%
0064

100

&
0065

101

'
0066

102

(
0067

103

)
0068

104

*
0069

105

+
006A

106

,
006B

107

-
006C

108

.
006D

109

/
006E

110

0
006F

111

7!

1
0070

112

2
0071

113

3
0072

114

4
0073

115

5
0074

116

6
0075

117

7
0076

118

8
0077

119

9
0078

120

:
0079

121

;
007A

122

<
007B

123

=
007C

124

>
007D

125

?
007E

126

!
2302

127

8!

@
00C7

128

A
00FC

129

B
00E9

130

C
00E2

131

D
00E4

132

E
00E0

133

F
00E5

134

G
00E7

135

H
00EA

136

I
00EB

137

J
00E8

138

K
00EF

139

L
00EE

140

M
00EC

141

N
00C4

142

O
00C5

143

9!

P
00C9

144

Q
00E6

145

R
00C6

146

S
00F4

147

T
00F6

148

U
00F2

149

V
00FB

150

W
00F9

151

X
00FF

152

Y
00D6

153

Z
00DC

154

[
00F8

155

\
00A3

156

]
00D8

157

^
00D7

158

_
0192

159

A!

`
00E1

160

a
00ED

161

b
00F3

162

c
00FA

163

d
00F1

164

e
00D1

165

f
00AA

166

g
00BA

167

h
00BF

168

i
00AE

169

j
00AC

170

k
00BD

171

l
00BC

172

m
00A1

173

n
00AB

174

o
00BB

175

B!

"
2591

176

!
2592

177

!
2593

178

"
2502

179

#
2524

180

p
00C1

181

q
00C2

182

r
00C0

183

s
00A9

184

"
2563

185

#
2551

186

$
2557

187

%
255D

188

t
00A2

189

u
00A5

190

$
2510

191

C!

%
2514

192

&
2534

193

'
252C

194

(
251C

195

)
2500

196

*
253C

197

v
00E3

198

w
00C3

199

&
255A

200

'
2554

201

(
2569

202

)
2566

203

*
2560

204

═
2550

205

+
256C

206

x
00A4

207

D!

y
00F0

208

z
00D0

209

{
00CA

210

|
00CB

211

}
00C8

212

~
0131

213

�
00CD

214

Ä
00CE

215

Å
00CF

216

+
2518

217

,
250C

218

-
2588

219

▄
2584

220

Ç
00A6

221

É
00CC

222

#
2580

223

E!

Ñ
00D3

224

Ö
00DF

225

Ü
00D4

226

á
00D2

227

à
00F5

228

â
00D5

229

ä
00B5

230

ã
00FE

231

å
00DE

232

ç
00DA

233

é
00DB

234

è
00D9

235

ê
00FD

236

ë
00DD

237

í
00AF

238

ì
00B4

239

F!

SHY

00AD

240

î
00B1

241

.
2017

242

ï
00BE

243

ñ
00B6

244

ó
00A7

245

ò
00F7

246

ô
00B8

247

ö
00B0

248

õ
00A8

249

ú
00B7

250

ù
00B9

251

û
00B3

252

ü
00B2

253

!

25A0

254

NBSP

00A0

255

The C0 control range (0x00–0x1F hex) is mapped to graphics characters. The codes can assume their
original function as controls (as they still do—typing "echo", space, control-G and then Enter causes the
PC speaker to emit a beep—even on the command prompt on Windows XP), but in display, for example
in a screen editor like MS-DOS edit, they show as graphics. The graphics are various, such as smiling
faces, card suits and musical notes. Code 0x7F, DEL, similarly shows as a graphic (a house).

See also

Western Latin character sets (computing)

Retrieved from "http://en.wikipedia.org/wiki/Code_page_850"
Categories: DOS code pages
Hidden categories: All articles with unsourced statements | Articles with unsourced statements since
September 2008

This page was last modified on 14 February 2009, at 22:05 (UTC).

123

Code pages complicate processing because different
code pages show the same text differently!
There are many code pages:
■ 437 — Original IBM PC code page
■ 737 — Greek
■ 775 — Estonian, Lithuanian and Latvian
■ 850 — "Multilingual (Latin-1)" (Western European languages)
■ 852 — "Slavic (Latin-2)" (Central and Eastern European languages)
■…

This text in code page 437:
naïve

Becomes this text in code page 737:
 "naΜve"

—Note: that "Μ" is character code 8B; it is not an "M" (code 4D)

Problems with code pages:
■ No intrinsic coding of current code page. • Lack of standardization
■ Hard to get symbols from multiple code pages. • Some vendors implemented "shift."
■ No obvious way to handle Chinese, Japanese, Korean, or Vietnamese (CJKV)

124

http://en.wikipedia.org/wiki/Code_page_775
http://en.wikipedia.org/wiki/Code_page_775
http://en.wikipedia.org/wiki/Estonian_alphabet
http://en.wikipedia.org/wiki/Estonian_alphabet
http://en.wikipedia.org/wiki/Lithuanian_alphabet
http://en.wikipedia.org/wiki/Lithuanian_alphabet
http://en.wikipedia.org/wiki/Latvian_alphabet
http://en.wikipedia.org/wiki/Latvian_alphabet
http://en.wikipedia.org/wiki/Code_page_850
http://en.wikipedia.org/wiki/Code_page_850
http://en.wikipedia.org/wiki/Multilingualism
http://en.wikipedia.org/wiki/Multilingualism
http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/Latin-1
http://en.wikipedia.org/wiki/Western_Europe
http://en.wikipedia.org/wiki/Western_Europe
http://en.wikipedia.org/wiki/Code_page_852
http://en.wikipedia.org/wiki/Code_page_852
http://en.wikipedia.org/wiki/Slavic_languages
http://en.wikipedia.org/wiki/Slavic_languages
http://en.wikipedia.org/wiki/Latin-2
http://en.wikipedia.org/wiki/Latin-2
http://en.wikipedia.org/wiki/Central_Europe
http://en.wikipedia.org/wiki/Central_Europe
http://en.wikipedia.org/wiki/Eastern_Europe
http://en.wikipedia.org/wiki/Eastern_Europe

Unicode was developed as a single coding standard for
all of the world's languages
Project started in 1987 at Xerox and Apple.
■ Originally called for 16-bit characters (limit of 65,535 symbols)
■ Expanded to handle code points 0 through 10FFFF (1,114,112 total) to cover ancient

languages.

Goals:
■ Compatibility with existing systems.
■ Clean "round trip" to legacy codings.
■ Stability.
■ No "shift" characters.

■ Code for graphemes, not glyphs (e.g., 'a' and 'a' have the same unicode—U+0061)

■ "Han unification" — A single set of characters for identical kanji in Chinese, Japanese,
Korean, and Cantonese

125

Unicode Today

96,000+ characters in Unicode v4 (more in v5)
Used:
■ In every major operating system
■ In most office programs
■ In XML, HTML, etc.
■ In Java, C++, C#

Problems:
■ Implementations are incomplete
■ Not all programmers have implemented all the rules.
■ Multiple codings (UTF-8, UTF-16) mean that code that works sometimes with some

codings doesn't work other times with other codings.

126

Today Unicode 6.0 is widely used.

Unicode has 1,114,112 code points ranging from 0 to 10FFFF.
Most Unicode characters are 16-bit characters.
■ U+0041 is "A" "LATIN CAPITAL LETTER A." Just like ASCII
■ U+0042 is "B" Just like ASCII

■ U+0495 is "ક" Gujarati letter KA

■ U+20AC is "€" Euro
■ U+FE4A is "﹊" Centerline Overline

Unicode 4.0 has characters for every living human language.
■ Arabic االلععررببييةة left-to-right
■ Hebrew עבְִריִת

■ Japanese 日本語

Unicode 5.0 added support for dead languages.
■ Excellent demo online at http://www.fileformat.info/info/unicode/

127

http://www.fileformat.info/info/unicode/
http://www.fileformat.info/info/unicode/

Unicode is divided into 17 planes,
each with 65,536 code points.
Only a few code points are actually used:

Plane Range Name

0 U+0000 to U+FFFF Basic multilingual Plane (BMP)

1 U+10000 to U+1FFFF Supplementary Multilingual Plane (SMP)

2 U+20000 to U+2FFFF Supplementary Ideographic Plane (SIP)

3 - 13 UnassignedUnassigned

14 U+E0000 to U+EFFFF Supplementary Special-purpose Plane
(SSP)

15 U+F0000 to U+FFFFF Private Use Area (PUA)

16 U+100000 to U
+10FFFF

Private Use Area (PUA)

128

Each Unicode code point can be represented with
multiple encodings.
Most Unicode text is encoded as UTF-8
■ Variable-length code; ASCII characters code as ASCII
■ Arabic, Armenian, Cyrillic, Coptic, Greek, Syriac &Tāna: 2 characters
■ Chinese, Japanese, Korean & Vietnamese: 3 characters
■ Other: 4 (or more)

Unicode Byte1 Byte2 Byte3 Byte4 example

U+0000-U

+007F

0xxxxx

xx

'$' U+0024

! 00100100

! 0x24

U+0080-U

+07FF

110yyy

xx

10xxxx

xx

'¢' U+00A2

! 11000010,10100010

! 0xC2,0xA2

U+0800-U

+FFFF

1110yy

yy

10yyyy

xx

10xxxx

xx

'!' U+20AC

! 11100010,10000010,10101100

! 0xE2,0x82,0xAC

U+10000-U

+10FFFF

11110z

zz

10zzyy

yy

10yyyy

xx

10xxxx

xx

"U+10ABCD

!

11110100,10001010,10101111,10

001101

! 0xF4,0x8A,0xAF,0x8D

http://en.wikipedia.org/wiki/UTF-8
129

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8

Most "modern" web pages download with UTF-8

www.apple.com:

130

http://www.apple.com
http://www.apple.com

UTF-16 codes most characters as 2 bytes.
UTF-16 is the original Unicode representation
Widely used by:
■ Microsoft (in memory and on disk) for filenames
■ Text in some Microsoft documents.
■ Web pages authored in Chinese and Japanese.

Code plans 1 through 16 are encoded with U+D800 to U+DBFF
■ Character U+10000 becomes 0xD800 0xDC00

Beware:
■ UTF-16 can be coded two ways—big endian or little-endian.
■ The Byte Order Mark (Zero-Width No-Break Space) U+FEFF is used at the beginning of

a file to specifies byte order:
—big-endian — FE FF
—little-endian — FF FE

■ If text is accompanied with encoding of UTF-16BE or UTF-16LE, BOM is ignored.
■ Forensic data rarely has a BOM—and it can be wrong.

131

Many problems araise with Unicode.

Legacy problems:
■ Implementations are incomplete
■ Not all programmers have implemented all the rules.
■ Multiple codings (UTF-8, UTF-16) mean that code that works sometimes with some

codings doesn't work other times with other codings.

Ongoing problems
■ Behavior of strings becomes complex and may depend on the locale.
■ Complex rules for:

—case conversion (toUpper(), toLower(), toTitle())
—String comparison (isUpper(), isLower(), isTitle())

Complex rules for:
■ bidi
■ coalition
■ line and paragraph breaks (U+2028 LINE SEPARATOR and U+2029 PARAGRAPH

SEPARATOR)
■ search/string matching

132

Consider Arabic:
There are multiple unicode glyphs for the same letter.

Different versions are used in different
applications.
■ For editing, the general form is used.
■ For printing, the isolated, final, medial or initial forms

might be used.
■ For searching, any form needs to match

Each form has a different character code.

Arabic MEEM

133

U+0645: ARABIC LETTER MEEM

Different fonts render the MEEM differently!

134

U+FEE1: MEEM ISOLATED FORM

135

U+FEE2: MEEM FINAL FORM

136

U+FEE3: MEEM INITIAL FORM

137

U+FEE4: MEEM MEDIAL FORM

138

Unicode characters with diacritical marks can be
constructed with 1 code point or two.
The ñ character can be coded two ways:

■ U+00F1: ñ (LATIN SMALL LETTER N WITH TIDLE)

or:

■ U+0303: ~ (COMBINING TILDE)
■ U+006E: n (LATIN SMALL LETTER N)

This creates 10 different byte sequences that display as ñ:
■ U+00F1 in UTF-8, UTF-16LE, UTF-16BE, UTF-32BE, UTF32-LE
■ U+0303 and U+006E UTF-8, UTF-16LE, UTF-16BE, UTF-32BE, UTF32-LE

139

Unicode has HCI-SEC problems.

A and Α are different characters (A is English A; Α is Greek A)

This leads to both database problems and phishing attacks.

140

Unicode has political problems.

What should we do about this language?

141

Who decides what's a language?

Invented languages like Klingon.
■ The Klingon Dictionary sold 300,000 copies.

Dying languages.

Dead languages.

Most of these problems matter less with the expanded code space
that Unicode 5.0 and 6.0 provides.

142

Things to know as a programmer...

Behavior is complex and may depend on the locale. Use built-in
functions for:
■ case conversion
■ String comparison
■ isUpper(), isLower(), isTitle()
■ toUpper(), toLower(), toTitle(), etc.
■ Unicode strings should know about valid line-breaks

In forensics, we frequently have invalid Unicode codings:
>>> print unicode(a)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 0:
ordinal not in range(128)

143

I generally have all programs output in UTF-8 and
escape or suppress it as necessary:

def make_utf8(s):
 # Try the most basic conversion first. If they work, we return
 try:
 if type(s)==unicode:
 return s.replace("\\","\\\\").encode('utf-8')
 elif type(s)==str:
 return unicode(s,'utf-8').replace("\\","\\\\")
 else:
 return unicode(str(s),'utf-8').replace("\\","\\\\")
 except UnicodeDecodeError:
 pass
 except UnicodeEncodeError:
 pass
 ret = ""! # Didn’t work, so convert character-by-character
 for ch in s:
! if(ord(ch)<ord(' ')):
 ret += "\\%03o" % ord(ch)
 continue
 try:
 ret += ch.encode('utf-8').replace("\\","\\\\")
 continue
 except UnicodeDecodeError:
 pass
 except UnicodeEncodeError:
 pass
 ret += "\\%03o" % ord(ch)
 return ret

144

So let’s look at 魔法天尊 again.
$ cat filename.txt
KnightV/HTM/GONGLUE/魔法天尊II.htm
$ xxd filename.txt
0000000: 4b6e 6967 6874 562f 4854 4d2f 474f 4e47 KnightV/HTM/GONG
0000010: 4c55 452f e9ad 94e6 b395 e5a4 a9e5 b08a LUE/............
0000020: 4949 2e68 746d 0a II.htm.
$

Those 3 bytes per Kanji were UTF-8:
魔 = e9 ad 94
法 = e6 b3 95
天 = e5 a4 a9
尊 = e5 b0 8a

The letters could also be coded in UTF-16 or UTF-32:
魔 = U+9B54 = 9b 54 = 00 00 9b 54 = demon, evil spirits; magic power
法 = U+6CD5 = 6c d5 = 00 00 6c d5 = law, rule, regulation, statute; France,
天 = U+5929 = 59 29 = 00 00 59 29 = sky, heaven; god, celestial
尊 = U+5C0A = 5c 0a = 00 00 5c 0a = respect, revere, venerate; honor

145

I created those demos with Python
>>> "魔".decode('utf-8')
u'\u9b54'

“u” is the Python Unicode character type.
>>> a = "法"
>>> print a,type(a)
法 <type 'str'>
>>> b = a.decode('utf-8')
>>> print b,type(b)
法 <type 'unicode'>
>>> print b.encode('utf-16')
???l
>>> print a.encode('utf-16')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position 0:
ordinal not in range(128)
>>> print len(a)
3
>>> print hex(ord(a[0])),hex(ord(a[1])),hex(ord(a[2]))
0xe6 0xb3 0x95
>>>

146

In summary

ASCII and Unicode:
■ Display is easier than search
■ Information may not display correctly, and you may not know it.

For further information:
■ http://www.unicode.org/standard/principles.html
■ http://www.unicode.org/versions/Unicode5.1.0/
■ http://www.unicode.org/notes/tn23/
■ http://www.unicode.org/faq/
■ http://macchiato.com/slides/UnicodeMyths.pdf
■ http://unicode.org/standard/tutorial-info.html

147

http://www.unicode.org/versions/Unicode5.1.0/
http://www.unicode.org/versions/Unicode5.1.0/
http://www.unicode.org/notes/tn23/
http://www.unicode.org/notes/tn23/
http://macchiato.com/slides/UnicodeMyths.pdf
http://macchiato.com/slides/UnicodeMyths.pdf
http://unicode.org/standard/tutorial-info.html
http://unicode.org/standard/tutorial-info.html

Memory Forensics
What was really happening on
the subject’s computer?

RAM analysis

The computer's RAM may contain:
■ Discoverable evidence (e.g. logfiles, documents)
■ Encryption keys
■ Current network connections; Some kinds of malware

—“Cold boot” attack lets you move memory between computers.

Windows and MacOS deny access to memory for security.
■ A current list of tools is at: http://www.forensicswiki.org/wiki/Tools:Memory_Imaging

Linux memory acquisition is relatively easy
■ Just read /dev/mem; /dev/kmem

Write the RAM to:
■ Server on the Network (best)
■ External storage (USB stick—leaves evidence under Windows)
■ File on the same system (worst)

149

http://www.forensicswiki.org/wiki/Tools:Memory_Imaging
http://www.forensicswiki.org/wiki/Tools:Memory_Imaging

Control of memory is control of the computer.

Reading:
■ Contents of the screen
■ Cryptographic Keys
■ Passwords (BIOS & programs)
■ Current Running Programs
■ Remnants of previously run programs
■ Open TCP/UDP ports
■ Cached data
■ Hidden data

Writing:
■ Patch programs on the fly
■ Change security levels
■ Install malware

150

Two memory views: "Physical" and "Logical"

Main Memory

#3

#1

#2

Physical Memory Map

#3

#1

#2

Logical Memory Map

#4

SWAP FILE

#4

Process FOOBAR

#1

#2

Kernel Memory

#1

#2

Process OUT-TO-LUNCH

#1

#2

#1

#2

151

Memory can be acquired "LIVE" or "DEAD"

Swap space on live or dead
systems
■ PAGEFILE.SYS
■ /private/var/vm/swapfile
■ Swap Partitions
■ Suspend/Resume

Live Memory:
■ /dev/mem
■ /proc/kcore
■ \\.\PhysicalMemory
■ \\.\DebugMemory
■ Device Drivers
■ Special programs (WinEn)
■ Hardware memory imagers
■ Firewire (provides DMA)

152

Options for RAM acquisition.

Hardware Acquisition (very hard to do)
■ Special-purpose PCI card
■ Firewire / PATA / SATA
■ Cold Boot Attack

Software Acquisition
■ User-level program (Windows XP2)
■ User-level program with device driver (Windows XP3, Vista, Windows 7)

Hibernation Files and Virtual Machines
■ hiberfil.sys
■ VMWare stores "Ram" in FILENAME.vmem

153

Potential problems with acquiring live memory:

Speed:
■ Memory changes fast; it won’t be consistent.

Availability:
■ Software methods can be blocked by attacker.

Integrity:
■ Software changes the memory map
■ You can't get all the memory

154

Memory Analysis Techniques

Look for ASCII and UNICODE strings.
■ strings(1), grep

"File carving"
■ foremost, scalpel
■ Princeton key search program

Identify and interpret kernel or program data structures
■ Convert Windows memory image to Microsoft crashdump format, then analyze with

standard debugging tools (WinDbg):
—http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html
—http://www.shakacon.org/talks/NFI-Shakacon-win32dd0.3.pdf

■ KnTTools (George Garner)
■ Volatility, by Volatile Systems (http://wwwvolatilesystems.com)
■ Idetect

155

http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html
http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html
http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html
http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html
http://wwwvolatilesystems.com
http://wwwvolatilesystems.com

KnTTools (Windows), by George M. Garner, Jr.

KNTDD - Acquires memory
■ Acquisition to removable drive or network
■ Cryptographic integrity checks, auditing
■ Conversion to Microsoft crash dump format
■ Remote deployment as a service

KnTList - Lists Kernel Structures
■ Reconstructs virtual address space
■ Drives, Device Objects, System Tables
■ Threads, access tokens, handle table, objects, etc.
■ Outputs as text and XML

http://forensic.seccure.net/
http://gmgsystemsinc.com/knttools/

156

http://users.erols.com/gmgarner/KnTTools/
http://users.erols.com/gmgarner/KnTTools/

WMFT - Windows Memory Forensic Toolkit

Enumerates processes, modules, libraries
Finds hidden data (including some rootkits)
Detailed information:
■ Access tokens
■ Handles
■ Processes
■ Modules

http://forensic.seccure.net/

157

http://forensic.seccure.net
http://forensic.seccure.net

Idetect (Linux)

Displays detailed information for each
process
Enumerates all process-related structures
Can work on memory image or live system
■ http://forensic.seccure.net/tools/idetect.tar.gz
■ http://forensic.seccure.net/pdf/

mburdach_digital_forensics_of_physical_memory.pdf

Lots more information about memory
forensics, including 53-page presentation:
■ http://forensic.seccure.net (2006)

158

http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://forensic.seccure.net/pdf/mburdach_digital_forensics_of_physical_memory.pdf
http://forensic.seccure.net
http://forensic.seccure.net

Volatility: An open source tool for analyzing windows
memory dumps
Created by Aaron Walters and Nick L. Petroni
■ Open Source (unlike prior systems)
■ Written in Python

Extracts:
■ Image date & time
■ Memory map for each running process
■ Network sockets
■ DLLs loaded for each process
■ Lots more.

https://www.volatilesystems.com/VolatileWeb/volatility.gsp
http://volatility.tumblr.com/

159

http://volatility.tumblr.com
http://volatility.tumblr.com

My Windows machine has 512MB of RAM:

-r-xr-xr-x 1 simsong simsong 1013 Oct 5 15:22 image.dd_audit.log
-r-xr-xr-x 1 simsong simsong 536866816 Oct 5 15:22 image.dd
-r-xr-xr-x 1 simsong simsong 73 Oct 5 15:22 image.dd.md5

$ cat image.dd.md5
74eb8e6cdaa43589e0b27449bd7ac03f [\\\\.\\PhysicalMemory] *v:\\image.dd
$

160

Volatility commands:
$ python volatility
Supported Commands:
! connections ! Print list of open connections
! connscan ! Scan for connection objects
! datetime ! Get date/time information for image
! dlllist ! Print list of loaded dlls for each process
! files ! Print list of open files for each process
! ident ! Identify image properties such as DTB and VM type
! modules ! Print list of loaded modules
! pslist ! Print list of running processes
! psscan ! Scan for EPROCESS objects
! sockets ! Print list of open sockets
! sockscan ! Scan for socket objects
! strings ! Match physical offsets to virtual addresses
! thrdscan ! Scan for ETHREAD objects
! vaddump ! Dump the Vad sections to files
! vadinfo ! Dump the VAD info
! vadwalk ! Walk the vad tree

161

volatility pslist -f filename: See the processes
$ python volatility pslist -f winxp.mem
Name Pid PPid Thds Hnds Time
System 4 0 57 187 Thu Jan 01 00:00:00 1970
smss.exe 612 4 3 19 Wed Aug 13 00:09:58 2008
csrss.exe 660 612 12 370 Wed Aug 13 00:10:01 2008
winlogon.exe 684 612 18 519 Wed Aug 13 00:10:02 2008
services.exe 728 684 16 269 Wed Aug 13 00:10:02 2008
lsass.exe 740 684 20 344 Wed Aug 13 00:10:02 2008
vmacthlp.exe 888 728 1 25 Wed Aug 13 00:10:03 2008
svchost.exe 904 728 17 196 Wed Aug 13 00:10:03 2008
svchost.exe 1020 728 10 269 Wed Aug 13 00:10:05 2008
svchost.exe 1056 728 55 1237 Wed Aug 13 00:10:06 2008
svchost.exe 1200 728 4 73 Wed Aug 13 00:10:07 2008
svchost.exe 1364 728 15 212 Wed Aug 13 00:10:13 2008
spoolsv.exe 1496 728 11 117 Wed Aug 13 00:10:15 2008
VMwareService.e 1796 728 4 139 Wed Aug 13 00:10:16 2008
searchindexer.e 1976 728 20 678 Wed Aug 13 00:10:17 2008
wscntfy.exe 276 1056 1 37 Wed Aug 13 00:10:22 2008
explorer.exe 480 456 13 351 Wed Aug 13 00:10:23 2008
VMwareTray.exe 548 480 1 37 Wed Aug 13 00:10:24 2008
VMwareUser.exe 556 480 3 184 Wed Aug 13 00:10:24 2008
Eraser.exe 572 480 3 90 Wed Aug 13 00:10:24 2008
ctfmon.exe 580 480 1 71 Wed Aug 13 00:10:24 2008
WindowsSearch.e 704 480 10 238 Wed Aug 13 00:10:25 2008
alg.exe 1108 728 6 105 Wed Aug 13 00:10:26 2008
imapi.exe 1336 728 5 118 Wed Aug 13 00:10:29 2008
ftk.exe 568 480 7 293 Wed Aug 13 00:24:39 2008

162

volatility files -f filename: See the open files

$ python volatility pslist -f winxp.mem
Pid: 4
File \pagefile.sys
File \Documents and Settings\NetworkService\NTUSER.DAT
File \WINDOWS\system32\config\SECURITY
File \WINDOWS\system32\config\software
File \WINDOWS\system32\config\SECURITY.LOG
File \Documents and Settings\NetworkService\ntuser.dat.LOG
File \WINDOWS\system32\config\software.LOG
File \WINDOWS\system32\config\system
File \WINDOWS\system32\config\system.LOG
File \WINDOWS\system32\config\default
File \WINDOWS\system32\config\default.LOG
File \WINDOWS\system32\config\SAM
File \WINDOWS\system32\config\SAM.LOG
File \Documents and Settings\NetworkService\Local Settings\Application Data
\Microsoft\Windows\UsrClass.dat
File \Documents and Settings\NetworkService\Local Settings\Application Data
\Microsoft\Windows\UsrClass.dat.LOG
File \Documents and Settings\Administrator\NTUSER.DAT
File \Documents and Settings\Administrator\Local Settings\Application Data
\Microsoft\Windows\UsrClass.dat.LOG
File \
File \Documents and Settings\Administrator\ntuser.dat.LOG
File \Documents and Settings\Administrator\Local Settings\Application Data
\Microsoft\Windows\UsrClass.dat

163

Use strings(1) to find the printable strings...

$ strings image.dd | grep|head -10
Invalid partition ta
r loading operating system
Missing operating system
X509_REQ_add1_attr_by_txt
X509_REQ_add_extensions
X509_REQ_add_extensions_nid
X509_REQ_check_private_key
X509_REQ_delete_attr
X509_REQ_digest

164

Use strings(1) detect JPEG files...

$ strings filename.jpg
JFIF
ICC_PROFILE
appl
mntrRGB XYZ
acspAPPL
appl
-appl
rXYZ
gXYZ
...

$ strings image.dd | grep -i JFIF | head -10
JFIF
JFIF
.jfif:
.jfif
HKLM,"%PATH_ALLOWEDIMGEXTS%",".jfif",0x10001,0x1
ijjgijggjfifjjgijijjjjigjijgjiiijijjiiiffjijjjjjjijjijijjiijiijjjiigfijjjjjijjjjjjjgi
jjjj0
JFIF
JFIF
.jfif:
HKCR,".jfif",,,"pjpegfile"
$

165

Don't believe MacOS "Secure Virtual Memory"

$ ls -l /private/var/vm
total 4259840
-rw------T 1 root wheel 4294967296 May 3 13:51 sleepimage
-rw------T 1 root wheel 67108864 May 4 00:08 swapfile0

166

Summary:
Memory Forensics
Memory forensics analysis:
■ Analysis of live memory & suspended memory
■ Bulk analysis & high-level analysis

Advantages:
■ Gets around disk encryption
■ No systems have encrypted memory (yet)

Disadvantages:
■ Operating system specific.
■ Tools are very primitive, but getting better.

See also:
■ http://www.forensicswiki.org/wiki/Windows_Memory_Analysis

167

http://www.forensicswiki.org/wiki/Windows_Memory_Analysis
http://www.forensicswiki.org/wiki/Windows_Memory_Analysis

Carving

http://www.nps.gov/history/museum/exhibits/band/slideshow/CCC/carving_6.html
http://www.nps.gov/history/museum/exhibits/band/slideshow/CCC/carving_6.html

“Carving” searches for objects based on content, rather
than on metadata.

Directory FILE1 FILE2 FILE3
Deleted
Word file

FILE4 FILE5
Deleted
Word file

FILE4 JPEG3

169

“Carving” searches for objects based on content, rather
than on metadata.

Recoverable Word File

Directory FILE1 FILE2 FILE3
Deleted
Word file

FILE4 FILE5
Deleted
Word file

FILE4 JPEG3

Recoverable embedded JPEG
169

Carving is a powerful tool for finding useful pieces of
information.
What can be carved:
■ Disks & Disk Images
■ Memory
■ Files of unknown format (to find embedded objects)

Objects that can be recovered:
■ Images
■ Text files & documents
■ Cryptographic Keys
■ Email addresses, Credit Card, Numbers, etc.

Why carve?
■ Directory entries are overwritten
■ Directory entries are damaged
■ File formats aren’t known

170

Example: Carving JPEG Files

JPEGs are container files
■ Standard Header
■ Standard Footer
■ Embedded Images

Carving strategy:
■ Find all headers
■ Find all footers
■ Save sectors to files

Huffman

Encoded

Data

Color Table

EXIF

Icons

Header

Footer

[FF D8 FF E0] or [FF D8 FF E1]

[FF D9]

00 10 4a 46 49 46 ("JFIF")

171

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

172

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

172

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

172

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

This strategy is used by foremost and scalpel.

172

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

This strategy is used by foremost and scalpel.

172

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

This strategy is used by foremost and scalpel.

172

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

FI
LE

This strategy is used by foremost and scalpel.

172

Disk Sectors �

F
F

 D
8

 F
F

 E
0

F
F

 D
9

F
F

 D
8

 F
F

 E
0

F
F

 D
9

Header/Footer carving involves saving the data between
a known header & known footer.

FI
LE

Possible explanations:
1.This file may be fragmented.
2.The file may have been overwritten.

If the file is fragmented, it can be recovered with
fragment recovery carving

This strategy is used by foremost and scalpel.

172

Carving tools available today:

Open Source:
■ Foremost - Developed by Jesse Kornblum and Kris Kendall at AFOSI
■ Scalpel - Improved version of Foremost, by Golden G. Richard III
■ CarvFS - Virtual file system for carving
■ PhotoRec - Recovers lost photos from hard drives
■ RevIT & S2 - Experimental carvers developed for DFRWS 2006 carving challenge

Commercial:
■ Adroit Photo Recovery — Amazing, but only works on JPEGs
■ EnCase - comes with some eScripts that will carve
■ DataLifter - File Extractor Pro

173

Let's use scalpel to carve a memory dump...
$ tar xfz scalpel-1.60.tar.gz
$ cd scalpel-1.60;make bsd
gcc -Wall -O2 -D__OPENBSD -c helpers.c
gcc -Wall -O2 -D__OPENBSD -c scalpel.c
gcc -Wall -O2 -D__OPENBSD -c files.c
gcc -Wall -O2 -D__OPENBSD -c dig.c
gcc -Wall -O2 -D__OPENBSD -c prioque.c
gcc -Wall -O2 -D__OPENBSD -c base_name.c
gcc -Wall -O2 -D__OPENBSD -o scalpel helpers.o scalpel.o files.o dig.o
prioque.o base_name.o -lm
$

174

Edit the Scalpel config file to look for JPEGs...
#---
GRAPHICS FILES
#---

GIF and JPG files (very common)
 gif y 5000000 \x47\x49\x46\x38\x37\x61 \x00\x3b
 gif y 5000000 \x47\x49\x46\x38\x39\x61 \x00\x3b
 jpg y 200000000 \xff\xd8\xff\xe0\x00\x10 \xff\xd9

PNG
 png y 20000000 \x50\x4e\x47? \xff\xfc\xfd\xfe

BMP (used by MSWindows, use only if you have reason to think there are
BMP files worth digging for. This often kicks back a lot of false
positives

 bmp y 100000 BM??\x00\x00\x00

TIFF
 tif y 200000000 \x49\x49\x2a\x00
TIFF
 tif y 200000000 \x4D\x4D\x00\x2A

Extension

Case Sensitive Header/Footer

Heade
r

Footer

Max Size
175

Run scalpel with memory image as input file...
$./scalpel -c scalpel.conf -o outdir1 ~/image.dd
Scalpel version 1.60
Written by Golden G. Richard III, based on Foremost 0.69.

Opening target "/Users/simsong/image.dd"

Image file pass 1/2.
/Users/simsong/image.dd: 19.5% |*********** | 100.0 MB 00:21 ETA

176

Scalpel’s output is verbose..
Carve lists built. Workload:
gif with header "\x47\x49\x46\x38\x37\x61" and footer "\x00\x3b" --> 9 files
gif with header "\x47\x49\x46\x38\x39\x61" and footer "\x00\x3b" --> 103
files
jpg with header "\xff\xd8\xff\xe0\x00\x10" and footer "\xff\xd9" --> 15 files
png with header "\x50\x4e\x47\x3f" and footer "\xff\xfc\xfd\xfe" --> 5 files
bmp with header "\x42\x4d\x3f\x3f\x00\x00\x00" and footer "" --> 32 files
tif with header "\x49\x49\x2a\x00" and footer "" --> 2 files
tif with header "\x4d\x4d\x00\x2a" and footer "" --> 3 files
Carving files from image.
Image file pass 2/2.
/Users/simsong/image.dd: 100.0% |
***| 512.0 MB
00:00 ETAProcessing of image file complete. Cleaning up...
Done.
Scalpel is done, files carved = 169, elapsed = 45 seconds.
$ ls -l outdir
total 12
-rw-r--r-- 1 simsong simsong 10055 Oct 5 18:36 audit.txt
drwxr-xr-x 34 simsong simsong 1156 Oct 5 18:35 bmp-4-0/
drwxr-xr-x 11 simsong simsong 374 Oct 5 18:36 gif-0-0/
drwxr-xr-x 105 simsong simsong 3570 Oct 5 18:36 gif-1-0/
drwxr-xr-x 17 simsong simsong 578 Oct 5 18:35 jpg-2-0/
drwxr-xr-x 7 simsong simsong 238 Oct 5 18:35 png-3-0/
drwxr-xr-x 4 simsong simsong 136 Oct 5 18:35 tif-5-0/
drwxr-xr-x 5 simsong simsong 170 Oct 5 18:35 tif-6-0/
$

177

Scalpel creates an “audit file” with information about
what it found.
Scalpel version 1.60 audit file
Started at Sun Oct 5 18:35:20 2008
Command line:
./scalpel -c scalpel.conf -o outdir1 /Users/simsong/image.dd

Output directory: /Users/simsong/scalpel-1.60/outdir1
Configuration file: /Users/simsong/scalpel-1.60/scalpel.conf

Opening target "/Users/simsong/image.dd"

The following files were carved:
File Start Chop Length Extracted
From
00000132.bmp 14597258 YES 100000 image.dd
00000010.gif 11806720 NO 1416 image.dd
00000009.gif 11804672 NO 2004 image.dd
00000012.gif 50000312 NO 44 image.dd
00000011.gif 42857896 NO 332 image.dd
00000015.gif 62047623 NO 53 image.dd
00000014.gif 60672512 NO 371 image.dd
00000013.gif 60672208 NO 61 image.dd
…
00000017.gif 65827840 NO 477 image.dd
00000016.gif 65826816 NO 451 image.dd
00000000.gif 66591424 NO 3537 image.dd
00000113.jpg 74222592 NO 129055 image.dd
00000112.jpg 74219520 NO 2383 image.dd

178

And here's some of what we found...

179

And here's some of what we found...

179

And here's some of what we found...

179

And here's some of what we found...

179

And here's some of what we found...

179

And here's some of what we found...

179

And here's some of what we found...

179

And here's some of what we found...

179

And here's some of what we found...

179

More photos…(actual size)
Note: No images more than 4K (due to page size)

180

Adroit constructs paths through sequential hypothesis
testing (SHT)
Incorrect paths:
■ Do not decompress
■ Have sudden changes between scan lines.

http://digital-assembly.com/

SmartCarving™

Matching Metric Between Blocks

(Images)

• For images we look

at boundary formed

by addition of new

block

181

http://digital-assembly.com
http://digital-assembly.com

bulk_extractor is a multi-threaded carver that looks for
email addresses (and other information)
Written in C, C++ and Flex
■ Command-line tool.
■ Linux, MacOS, Windows (compiled with mingw)

Key Features:
■ Uses regular expressions and rules to scan for:

—email addresses; credit card numbers; JPEG EXIFs; URLs; Email fragments.
■ Recursively re-analyzes ZIP components.
■ Produces a histogram of the results.
■ Multi-threaded.

—Disk is "striped" into pages
—Results stored in mostly-ordered “feature files”

■ Work with evidence files of any size and on limited hardware.

182

bulk_extractor output: text files of "features" and context.

email addresses from domexusers:
48198832 domexuser2@gmail.com tocol>____<name>domexuser2@gmail.com/Home</name>____
48200361 domexuser2@live.com tocol>____<name>domexuser2@live.com</name>____<pass
48413829 siege@preoccupied.net siege) O'Brien <siege@preoccupied.net>_hp://meanwhi
48481542 danilo@gnome.org Danilo __egan <danilo@gnome.org>_Language-Team:
48481589 gnom@prevod.org : Serbian (sr) <gnom@prevod.org>_MIME-Version:
49421069 domexuser1@gmail.com server2.name", "domexuser1@gmail.com");__user_pref("
49421279 domexuser1@gmail.com er2.userName", "domexuser1@gmail.com");__user_pref("
49421608 domexuser1@gmail.com tp1.username", "domexuser1@gmail.com");__user_pref("

Histogram:
n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=268 ips@mail.ips.es
n=252 premium-server@thawte.com
n=244 CPS-requests@verisign.com
n=242 someone@example.com

183

mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:siege@preoccupied.net
mailto:siege@preoccupied.net
mailto:siege@preoccupied.net
mailto:siege@preoccupied.net
http://meanwhi
http://meanwhi
mailto:danilo@gnome.org
mailto:danilo@gnome.org
mailto:danilo@gnome.org
mailto:danilo@gnome.org
mailto:gnom@prevod.org
mailto:gnom@prevod.org
mailto:gnom@prevod.org
mailto:gnom@prevod.org
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:ips@mail.ips.es
mailto:ips@mail.ips.es
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:CPS-requests@verisign.com
mailto:CPS-requests@verisign.com
mailto:someone@example.com
mailto:someone@example.com

bulk_extractor success:
City of San Luis Obispo Police Department, Spring 2010
District Attorney filed charges against two individuals:
■ Credit Card Fraud
■ Possession of materials to commit credit card fraud.

Defendants:
■ arrested with a computer.
■ Expected to argue that defendants were unsophisticated and lacked knowledge.

Examiner given 250GB drive the day before preliminary hearing.
■ In 2.5 hours Bulk Extractor found:

—Over 10,000 credit card numbers on the HD (1000 unique)
—Most common email address belonged to the primary defendant (possession)
—The most commonly occurring Internet search engine queries concerned credit card

fraud and bank identification numbers (intent)
—Most commonly visited websites were in a foreign country whose primary language is

spoken fluently by the primary defendant.
■ Armed with this data, the DA was able to have the defendants held.

184

Eliminating false positives:
Many of the email addresses come with Windows!
Sources of these addresses:
■ Windows binaries
■ SSL certificates
■ Sample documents

It's important to suppress email addresses not relevant to the case.

Approach #1 — Suppress emails seen on many other drives.
Approach #2 — Stop list from bulk_extractor run on clean installs.

Both of these methods white list commonly seen emails.
■ Operating Systems have a LOT of emails. (FC12 has 20,584!)
■ Should Linux developers email addresses be invisible to our tools?

185

n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=268 ips@mail.ips.es
n=252 premium-server@thawte.com
n=244 CPS-requests@verisign.com
n=242 someone@example.com

mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:ips@mail.ips.es
mailto:ips@mail.ips.es
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:CPS-requests@verisign.com
mailto:CPS-requests@verisign.com
mailto:someone@example.com
mailto:someone@example.com

Approach #3: Context-sensitive stop list.

Instead of extracting just the email address, extract the context:

■ Offset: 351373329
■ Email: zeeshan.ali@nokia.com

■ Context: ut_Zeeshan Ali <zeeshan.ali@nokia.com>, Stefan Kost <

■ Offset: 351373366
■ Email: stefan.kost@nokia.com

■ Context: >, Stefan Kost <stefan.kost@nokia.com>____________sin

—Here "context" is 8 characters on either side of feature.

186

mailto:zeeshan.ali@nokia.com
mailto:zeeshan.ali@nokia.com
mailto:zeeshan.ali@nokia.com
mailto:zeeshan.ali@nokia.com
mailto:stefan.kost@nokia.com
mailto:stefan.kost@nokia.com
mailto:stefan.kost@nokia.com
mailto:stefan.kost@nokia.com

Total stop list: 70MB (628,792 features; 9MB ZIP file)

Applying it to domexusers HD image:
■ # of emails found: 9143 ➔ 4459

http://afflib.org/downloads/feature_context.1.0.zip

We created a context-sensitive stop list for Microsoft
Windows XP, 2000, 2003, Vista, and several Linux.

187

n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=192 domexuser2@live.com
n=153 domexuser2@hotmail.com
n=146 domexuser1@hotmail.com
n=134 domexuser1@live.com
n=91 premium-server@thawte.com
n=70 talkback@mozilla.org
n=69 hewitt@netscape.com
n=54 DOMEXUSER2@GMAIL.COM
n=48 domexuser1%40gmail.com@imap.gmail.com
n=42 domex2@rad.li
n=39 lord@netscape.com
n=37 49091023.6070302@gmail.com

n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=268 ips@mail.ips.es
n=252 premium-server@thawte.com
n=244 CPS-requests@verisign.com
n=242 someone@example.com
n=237 inet@microsoft.com
n=192 domexuser2@live.com
n=153 domexuser2@hotmail.com
n=146 domexuser1@hotmail.com
n=134 domexuser1@live.com
n=115 example@passport.com
n=115 myname@msn.com
n=110 ca@digsigtrust.com

without stop list with stop list

http://afflib.org/downloads/feature_context.1.0.zip
http://afflib.org/downloads/feature_context.1.0.zip
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:ips@mail.ips.es
mailto:ips@mail.ips.es
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:CPS-requests@verisign.com
mailto:CPS-requests@verisign.com
mailto:someone@example.com
mailto:someone@example.com
mailto:inet@microsoft.com
mailto:inet@microsoft.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@hotmail.com
mailto:domexuser2@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:example@passport.com
mailto:example@passport.com
mailto:myname@msn.com
mailto:myname@msn.com
mailto:ca@digsigtrust.com
mailto:ca@digsigtrust.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@hotmail.com
mailto:domexuser2@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:hewitt@netscape.com
mailto:hewitt@netscape.com
mailto:DOMEXUSER2@GMAIL.COM
mailto:DOMEXUSER2@GMAIL.COM
mailto:40gmail.com@imap.gmail.com
mailto:40gmail.com@imap.gmail.com
mailto:domex2@rad.li
mailto:domex2@rad.li
mailto:lord@netscape.com
mailto:lord@netscape.com
mailto:49091023.6070302@gmail.com
mailto:49091023.6070302@gmail.com

bulk_extractor: Implemented as a set of C++ classes

Forensic Buffers and Path:
■ sbuf_t — Holds data, margin, and forensic path of each page.
■ pos0_t — Path of byte at sbuf[0]

100 ! ! Offset at 100 bytes.
100-GZIP-500! At offset 100, GZIP compressed, 500 bytes further in

■ feature_recorder — Holds output for each feature type

Plug-In Scanner System
■ Each scanner is a C++ function that can be linked or loaded at run-time
■ Simple scanners look for features in bulk data and report them

—scan_accts, scan_aes, scan_bulk, scan_ccns2, scan_email, scan_exif, scan_find,
scan_headers, scan_net, scan_wordlist

■ Scanners can instantiate files:
—scan_kml

■ Scanners can be recursive.
—scan_base64, scan_gzip, scan_hiberfile, scan_pdf, scan_zip

188

bulk_extractor: Speed from multi threading

Primary thread:
■ Iterator reads “pages” of forensic data and passes each page to a “worker.”
■ Iterators available for:

—raw & splitraw files
—AFF, E01
—Directory Hierarchies.

■ MD5 is computed automatically as data is read (source validation).
■ Generates DFXML file with:

—Tool compile and runtime provenance.
—Status reports of what is found, errors, etc.

Worker Threads:
■ One per core.
■ Automatically figures out how many cores you have.

189

1 2 3 4 1 2 3 4 1 2

Bulk_extractor’s magic — opportunistic decompression

Most forensic tools recover:
■ allocated files
■ “deleted” files
■ carving of unallocated area.

bulk_extractor uses a different methodology:
■ Carving and Named Entity Recognition
■ Identification, Decompression and Re-Analysis of compressed data.

This helps with:
■ hibernation files and fragments (hibernation files move around)
■ swap file fragments
■ browser cache fragments (gzip compression)

190

Post-processing the feature files

The feature files are designed for easy, rapid processing.
■ Tab-Delimited

—path, feature, context
■ Text (UTF-8)

bulk_diff.py: prepares difference of two bulk_extractor runs.
■ Designed for timeline analysis.
■ Developed with analysts.
■ Reports “what’s changed.”

—Actually, “what’s new” turned out to be more useful.
—“what’s missing” includes data inadvertantly overwritten.

identify_filenames.py: Reports files responsible for features.
■ Requires DFXML run (fiwalk) for disk image.
■ Currently a two-step process; could be built in to bulk_extractor

191

bulk_extractor GUI

100% Java
Uses bulk_extractor to view contents of compressed containers.

192

Working with Network Data

Capture and Analysis of:
■ packets in transit
■ packets after the fact
■ just packet headers
■ network flows
■ log files

“Network Forensics”
has many different meanings.

Internet

storage

194

Analysis

Analysis

Internet

storage

Packets can be analyzed in flight or after capture.

195

Packet monitoring is similar to wiretapping.

Passive Monitoring Options:
■ Use an ethernet “hub” with a packet sniffer.
■ Set up a switched monitoring port.
■ Full-duplex networks may require two monitoring ports.

Active Monitoring Options:
■ Monitor with a proxy or router.
■ Monitor packets at endpoints

Critical uses:
■ Attack assessment
■ Policy enforcement

“A DVR for an Internet connection.”

196

Network Traffic Monitor

Packets from network

Packet
Database

Continuously
cycling record of
the last few days,
weeks or months

archive
rules

Long term archive

Analysis
Engine

User input

Conclusion
Database

✓ Connections

✓ Data objects

Visualization
Engine

Reporting
Engine

Reports

Network Forensics Architecture

197

It is completely reasonable to capture all the packets.

In 1991, Los Alamos National Laboratory captured all information in
and out of the lab’s T1 on DAT tape (8 gigabytes/day @ 50%
utilization)

■ Disks have gotten bigger faster than network connections have gotten faster.
■ This is an engineering problem.
■ Once implemented, it can also be privacy problem.

Connection GB/Day
(50%)

T1 8 GB
10 Mbit 54 GB
T3 170 GB
OC3 512 GB
OC12 2,000 GB

198

IP options (optional)

4

0 8 16 24 32

IHL ToS total length

identification flags fragment offset

TTL protocol header checksum

source IP address

destination IP address

IP Header
20 bytes

data

Default
tcpdump
capture

size
68 bytes

source port destination port

sequence number

Acknowledgement number

off res ECN Control Window

Checksum Urgent pointer

TCP options and padding

TCP Header
20 bytes

Average
packet

size

500 bytes

Systems can capture the entire packet
or just the packet header

199

�... 525 complete packets

Downloading a web page transmits many packets over
multiple TCP connections.

200

�... 525 packet headers

10:52:16.294858 IP 192.168.1.102.58754 > www2.cnn.com.http: S

10:52:16.370616 IP www2.cnn.com.http > 192.168.1.102.58754: S

10:52:16.370700 IP 192.168.1.102.58754 > www2.cnn.com.http: .

10:52:16.371114 IP 192.168.1.102.58754 > www2.cnn.com.http: P

10:52:16.455120 IP www2.cnn.com.http > 192.168.1.102.58754: .

10:52:19.956986 IP i7.cnn.net.http > 192.168.1.102.58755: .

10:52:19.961475 IP i7.cnn.net.http > 192.168.1.102.58755: .

10:52:19.981228 IP cnn1.dyn.cnn.com.http > 192.168.1.102.58766:

10:52:19.983731 IP cl4.cnn.com.http > 192.168.1.102.58761: P

With just headers, you can only get source, destination,
size, timestamps, ports, etc.

201

With the full packets, you can get all the content.

Some vendors call this “deep packet inspection”
or “deep packet analysis.”

Primary use is to discover inappropriate data transfer or service use:
■ Use of outside chat or web mail services.
■ Leaking protected health Information.
■ Restrict information

Good for debugging networks
■ Duplicate requests
■ Incomplete transactions
■ Discovery of vulnerabilities without scanning
■ Cleartext usernames & passwords

Also good for finding privacy violations.

storage

202

�... 525 complete packets

Full-content “deep analysis” solutions:

Open Source
■ Wireshark
■ Snort
■ Squil

Commercial:
■ NetWitness
■ Q1Labs
■ NIKSUN NetDetector

203

http://www.netwitness.com/

http://www.netwitness.com
http://www.netwitness.com

10:52:16.294858 IP 192.168.1.102.58754 > www2.cnn.com.http: S

10:52:16.370616 IP www2.cnn.com.http > 192.168.1.102.58754: S

10:52:16.370700 IP 192.168.1.102.58754 > www2.cnn.com.http: .

10:52:16.371114 IP 192.168.1.102.58754 > www2.cnn.com.http: P

10:52:16.455120 IP www2.cnn.com.http > 192.168.1.102.58754: .

10:52:19.956986 IP i7.cnn.net.http > 192.168.1.102.58755: .

10:52:19.961475 IP i7.cnn.net.http > 192.168.1.102.58755: .

10:52:19.981228 IP cnn1.dyn.cnn.com.http > 192.168.1.102.58766:

10:52:19.983731 IP cl4.cnn.com.http > 192.168.1.102.58761: P

Count Source > Destination

 46 i7.cnn.net.http > 192.168.1.102.58755

 34 192.168.1.102.58755 > i7.cnn.net.http

 26 69.22.138.51.http > 192.168.1.102.58776

 24 www2.cnn.com.http > 192.168.1.102.58754

 21 192.168.1.102.58776 > 69.22.138.51.http

 19 192.168.1.102.58765 > i7.cnn.net.http

 17 64.236.29.63.http > 192.168.1.102.58758

 17 192.168.1.102.58754 > www2.cnn.com.http

 16 i7.cnn.net.http > 192.168.1.102.58765

 14 192.168.1.102.58759 > 64.236.29.63.http

 13 72.32.153.176.http > 192.168.1.102.58769

 13 192.168.1.102.58769 > 72.32.153.176.http

 13 192.168.1.102.58758 > 64.236.29.63.http

 12 64.236.29.63.http > 192.168.1.102.58759

 10 64.236.29.63.http > 192.168.1.102.58778

 10 64.236.29.63.http > 192.168.1.102.58757

Packet headers can be used to reconstruct “flows”

204

Many switches and routers will report “netfow” data
directly.
Each Cisco NetFlow record contains:
■ Total bytes & packets
■ S&D IP addresses
■ S&D ports (UDP or TCP)
■ flags
■ start & end time
■ min & max packet size
■ VLANs & ifaces
■ Vendor proprietary data

Internet

V210

205

Flow-based systems are “blind” to data

Advantages:
■ More economical
■ Finds rogue servers and consultants
■ More privacy-sensitive

Can’t discover:
■ Missing encryption
■ Inappropriate encryption
■ Protocols on wrong ports
■ Leaking specific documents

Internet

V210 206

Flow data can still be a privacy problem

Flow data can reveal:
■ When somebody went to work, left for home, etc.
■ Which websites a person visited (but not perfectly).
■ Applications that were used.

Flow data can be readily combined with other information:
■ DHCP logs
■ Mail logs

207

Tools for working with network data:
Command line & GUI
Command-line tools are effective when:
■ Working with a small amount of data (<100GB)
■ Looking for a novel attack (something the GUIs don't recognize)
■ With a skilled operator
■ Mostly open source freeware

GUI Tools:
■ Better for exploring large data sets
■ Mostly proprietary

208

Command-Line Tools

Most Unix tools are based on bpf and libpcap
■ Uniform way of getting packets from the network.
■ Allows capture filters.
■ Defines the "tcpdump" file format (header + (timestamp + packet)*)

Tool chest:
■ tcpdump — User-level interface to libpcap

■ tcpflow — Reassembles TCP streams (doesn't handle fragments)
■ tcpick — Text-based TCP stream sniffer
■ tcpillust — Graphical TCP illustration tool (requires X)
■ tcpshow — Decodes all the headers
■ tcpslice — extracting and combining TCPdump files

209

tcpdump can be used to capture packets, filter packets,
or display their contents.
usage: tcpdump [-i interface] [-w output] [other options] [expression]
other useful options:

-A ! ! Print each packet in Ascii
-C 5! ! Automatically roll over the output file every 5 MB
-D Print interfaces on the system that tcpdump can use
-N Don't print domain names, just host names.
-w file Write to an output file.
-r file Read from an input file.
-s 4096 Capture 4096 bytes of each packet (default is 68)
-Z user Run the capture process as "user," rather than as root.

Typical expressions:
host nitroba.com! Packets to or from nitroba.com
dst host nitroba.com Packets destined for nitroba.com
src host nitroba.com Packets from nitroba.com
port 52 Packets for port 52
udp Just the udp packets

Type "man tcpdump" for full information for your system.

210

Wireshark is mostly a GUI built on top of tcpdump.
It captures packets and displays them in more detail.
Advantages:
■ Free
■ Packet decoders for hundreds of packet types
■ Decompresses compressed data on the fly
■ Decrypts many protocols:

— IPsec, ISAKMP, Kerberos, SMPv3,
—SSL/TLS, WEP and WPA/WPA2

Disadvantages:
■ Designed for packet analysis, not correlation.
■ Only analyzes 1 tcp connection at a time.
■ Flow reconstruction packet-by-packet is very time consuming.

211

Demo with real packets

Nitroba University Harassment Scenario Packet Dump file.
■ http://domex.nps.edu/corp/scenarios/2008-nitroba/nitroba.pcap

Preview the file with tcpdump:
$ tcpdump -r nitroba.pcap -c 7
reading from file nitroba.pcap, link-type EN10MB (Ethernet)
21:51:07.095278 IP 192.168.1.64.42760 > 74.125.19.83.http: Flags [F.], seq
4261057042, ack 3039099121, win 65535, options [nop,nop,TS val 712729540 ecr
980517270], length 0
21:51:07.103728 IP 74.125.19.83.http > 192.168.1.64.42760: Flags [F.], seq 1,
ack 1, win 431, options [nop,nop,TS val 980523165 ecr 712729540], length 0
21:51:07.114897 IP 192.168.1.64.35011 > 74.125.19.19.http: Flags [P.], seq
2964083668:2964085019, ack 3683809881, win 65535, options [nop,nop,TS val
712729541 ecr 988904514], length 1351
21:51:07.139448 IP 74.125.19.19.http > 192.168.1.64.35011: Flags [.], ack
1351, win 393, options [nop,nop,TS val 988915614 ecr 712729541], length 0
21:51:07.319680 IP 74.125.19.19.http > 192.168.1.64.35011: Flags [P.], seq
1:1215, ack 1351, win 393, options [nop,nop,TS val 988915792 ecr 712729541],
length 1214
21:51:07.321990 IP 192.168.1.64.35011 > 74.125.19.19.http: Flags [.], ack
1215, win 65460, options [nop,nop,TS val 712729543 ecr 988915792], length 0
21:51:07.326517 IP 192.168.1.64.35011 > 74.125.19.19.http: Flags [F.], seq
1351, ack 1215, win 65535, options [nop,nop,TS val 712729543 ecr 988915792],
length 0

212

http://domex.nps.edu/corp/scenarios/2008-nitroba/nitroba.pcap
http://domex.nps.edu/corp/scenarios/2008-nitroba/nitroba.pcap

Use tcpflow to reconstruct the individual flows
$ ls -l
total 55720
-rw-r--r-- 1 simsong staff 57054792 Oct 6 2010 nitroba.pcap
$ tcpflow -r nitroba.pcap
$ ls -Tl | head -10 | sed s/^............................//
total 117972
 3648 Jul 22 02:03:17 2008 004.071.104.187.00080-192.168.015.004.35950
 462 Jul 22 01:57:24 2008 004.078.212.029.00080-192.168.015.004.35458
 462 Jul 22 01:59:20 2008 004.078.212.029.00080-192.168.015.004.35712
 136520 Jul 22 00:29:55 2008 008.012.217.125.00080-192.168.015.004.32822
 23943 Jul 22 00:29:55 2008 008.012.217.125.00080-192.168.015.004.32824
 17995 Jul 22 00:29:55 2008 008.012.217.125.00080-192.168.015.004.32828
 20064 Jul 22 00:29:55 2008 008.012.217.125.00080-192.168.015.004.32830
 879 Jul 22 00:51:03 2008 008.012.221.123.00080-192.168.015.004.33298
 213 Jul 21 21:57:42 2008 012.129.147.065.00080-192.168.001.064.34023
$

Notice:
■ tcpflow puts each side of the connection in its own file.
■ Timestamps of the file are the time that the first packet was sent

213

Each packet flow tells a story
$ head 004.078.212.029.00080-192.168.015.004.35458
HTTP/1.1 302 Found
Connection: close
Date: Tue, 22 Jul 2008 05:57:45 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 1.1.4322
Pragma: no-cache
Location: http://mail.live.com/
Cache-Control: no-cache
Pragma: no-cache
$

This packet flow is an HTTP request
■ To a http://mail.live.com/
■ On July 22, 2008

Embedded timestamps and tokens make it exceedingly difficult to
create fake data.

214

http://mail.live.com
http://mail.live.com
http://mail.live.com
http://mail.live.com

Working with Android
Phones

You’ve got an Android Phone. Now what?

SIM:
■ Identity information.
■ Possibly Address Book or SMS records from a previous phone
■ On-board Flash (256M-2GB)
■ Android file system (YAFFS2)
■ Call history; messages; position information; network information; etc
■ Downloaded applications & application data

Removable Flash (1GB-32GB)
■ Downloaded applications & application data
■ Media (songs; video; images); Documents
■ Information from other computers (remember, phone can be a “thumb drive”)

RAM (256M-1GiB)
■ Linux; Dalvik (Java) VM; user programs
■ May be only way to recover encryption keys, passwords, etc.

216

Two approaches for Android Forensics: Online & Offline

Online Analysis: Use Android to analyze Android
Enable USB debugging and debug with Android Debug Bridge (adb)

—http://developer.android.com/guide/developing/tools/adb.html
■ Load an application that extracts data to your analysis machine
■ RAM

—Physical Dump of NAND flash

Offline Analysis: Analyze Android as a storage system
■ Analyze SDCard as a traditional FAT file system
■ Logical analysis of YAFFS2 files

—Less to get, but easier to get at

Which approach you choose depends on:
■ Your goals — conviction, discovery, research
■ Your skill level & available tools
■ Legal requirements (i.e.: will the results be used in court?)

217

Flash memory is very different from traditional RAM.

Defining characteristics:
■ Memory written in blocks (100s-1000s of bits per block — think “sectors”)

—Must be erased before it can be written
■ Memory erased in pages (10,000s of bits per page — think 4K pages)
■ Each bit has limited lifetime (typically 1000 — 100,000 cycles)
■ Therefore, writes must be wear leveled

NOR flash (not always present)
■ True random access (direct execution)
■ Low-density (expensive)
■ Boot code can execute directly out of NOR

NAND flash (always present)
■ Block-oriented access
■ High density (Single Layer Cells & Multi Layer Cells)
■ ROM boot code (in the microprocessor) can copy NAND into RAM and execute.

218

1

1 2 3 4 5 6

There are two-approaches for remapping.

File Level — Flash File System
■ Operating system directly controls writing & erasing.
■ Files may be proactively moved to assist in leveling
■ JFFS2 (Journaling Flash File System #2); YAFFS (Yet Another Flash File System);

YAFFS2

Block Level — Flash Translation Layer
■ Flash device appears as a block device
■ Operating system rewrites as normal
■ “Flash Translation Layer” transparently remaps & erases as necessary
■ Used by all SD cards and SSDs

“TRIM” Command
■ Tells FTL that a sector will not be read again
■ Lets OS give SD/SSD “hint.”
■ Implemented in Windows 7 and Linux ext4

219

1

1 2 3 4 5 6

Wear leveling means you can recover data
after it is deleted and overwritten.
Assume this sequence of events:

echo “file one” > file.1
echo “file two” > file.2
dd if=file1 of=file.2

These commands are executed at the logical layer
YAFFS2 would rewrite the directory entry for “file.2” to point at the
new flash pages
■ A SSD or SDCard would rewrite the FTL so that the logical block # pointed to by the file.2

directory entry pointed to the new data

If you can access the physical layer, you can recover the previous
contents of file.2

220

1

1 2

“file one” “file two”

file.1

The MTD has a Flash Translation Layer...
■ ... but flash file systems (JFFS, JFFS2, YAFFS and YAFFS2) go directly to the hardware

layer.

Android uses the Linux Memory Technology Device
(MTD) to access flash memory.

221

Home › HOWTO Guides › Booting From Flash

Using the Memory Technology Device (MTD)
The Memory Technology Device (MTD) subsystem for Linux provides access to non-volatile memory storage, typically Flash devices. By using a layered
approach, it is possible to support new hardware and devices easily, and have them fully functional with a minimum amount of work. For more information
on MTD see the project's web page. There is also an MTD FAQ, which is also provided as part of the MTD source code or as a daily snapshot.

As MTD is integrated into the Linux kernel, it makes working with Flash devices very simple. For example, Flash can be programmed simply by copying a file
to the Flash device.

MTD also provides several mechanisms for putting a file system into Flash. These are fully functional file systems, which can be written to as well as read
from.

MTD Terminology
The MTD layering is a little complex as shown in Figure 10.

Figure 10: MTD layering

The user layer is the API that user code sees, and is exported through the normal Linux device driver API.

The character and block devices give direct access to the Flash, so the application code has to be aware of the Flash characteristics.

The two Flash Translation Layer (FTL) modules provide a normal block device, making it appear that the Flash is completely read/write, and hiding the fact
that to overwrite data involves erasing first. In effect, this makes the Flash appear as a disk, and allows a normal Linux file system to be created in the Flash.

Finally, the Journalling Flash File Systems (JFFS and JFFS2) provide a full file system directly within the Flash. This is the most efficient way to use the Flash,
as JFFS has been written assuming the hardware has the characteristics of Flash, whereas normal file systems are based on the characteristics of a rotating
disk. This allows the semantics of the JFFS file system to be effectively mapped onto the Flash with visibility of the physical Flash layout, enabling it to
support Flash specific concepts such as wear levelling. (This ensures that each Flash region is written and erased approximately the same number of times as
any other region, thus maximizing the lifetime of the Flash.)

The user layer code never accesses the Flash devices directly. Instead they use an internal MTD API to access the hardware device driver layer. This means
that all user layer drivers should work on all devices.

The implementation of the driver layer can be done in two ways:

as a direct implementation, as seen in the M-Systems Disk on Chip (DOC) driver, and also in the test drivers which implement the MTD API using RAM, or

for Flash devices mapped into the address space of the CPU, an extra layering is possible. This divides the driver into chip mappings, which describe how
the Flash devices are mapped into memory and handles banking and partitioning, and the chip driver, which writes to the control registers of the Flash
chip.

Configuring the Kernel for MTD
The configuration described here uses several aspects of MTD, so several kernel options must be enabled. As usual these may be built into the kernel or

STLinux

http://www.stlinux.com/howto/Flash/MTD

http://www.stlinux.com/howto/Flash/MTD
http://www.stlinux.com/howto/Flash/MTD

“Logical” vs. “Physical” dump.

A logical dump is a dump of the records or files
From data providers
■ From walking the file system
■ adb pull /dir local # don’t pull /proc

A physical dump is a dump of sectors or pages
YAFFS and YAFFS2:

—raw is the individual flash pages
—16-bytes of Out-of-Band information stored every 512, 1024, or 2048 bytes must be

removed
—Requires a YAFFS/YAFFS2 implementation to extract files
—FAT32 (or NTFS)
—raw is the individual disk “sectors” (512 or 4096 bytes)
—Requires FAT32 implementation to extract files
—Mount with a loop-back device to access allocated files

■ Use SleuthKit, EnCase, or FTK to access deleted files.

222

File formats typical on Android Phones

SQLite data files
■ Public domain database holds SQL Schema, Tables, Rows, Columns
■ Journal stored in secondary file
■ Most of today’s tools ignore the journal and deleted data

Internal log (circular buffer in memory)
■ Log Collector (http://code.google.com/p/android-log-collector/)
■ logcat

adb shell logcat > log.txt

■ aLogCat

Text log files
■ Some third party programs (e.g. DropBox) may store text logs
■ Does the base Android system create text log files?

223

http://code.google.com/p/android-log-collector/
http://code.google.com/p/android-log-collector/

Using Sleuthkit for Android Forensics

Approach #1: MicroSD card
■ Remove the MicroSD card and examine with SleuthKit
■ Important: Use a write blocker to prevent modification to the SD card
■ Advantage: Easy-to-do; no change to SD card
■ Disadvantage: Will not read encrypted .apk files; shutting down may wipe important info

Approach #2: Analyze the Android device via USB
■ Attach the Android device to your computer and select “USB Storage.”
■ One or more partitions corresponding to the Android device may appear
■ Question: Can we use a write blocker to prevent modification? (I don’t know)
■ Advantage: Easy-to-do
■ Disadvantage: May change Android device even with write blocker

Approach #3: Dump the Android device and analyze offline.

224

The easiest way to work with an Android Phone is with
Google’s Android Developer Kit
■ Download the kit from developer.android.com
■ Unzip the installer
■ Run “tools/android” and install adb

225

To use “adb”, your phone must have USB debugging
enabled.
Settings / Applications / Development / USB debugging
■ NOTE: This allows anyone who has your phone to bypass the PIN lock.

Put platform-tools/ in your path.
$ export PATH=$PATH:./platform-tools/
$ adb devices
List of devices attached
HT163T524323! device

Execute remote commands with “adb shell”
$ adb shell ls -l
drwxr-xr-x root system 2011-07-16 10:16 app-cache
dr-x------ root root 2011-07-16 10:16 config
lrwxrwxrwx root root 2011-07-16 10:16 sdcard -> /mnt/sdcard
drwxr-xr-x root root 2011-07-16 10:16 acct
drwxrwxr-x root system 2011-07-16 10:16 mnt
lrwxrwxrwx root root 2011-07-16 10:16 etc -> /system/etc
drwxrwx--x system system 2011-07-16 10:16 vendor
drwx------ root root 2011-07-16 22:09 devlog
drwxrwx--- system cache 2011-07-16 17:39 cache
-rw-r--r-- root root 4311 1969-12-31 19:00 ueventd.rc
...

226

You can do a surprising amount of forensics with just a
few commands
Look around:

$ adb shell ls -l
drwxr-xr-x root system 2011-07-16 10:16 app-cache
dr-x------ root root 2011-07-16 10:16 config
lrwxrwxrwx root root 2011-07-16 10:16 sdcard -> /mnt/sdcard
...
$ adb shell lsof
...

Send files to Android:
$ adb push local remote

Get files from Android:
$ adb pull remote local

Ideas:
■ Look for sqlite databases
■ Root the phone to get access to all files.

227

Android Forensics References

■ “Recovery of Deleted Data from Flash Memory Devices”, Capt. James Regan, Master’s
Thesis, Naval Postgraduate School, 2009. http://simson.net/clips/students/
09Sep_Regan.pdf

■ “Android Forensics: Simplifying Cell Phone Examinations,” Lessard & Kessler, Small
Scale Digital Device Forensics Journal, Vol. 4, No. 1, September 2010,
http://www.ssddfj.org/papers/SSDDFJ_V4_1_Lessard_Kessler.pdf

■ http://viaforensics.com/category/android-forensics/
■ http://viaforensics.com/android

228

http://simson.net/clips/students/09Sep_Regan.pdf
http://simson.net/clips/students/09Sep_Regan.pdf
http://simson.net/clips/students/09Sep_Regan.pdf
http://simson.net/clips/students/09Sep_Regan.pdf
http://simson.net/clips/students/09Sep_Regan.pdf
http://simson.net/clips/students/09Sep_Regan.pdf
http://www.ssddfj.org/papers/SSDDFJ_V4_1_Lessard_Kessler.pdf
http://www.ssddfj.org/papers/SSDDFJ_V4_1_Lessard_Kessler.pdf
http://viaforensics.com/category/android-forensics/
http://viaforensics.com/category/android-forensics/
http://viaforensics.com/android
http://viaforensics.com/android

Concluding Remarks

Now you can work with computer forensics data!

What you learned:
■ Digital Forensics is like a magic camera, but it can be easily faked
■ There are many kinds of forensics data—more than people know how to analyze
■ Everything is getting harder

Tradeoffs:
■ Logical vs. Physical dumps
■ Allocated vs. Unallocated data
■ Live vs. Dead acquisition and analysis

Techniques:
■ Metadata analysis and extraction

—Walking file systems with SleuthKit
—Digital Forensics XML

■ Carving and Bulk Data Analysis
■ Conversion to HTML and PDF

230

There are many data types

■ Data that we worked with:
—Disk Images and Digital Forensics XML
—Android Phones
—IP Packets
—SQLite databases

■ Data types we did not explore:
—Windows registry.
—Internal elements in multimedia files (JPEG, MOV, etc)
—Machine Code

231

Other resources

Presentations you may find useful:
■ Day-long Forensics Tutorial at ACSAC 2009

—http://simson.net/ref/2009/ACSAC%202009%20forensics.pdf
■ This presentation, online:

—http://simson.net/ref/2011/2011-07-20%20Working%20with%20Forensic%20Data.pdf
■ Bulk_Extractor:

—http://simson.net/ref/2011/2011-06-14%20bulk_extractor.pdf
■ Android Forensics:

—http://simson.net/ref/2011/2011-07-12%20Android%20Forensics.pdf

Other websites:
■ Digital Corpora - http://digitalcorpora.org
■ AFFLIB, source for fiwalk & bulk_extractor — http://afflib.org/
■ Forensics Wiki — http://forensicswiki.org/
■ Open Source Forensics Database — http://www.opensourceforensics.org/
■ SleuthKit — http://sleuthkit.org/

232

http://simson.net/ref/2009/ACSAC%202009%20forensics.pdf
http://simson.net/ref/2009/ACSAC%202009%20forensics.pdf
http://simson.net/ref/2011/2011-07-20%20Working%20with%20Forensic%20Data.pdf
http://simson.net/ref/2011/2011-07-20%20Working%20with%20Forensic%20Data.pdf
http://simson.net/ref/2011/2011-06-14%20bulk_extractor.pdf
http://simson.net/ref/2011/2011-06-14%20bulk_extractor.pdf
http://simson.net/ref/2011/2011-07-12%20Android%20Forensics.pdf
http://simson.net/ref/2011/2011-07-12%20Android%20Forensics.pdf
http://digitalcorpora.org
http://digitalcorpora.org
http://afflib.org
http://afflib.org
http://forensicswiki.org
http://forensicswiki.org
http://www.opensourceforensics.org
http://www.opensourceforensics.org

