
CS3773
Simson Garfinkel

This week:
• Text
• Unicode
• Lucene

Week 8 (Feb 25) - Threading
Week 9 (March 3) - Networking
Week 10 (March 10) -
 Style & Performance
Week 11 (March 17) -
 Special Projects
March 27* - Final Project Due

Java as a Second Language

Week 7: Text

1Wednesday, February 20, 2008

You have learned a lot of Java.

Navigating the Documentation; NetBeans; JAR files

47 Keywords

Classes

• creating; fields; methods; static vs. instance

• Abstract Classes & Interfaces

• Enumes

• Containers & Generics (e.g. HashSet<String>)

I/O: Reading & Writing Files

AWT & Swing

2Wednesday, February 20, 2008

You are responsible for these bold, underlined
Java Reserved Words.

abstract

assert

boolean

break

byte

case

catch

char

class

[const]

continue

default

do

double

else

enum

extends

final

finally

float

for

[goto]

if

implements

import

instanceof

int

interface

long

native

new

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

try

void

volatile

while

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

3Wednesday, February 20, 2008

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

Start thinking about your final projects

Your final project is:

• A chance to explore something about Java

• A chance to do something that works

• A chance to fix something you wanted to get right, but didn't have a
chance.

Requirements for final project:

• You must do your own work (no team projects)

• You must write something that works.

• You must demonstrate at least 5 of the Learning Outcomes.

Due Friday: A 1-paragraph final project proposal

4Wednesday, February 20, 2008

Quiz #6 Diagnostic:
Most students seem unsure about details.

Most students had problems with:

• equals()

• hashCode()

• Exceptions

Most students understood:

• enum

• JButton() / add() / setVisible()

• final classes cannot be subclassed

• JPanel() is a "canvas where you can draw" (and not JFrame)

5Wednesday, February 20, 2008

equals()

Signature:

public boolean equals(Object obj){
}

The equals() contract:

Compares the value of two objects for equality.

Syntax: a.equals(b) must be true or false.

• Note one object "equals" to another object.

• equals() takes a single argument

• argument may be any object! or null!

6Wednesday, February 20, 2008

equals()

Signature:

public boolean equals(Object obj){
}

Why this signature?

.equals() needs to take Object so that anything can be compared equals() with
anything else.

Object a;
Integer i;
a.equals(i) must not throw an exception!!!

7Wednesday, February 20, 2008

equals(obj) — obj may be null!

.equals() contract: .equals(null) must return false.

Nothing is equals() to null!

Location:

public boolean equals(Object obj){
 if(obj==null) return false;
 …
}

8Wednesday, February 20, 2008

equals(obj) — obj must be the correct class!

Location:

public boolean equals(Object obj){
 if(obj==null) return false;
 if(this.getClass() != obj.getClass()) return false;
 …
}

9Wednesday, February 20, 2008

equals(obj) —
objects are equals() if their values are equal!

Location:

public boolean equals(Object obj){
 if(obj==null) return false;
 if(this.getClass() != obj.getClass()) return false;

 Location l = (Location)obj;
 return this.x==l.x && this.y==l.y;
}

10Wednesday, February 20, 2008

equals(obj) —
What's wrong with this code?

Location:

public boolean equals(Object obj){
 if(obj==null) return false;
 if(this.getClass() != obj.getClass()) return false;

 Location l = (Location)obj;
 return this.x==l.x || this.y==l.y;
}

11Wednesday, February 20, 2008

equals(obj) —
What's wrong with this code?

Location:

public boolean equals(Location lobj){
 if(lobj==null) return false;
 return this.x==lobj.x || this.y==lobj.y;
}

12Wednesday, February 20, 2008

equals(obj) —
What's wrong with this code?

Location:

public boolean equals(Location l1,Location l2){
 if(l1==null) return false;
 if(l2==null) return false;
 if(l1.getClass() != l1.getClass()) return false;

 return l1.x==l2.x && l1.y==l2.y;
}

Will this compile?

What will happen when you use it?

13Wednesday, February 20, 2008

equals(obj):
Question: Will this print "true" or "false"

public class x {
 public static void main(String[] args){

 Object a = new Object();

 Object b = new Object();

 System.out.println("equals: "+a.equals(b));
 }
};

14Wednesday, February 20, 2008

2/18/08 10:30 PMObject (Java 2 Platform SE 5.0)

Page 3 of 10http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#equals(java.lang.Object)

integer results. However, the programmer should be aware that producing distinct integer results
for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct
integers for distinct objects. (This is typically implemented by converting the internal address of the
object into an integer, but this implementation technique is not required by the JavaTM programming
language.)

Returns:
a hash code value for this object.

See Also:
equals(java.lang.Object), Hashtable

equals

public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

It is reflexive: for any non-null reference value x, x.equals(x) should return true.
It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if
and only if y.equals(x) returns true.
It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information used in equals
comparisons on the objects is modified.
For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence
relation on objects; that is, for any non-null reference values x and y, this method returns true if and
only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is
overridden, so as to maintain the general contract for the hashCode method, which states that equal
objects must have equal hash codes.

Parameters:
obj - the reference object with which to compare.

Returns:
true if this object is the same as the obj argument; false otherwise.

See Also:
hashCode(), Hashtable

clone

protected Object clone()

 throws CloneNotSupportedException

15Wednesday, February 20, 2008

Answer: False

"The equals method for class Object implements the most
discriminating possible equivalence relation on objects; that is, for any
non-null reference values x and y, this method returns true if and only
if x and y refer to the same object (x == y has the value true)."

10:28 PM imac2:~$ javac x.java
10:29 PM imac2:~$ java x
equals: false
10:29 PM imac2:~$

16Wednesday, February 20, 2008

equals(obj) —
Building Wall equals() with Location equals

public class Wall extends FlatlandObject {
 Location p1, p2;

 public boolean equals(Object obj){
 if(obj==null) return false;
 if(this.getClass() != obj.getClass()) return false;
 Wall w = (Wall)obj;

 return(this.p1.equals(w.p1) && this.p2.equals(w.p2));
}

What about color, heading, line width, etc?

17Wednesday, February 20, 2008

2/18/08 10:36 PMObject (Java 2 Platform SE 5.0)

Page 2 of 10http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#equals(java.lang.Object)

 Causes current thread to wait until another thread invokes the notify() method or the
notifyAll() method for this object.

 void wait(long timeout)
 Causes current thread to wait until either another thread invokes the notify() method
or the notifyAll() method for this object, or a specified amount of time has elapsed.

 void wait(long timeout, int nanos)
 Causes current thread to wait until another thread invokes the notify() method or the
notifyAll() method for this object, or some other thread interrupts the current thread, or a
certain amount of real time has elapsed.

Constructor Detail

Object

public Object()

Method Detail

getClass

public final Class<? extends Object> getClass()

Returns the runtime class of an object. That Class object is the object that is locked by static
synchronized methods of the represented class.

Returns:

The java.lang.Class object that represents the runtime class of the object. The result is of
type Class<? extends X> where X is the erasure of the static type of the expression on which
getClass is called.

hashCode

public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hashtables such
as those provided by java.util.Hashtable.

The general contract of hashCode is:

Whenever it is invoked on the same object more than once during an execution of a Java
application, the hashCode method must consistently return the same integer, provided no
information used in equals comparisons on the object is modified. This integer need not remain
consistent from one execution of an application to another execution of the same application.
If two objects are equal according to the equals(Object) method, then calling the hashCode
method on each of the two objects must produce the same integer result.
It is not required that if two objects are unequal according to the equals(java.lang.Object)
method, then calling the hashCode method on each of the two objects must produce distinct

HashCode

2/18/08 10:36 PMObject (Java 2 Platform SE 5.0)

Page 3 of 10http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#equals(java.lang.Object)

integer results. However, the programmer should be aware that producing distinct integer results
for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct
integers for distinct objects. (This is typically implemented by converting the internal address of the
object into an integer, but this implementation technique is not required by the JavaTM programming
language.)

Returns:
a hash code value for this object.

See Also:
equals(java.lang.Object), Hashtable

equals

public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

It is reflexive: for any non-null reference value x, x.equals(x) should return true.
It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if
and only if y.equals(x) returns true.
It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information used in equals
comparisons on the objects is modified.
For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence
relation on objects; that is, for any non-null reference values x and y, this method returns true if and
only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is
overridden, so as to maintain the general contract for the hashCode method, which states that equal
objects must have equal hash codes.

Parameters:
obj - the reference object with which to compare.

Returns:
true if this object is the same as the obj argument; false otherwise.

See Also:
hashCode(), Hashtable

clone

protected Object clone()

 throws CloneNotSupportedException

18Wednesday, February 20, 2008

HashCode: Key Ideas

If a.HashCode() != b.hashCode(), then the two objects ARE NOT EQUAL

if a.HashCode()==b.hashCode() then the two objects MAY BE EQUAL

a.HashCode() DOES NOT CHANGE while the program is running.

19Wednesday, February 20, 2008

What's wrong with this code?

Location:

public int hashCode(Object o){
 if(o==null) return 0;
 if(o.hashCode() != this.hashCode()) return -1;
 return o.x + o.y;
}

20Wednesday, February 20, 2008

What's wrong with this code?

Location:

static int objectCounter=0;
int myObjectNumber = -1;
public int hashCode(){
 if(myObjectNumber==-1){
 myObjectNumber = objectCounter++;
 }
 return myObjectNumber;
}

21Wednesday, February 20, 2008

Here was problem #9 from the Quiz;
What three compilation errors will the compiler catch?

public class x {
 public static void main(String[] args){

 try {

 System.out.println("one");

 throw new Exception();

 System.out.println("two");

 } catch (Exception e){

 System.out.println("three");

 } finally {

 System.out.println("four");

 throw new Exception();

 System.out.println("five");

 }
 }
};

22Wednesday, February 20, 2008

Here was problem #9 from the Quiz;
What three compilation errors will the compiler catch?

public class x {
 public static void main(String[] args){

 try {

 System.out.println("one");

 throw new Exception();

 System.out.println("two");

 } catch (Exception e){

 System.out.println("three");

 } finally {

 System.out.println("four");

 throw new Exception();

 System.out.println("five");

 }
 }
};

⇠ unreachable statement

⇠ unreachable statement

⇠ Unreported Exception

23Wednesday, February 20, 2008

Text

Text
24Wednesday, February 20, 2008

Text Vocabulary: Glyph
A "glyph" is an abstract shape of a character

"a" and "b" are different glyphs.

"a," "a," and "a" are the same glyph.

some glyphs:

 a b c d

 ↘ ㉸ 𝄫 𝄞 ש

25Wednesday, February 20, 2008

Text Vocabulary: typeface
A typeface is a style for displaying glyphs

Helvetica Neue
Lucida Fax
Monaco
Playbill
SimSun

Comic Sans MS
Calibri

26Wednesday, February 20, 2008

Text Vocabulary: Weight
Modifications to a font

Regular
Light
UltraLight
Bold
Condensed Bold
Condensed Black

Thin
Wide

27Wednesday, February 20, 2008

Text Vocabulary: Style
How the font is rendered

Regular
Italic

28Wednesday, February 20, 2008

Getting and drawing fonts.

J2SE supports TrueType and PostScript Type 1 fonts. Built in fonts:

Lucida Sans
Lucida Sans Typewriter
Lucidia Bright

Other fonts (may) cost money.

java.awt.font - Creates a font

Font ft = new Font("Lucida Sans",Font.PLAIN,24);
g.setFont(f);
g.drawString("This is a test",x,y);

How big will the font be?

FontMetrics fm = g.getFontMetrics();
int width = fm.stringWidth("This is a test");

29Wednesday, February 20, 2008

Codes

—•—• ——— —•• • •••

30Wednesday, February 20, 2008

Morse Code

1836 - Morse & Vail invent electric
telegraph

"Code" provides a 1-to-1 mapping
between the symbols that are sent over the
wire and the glyphs that we read.

http://en.wikipedia.org/wiki/Image:International_Morse_Code.PNG

31Wednesday, February 20, 2008

http://en.wikipedia.org/wiki/Image:International_Morse_Code.PNG
http://en.wikipedia.org/wiki/Image:International_Morse_Code.PNG

Teleprinters used 5-bit Baudot Code

5 bits = 00 .. 1F = 32 characters

Special "Shift" codes:

 1B = Figures follow

 1F = Letters follow

Uppercase Only.

32Wednesday, February 20, 2008

ASCII
American Standard Code for Information Exchange

Big Innovations: 7 bits; Upper case, lower case, & symbols

Problems: US only (no accented characters)

Code space: 0 .. 127

0 = NULL

1 .. 31 = Control Characters

32 = Space

48..57 = Characters "0" through "9" (in order)

65..90 = Characters "A" through "Z"

97..122 = Characters "a" through "z"

123 = "{" ; 124 = "|" ; 125 = "}" 126 = "~"; 127 = DEL

http://en.wikipedia.org/wiki/ASCII

33Wednesday, February 20, 2008

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII

"Code Pages"

Developed by IBM to represent "foreign" (ie: non-English) characters

Usually maps:

 0..127 as ASCII

128..255 as "special characters"

Code Pages:

437 - IBM PC Code Page http://en.wikipedia.org/wiki/Code_page_437

737 - Greek http://en.wikipedia.org/wiki/Code_page_737

869 - Greek2 http://en.wikipedia.org/wiki/Code_page_869

Don't use code pages!

34Wednesday, February 20, 2008

http://en.wikipedia.org/wiki/Code_page_437
http://en.wikipedia.org/wiki/Code_page_437
http://en.wikipedia.org/wiki/Code_page_737
http://en.wikipedia.org/wiki/Code_page_737
http://en.wikipedia.org/wiki/Code_page_869
http://en.wikipedia.org/wiki/Code_page_869

Unicode: 1991—

100,000+ characters to represent every glyph in use

• Originally just modern glyphs

• Now extended to ancient glyphs, music, etc.

Every Unicode glyph has a specific integer.

• "A" is still 65

• U+0041

• \u0041

•)

"Normal" Unicode characters are 16 bits; shift characters for codes > 65,536

35Wednesday, February 20, 2008

Unicode: Complexity Rules

Unicode has a lot of confusing elements:

• The same printing glyph can be represented with many different code
points

• Accented characters can be represent by a composed character and
accent (è) or by a separate character (e) and accent (`)

• Sorting rules are language-specific (not really a Unicode problem)

36Wednesday, February 20, 2008

Unicode Codings

"Codings" are how a unicode character is encoded into a byte stream.

UTF-16:

• Codes all 16-bit Unicode as two bytes

• Two versions: big-endian and little-endian (0041) and (4100)

• Special "escapes" for coding 32-bit characters

• Extensively used by Microsoft; not much else

UTF-32:

• Codes all characters as 4-bytes

• Two versions: big-endian and little-endian (00000041) and (41000000)

• Rarely used anywhere

37Wednesday, February 20, 2008

UTF-8: Most popular Unicode encoding

Codes ASCII as ASCII

2 bytes for most European & Arabic Characters

3 bytes for most other characters in the Basic Multilingual Plane

4 bytes for everything else

Advantages of UTF-8:

• ASCII is ASCII (UTF-8 is an ASCII superset)

• Bytes in position 1, 2, 3 & 4 are all distinct (allows resynchronization)

• NULLs do not appear in the text (compatible with C/C++)

Disadvantage of UTF-8:

• Hard to figure out how long a string is without parsing

• Encoding rules are complex

38Wednesday, February 20, 2008

http://en.wikipedia.org/wiki/Basic_Multilingual_Plane
http://en.wikipedia.org/wiki/Basic_Multilingual_Plane

Unicode URLs of Interest	

Glossary: http://unicode.org/glossary/

What's new in Unicode 5.0.0: http://www.unicode.org/versions/Unicode5.0.0/

Unicode Technical Reports: http://www.unicode.org/reports/

Microsoft Ask Dr. International:

• http://www.microsoft.com/globaldev/DrIntl/default.mspx

• http://www.microsoft.com/globaldev/DrIntl/columns/default.mspx

39Wednesday, February 20, 2008

http://unicode.org/glossary/
http://unicode.org/glossary/
http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/versions/Unicode5.0.0/
http://www.unicode.org/reports/
http://www.unicode.org/reports/
http://www.microsoft.com/globaldev/DrIntl/default.mspx
http://www.microsoft.com/globaldev/DrIntl/default.mspx
http://www.microsoft.com/globaldev/DrIntl/columns/default.mspx
http://www.microsoft.com/globaldev/DrIntl/columns/default.mspx

Unicode & Lucene

Thursday

40Wednesday, February 20, 2008

Korean in Apple Mail

41Wednesday, February 20, 2008

Lucene

Lucene is the Apache Foundation's search engine (in Java).

• Widely used on major websites

Two parts:

• Index maker - reads files and adds them to the index

• Index searcher - takes a search term and says where it is found

42Wednesday, February 20, 2008

Naval, 1

Postgraduate, 1

School, 1

Academics, 1

Words from Documents
Academics, 1
Naval, 1
MIT, 3
Postgraduate, 1
School, 1
Simson, 1,2,3

Merged Index

1: http://nps.edu/
2: http://simson.net/
3: http://mit.edu/

Source Table

This is all done with sorted tables.

43Wednesday, February 20, 2008

Download and run Lucene!

http://lucene.apache.org/java/docs/

Demo:

java -classpath lucene-core-2.3.0.jar:lucene-
demos-2.3.0.jar org.apache.lucene.demo.IndexFiles
c:\slgarfin

adding /Users/simsong/current/vacation/Summer Vacation/
UAL-Sonia.pdf
adding /Users/simsong/current/visualization-thoughts.txt
adding /Users/simsong/current/whole_earth_journal_ssns.txt
Optimizing…
load: 1.45 cmd: java 56155 waiting 47.56u 5.93s
182216 total milliseconds

44Wednesday, February 20, 2008

http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/

The indexer creates an "index/" directory:

$ ls -l index/
total 63064
-rw-r--r-- 1 simsong 64568842 Feb 20 21:57 _m.cfs
-rw-r--r-- 1 simsong 20 Feb 20 21:57 segments.gen
-rw-r--r-- 1 simsong 45 Feb 20 21:57 segments_1b
$

You search with the "org.apache.lucene.demo.SearchFiles" class:
$ java -classpath lucene-core-2.3.0.jar:lucene-demos-2.3.0.jar
org.apache.lucene.demo.SearchFiles
Enter query:
Sonia
Searching for: sonia
2 total matching documents
1. /Users/simsong/current/vacation/Summer Vacation/iten.rtf
2. /Users/simsong/current/vacation/flights.rtf
Enter query:

45Wednesday, February 20, 2008

indexDocs indexes all of the files starting at a
directory using recursive descent…

 static void indexDocs(IndexWriter writer, File file)throws IOException {
 // do not try to index files that cannot be read
 if (file.canRead()) {
 if (file.isDirectory()) {
 String[] files = file.list();
 if (files != null) {
 for (int i = 0; i < files.length; i++) {
 indexDocs(writer, new File(file, files[i]));
 }
 }
 } else {
 System.out.println("adding " + file);
 try {
 writer.addDocument(FileDocument.Document(file));
 }
 catch (FileNotFoundException fnfe) {
 }
 }
 }
 }

46Wednesday, February 20, 2008

SearchFiles searches the index. It's not hard!

IndexReader reader = IndexReader.open(index);
Searcher searcher = new IndexSearcher(reader);
Analyzer analyzer = new StandardAnalyzer();
QueryParser parser = new QueryParser("contents", analyzer);
Query query = parser.parse("some search term");
Hits hits = searcher.search(query);

for(int i=0;start<hits.length();i++){
 Document doc = hits.doc(i);
 System.out.println("path: "+doc.get("path"));
}

47Wednesday, February 20, 2008

You can improve the search with a bit of linguistics

Word Stemming:

• "Academics" is in the document

• "Academic" and "Academics" gets put into the index.

Synonyms:

• "Navy" is in the document

• "Navy", "dark blue", "United States Navy", "USN" put into the index.

• See: http://wordnet.princeton.edu/perl/webwn?s=navy

48Wednesday, February 20, 2008

http://wordnet.princeton.edu/perl/webwn?s=navy
http://wordnet.princeton.edu/perl/webwn?s=navy

To use Lucene from NetBeans

1. Download Lucene

2. Unzip the zip file

3. Install the jar files in a known location

• I used ~/lucene-2.3.0

4. Tell NetBeans about the location (right-click on Libraries)

49Wednesday, February 20, 2008

