
CS3773
Simson Garfinkel

This week:
• Threads
• Walls /Othello/Desktop Search

Week 8 (Feb 25) - Threads
Week 9 (March 3) - Open 1
Week 10 (March 10) - Open 2
Week 11 (March 17) - Open 3
March 27* - Final Project Due

Java as a Second Language

Week 8: Threads

Final Projects

By now, you should know what your final project is.

If you don't, email me a proposal today.

Class Survey

You were sent a link to a SurveyMonkey survey.

Please fill it out! We will be using the survey results to decide the content of the
next 4 weeks.

From the results so far, my plans are to:

• Cover threads & synchornization (Monday & Tuesday)

• Cover the "Solaris Device Drivers in Java" article.

• Some specific examples of reading & writing files

• Build a chat program using Othello server from start-to-finish

EAX

EBX

ECX

EDX

ESI

EDI

Architectural Registers

R001

R002

R003

R004

...

Rnnn

Active Register File
L2 Cache

Main
Memory DisksL1 Cache

Increasing Storage Capacity

Increasing Speed

Modern computers have 5 different memory systems.
The larger the memory, the slower it runs.

Modern computers run many different programs at
the same time.

Each program's history can be can be thought of as a
"thread" of connected events

•Receive File->Open
•Open File
•Read File into memory
•Create main window
•Repeat:

•Wait for event
•Update screen

•Read Mailboxes
•Create main window
•Repeat:

•Check for mail
•If mail, load into mailbox
•check for keyboard/mouse event
•Update screen

Computers follow a basic strategy for making the
most efficient use of their resources.

1. Find a program that's ready to run.

• Microsoft Word

2. Run it until it blocks:

• Request for a keyboard event.

• Request to read or write to the disk

• Request for information from the network

• Used too much CPU time (1 sec)

3. When the program blocks:

• Save what the program was doing.

• Find another program to run (goto step 1)

This is called a scheduling policy.

Word

Mail

Java
Excel

This same scheduling policy can be applied to tasks
within a program

•Read Mailboxes
•Create main window
•Repeat:

•Check for mail
•If mail, load into mailbox
•Check for keyboard/mouse event
•Update screen

•Check for mail
•If mail, load into mailbox

•Check for keyboard/mouse event
•Process the event

•Update screen

Producing this "classic" view of threads inside a
computer:

Until now, we have only had a single thread of execution
in our programs (except for the Flatland bug.)

JVM MyClass.main exit(0)

The Thread class lets you create multiple threads of
execution

JVM MyClass.main exit(0)

Thread.start()

The Thread class lets you create multiple threads of
execution for any object that implements Runnable.

JVM MyClass.main exit(0)

Runnable obj;
Thread t = new Thread(obj);
t.start();

obj.run()

You can make as many threads as you want.
You cannot control when they run.

JVM MyClass.main exit(0)

obj.run()
obj.run()

obj.run()

On a multiprocessor (or multi-core machine), multiple
threads can literally run at the same time

Let's look at some code:
ThreadDemo implements Runnable

class ThreadDemo implements Runnable {
 String name;
 ThreadDemo(String name){
 this.name = name;
 }
 public void run(){
 for(int i=0;i<10;i++){
 System.out.printf("Thread '%s' i=%d %n",name,i);
 }
 }
 public static void main(String[] args){

 Thread t;

 t = new Thread(new ThreadDemo("first"));
 t.start();

 t = new Thread(new ThreadDemo("second"));
 t.start();
 }
}

Now, let's try it with threads.
Run #1

09:01 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0
Thread 'second' i=0
Thread 'second' i=1
Thread 'second' i=2
Thread 'second' i=3
Thread 'second' i=4
Thread 'second' i=5
Thread 'second' i=6
Thread 'second' i=7
Thread 'second' i=8
Thread 'second' i=9
Thread 'first' i=1
Thread 'first' i=2
Thread 'first' i=3
Thread 'first' i=4
Thread 'first' i=5
Thread 'first' i=6
Thread 'first' i=7
Thread 'first' i=8
Thread 'first' i=9
09:01 PM Obsidian:~/current/cs3773/week8$

Now, let's try it with threads.
Run #2

09:01 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0
Thread 'first' i=1
Thread 'first' i=2
Thread 'first' i=3
Thread 'first' i=4
Thread 'first' i=5
Thread 'first' i=6
Thread 'first' i=7
Thread 'first' i=8
Thread 'first' i=9
Thread 'second' i=0
Thread 'second' i=1
Thread 'second' i=2
Thread 'second' i=3
Thread 'second' i=4
Thread 'second' i=5
Thread 'second' i=6
Thread 'second' i=7
Thread 'second' i=8
Thread 'second' i=9
09:01 PM Obsidian:~/current/cs3773/week8$

Now, let's try it with threads.
Run #3

09:01 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0
Thread 'first' i=1
Thread 'first' i=2
Thread 'second' i=0
Thread 'second' i=1
Thread 'second' i=2
Thread 'second' i=3
Thread 'second' i=4
Thread 'second' i=5
Thread 'second' i=6
Thread 'second' i=7
Thread 'second' i=8
Thread 'second' i=9
Thread 'first' i=3
Thread 'first' i=4
Thread 'first' i=5
Thread 'first' i=6
Thread 'first' i=7
Thread 'first' i=8
Thread 'first' i=9
09:01 PM Obsidian:~/current/cs3773/week8$

Now, let's try it with threads.
Run #4

09:01 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0
Thread 'second' i=0
Thread 'second' i=1
Thread 'second' i=2
Thread 'second' i=3
Thread 'second' i=4
Thread 'second' i=5
Thread 'second' i=6
Thread 'second' i=7
Thread 'second' i=8
Thread 'second' i=9
Thread 'first' i=1
Thread 'first' i=2
Thread 'first' i=3
Thread 'first' i=4
Thread 'first' i=5
Thread 'first' i=6
Thread 'first' i=7
Thread 'first' i=8
Thread 'first' i=9
09:01 PM Obsidian:~/current/cs3773/week8$

Now, let's try it with threads.
Run #5

09:01 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0
Thread 'first' i=1
Thread 'first' i=2
Thread 'first' i=3
Thread 'first' i=4
Thread 'first' i=5
Thread 'first' i=6
Thread 'first' i=7
Thread 'first' i=8
Thread 'first' i=9
Thread 'second' i=0
Thread 'second' i=1
Thread 'second' i=2
Thread 'second' i=3
Thread 'second' i=4
Thread 'second' i=5
Thread 'second' i=6
Thread 'second' i=7
Thread 'second' i=8
Thread 'second' i=9
09:01 PM Obsidian:~/current/cs3773/week8$

Now, let's try it with threads.
Run #6

09:01 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0
Thread 'second' i=0
Thread 'first' i=1
Thread 'second' i=1
Thread 'first' i=2
Thread 'second' i=2
Thread 'first' i=3
Thread 'second' i=3
Thread 'first' i=4
Thread 'second' i=4
Thread 'first' i=5
Thread 'second' i=5
Thread 'first' i=6
Thread 'second' i=6
Thread 'first' i=7
Thread 'second' i=7
Thread 'first' i=8
Thread 'second' i=8
Thread 'first' i=9
Thread 'second' i=9
09:01 PM Obsidian:~/current/cs3773/week8$

If two threads try to access the same variable at the
same time, the results are unpredicatable.

counter

The thread may do some work in a local variable.
The thread may cache and then write back results

Now both threads are incrementing "counter."
What will happen when the threads run together?

class ThreadDemo implements Runnable {
 static int counter = 0;
 String name;
 ThreadDemo(String name){
 this.name = name;
 }

 public void run(){
 for(int i=0;i<10;i++){
 counter += 1;
 System.out.printf("Thread '%s' i=%d counter=%d %n",
 name,i,counter);
 }
 }
 public static void main(String[] args){

 (new Thread(new ThreadDemo("first"))).start();
 (new Thread(new ThreadDemo("second"))).start();
 }
}

Run #1: Counter reaches 20…
… but where is counter=1? How about 14?

09:06 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=2
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'second' i=1 counter=4
Thread 'first' i=2 counter=5
Thread 'second' i=2 counter=6
Thread 'first' i=3 counter=7
Thread 'second' i=3 counter=8
Thread 'first' i=4 counter=9
Thread 'second' i=4 counter=10
Thread 'first' i=5 counter=11
Thread 'second' i=5 counter=12
Thread 'first' i=6 counter=13
Thread 'first' i=7 counter=15
Thread 'first' i=8 counter=16
Thread 'first' i=9 counter=17
Thread 'second' i=6 counter=14
Thread 'second' i=7 counter=18
Thread 'second' i=8 counter=19
Thread 'second' i=9 counter=20
09:06 PM Obsidian:~/current/cs3773/week8$

Run #2: Now counter=14 is in the right place

9:06 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=2
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'second' i=1 counter=4
Thread 'first' i=2 counter=5
Thread 'second' i=2 counter=6
Thread 'first' i=3 counter=7
Thread 'second' i=3 counter=8
Thread 'first' i=4 counter=9
Thread 'second' i=4 counter=10
Thread 'first' i=5 counter=11
Thread 'second' i=5 counter=12
Thread 'first' i=6 counter=13
Thread 'second' i=6 counter=14
Thread 'first' i=7 counter=15
Thread 'second' i=7 counter=16
Thread 'first' i=8 counter=17
Thread 'second' i=8 counter=18
Thread 'first' i=9 counter=19
Thread 'second' i=9 counter=20
09:06 PM Obsidian:~/current/cs3773/week8$

Run #2: Now counter=14 is in the right place

9:06 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=2
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'second' i=1 counter=4
Thread 'first' i=2 counter=5
Thread 'second' i=2 counter=6
Thread 'first' i=3 counter=7
Thread 'second' i=3 counter=8
Thread 'first' i=4 counter=9
Thread 'second' i=4 counter=10
Thread 'first' i=5 counter=11
Thread 'second' i=5 counter=12
Thread 'first' i=6 counter=13
Thread 'second' i=6 counter=14
Thread 'first' i=7 counter=15
Thread 'second' i=7 counter=16
Thread 'first' i=8 counter=17
Thread 'second' i=8 counter=18
Thread 'first' i=9 counter=19
Thread 'second' i=9 counter=20
09:06 PM Obsidian:~/current/cs3773/week8$

Run #3:

09:06 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=2
Thread 'second' i=0 counter=2
Thread 'second' i=1 counter=4
Thread 'second' i=2 counter=5
Thread 'second' i=3 counter=6
Thread 'second' i=4 counter=7
Thread 'second' i=5 counter=8
Thread 'second' i=6 counter=9
Thread 'second' i=7 counter=10
Thread 'second' i=8 counter=11
Thread 'second' i=9 counter=12
Thread 'first' i=1 counter=3
Thread 'first' i=2 counter=13
Thread 'first' i=3 counter=14
Thread 'first' i=4 counter=15
Thread 'first' i=5 counter=16
Thread 'first' i=6 counter=17
Thread 'first' i=7 counter=18
Thread 'first' i=8 counter=19
Thread 'first' i=9 counter=20
09:06 PM Obsidian:~/current/cs3773/week8$

The synchronized() statement creates a lock.
Only one thread can lock an object at a time.

Object obj = new Object();

synchronized (obj) {
 // This code is locked.
 // only one thread can be in this block at a time.
 // provided that all threads share 'obj'
}

class ThreadDemo implements Runnable {
 static Object lock = new Object();
 static int counter = 0;
 String name;
 ThreadDemo(String name){
 this.name = name;
 }

 public void run(){
 for(int i=0;i<10;i++){
 synchronized (lock) {
 counter += 1;
 System.out.printf("Thread '%s' i=%d counter=%d %n",
 name,i,counter);
 }
 }
 }
 public static void main(String[] args){

 (new Thread(new ThreadDemo("first"))).start();
 (new Thread(new ThreadDemo("second"))).start();
 }
}

Synchronized Run #1:

09:21 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=1
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'second' i=1 counter=4
Thread 'first' i=2 counter=5
Thread 'second' i=2 counter=6
Thread 'first' i=3 counter=7
Thread 'second' i=3 counter=8
Thread 'first' i=4 counter=9
Thread 'second' i=4 counter=10
Thread 'first' i=5 counter=11
Thread 'second' i=5 counter=12
Thread 'first' i=6 counter=13
Thread 'second' i=6 counter=14
Thread 'first' i=7 counter=15
Thread 'second' i=7 counter=16
Thread 'first' i=8 counter=17
Thread 'second' i=8 counter=18
Thread 'first' i=9 counter=19
Thread 'second' i=9 counter=20
09:21 PM Obsidian:~/current/cs3773/week8$

Synchronized Run #2:

09:21 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=1
Thread 'second' i=0 counter=2
Thread 'second' i=1 counter=3
Thread 'second' i=2 counter=4
Thread 'second' i=3 counter=5
Thread 'second' i=4 counter=6
Thread 'second' i=5 counter=7
Thread 'second' i=6 counter=8
Thread 'second' i=7 counter=9
Thread 'second' i=8 counter=10
Thread 'second' i=9 counter=11
Thread 'first' i=1 counter=12
Thread 'first' i=2 counter=13
Thread 'first' i=3 counter=14
Thread 'first' i=4 counter=15
Thread 'first' i=5 counter=16
Thread 'first' i=6 counter=17
Thread 'first' i=7 counter=18
Thread 'first' i=8 counter=19
Thread 'first' i=9 counter=20
09:21 PM Obsidian:~/current/cs3773/week8$

Synchronized Run #3:

09:22 PM Obsidian:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=1
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'second' i=1 counter=4
Thread 'second' i=2 counter=5
Thread 'second' i=3 counter=6
Thread 'first' i=2 counter=7
Thread 'second' i=4 counter=8
Thread 'first' i=3 counter=9
Thread 'second' i=5 counter=10
Thread 'first' i=4 counter=11
Thread 'second' i=6 counter=12
Thread 'first' i=5 counter=13
Thread 'second' i=7 counter=14
Thread 'first' i=6 counter=15
Thread 'second' i=8 counter=16
Thread 'first' i=7 counter=17
Thread 'second' i=9 counter=18
Thread 'first' i=8 counter=19
Thread 'first' i=9 counter=20
09:22 PM Obsidian:~/current/cs3773/week8$

Methods can be synchronized as well.
Only one thread can run the method at a time.

class ThreadDemo implements Runnable {
 static int counter = 0;
 String name;
 ThreadDemo(String name){
 this.name = name;
 }

 public synchronized int incrementCounter() {
 counter += 1;
 return counter;
 }

 public void run(){
 for(int i=0;i<10;i++){
 System.out.printf("Thread '%s' i=%d counter=%d %n",
 name,i,incrementCounter());
 }
 }
 public static void main(String[] args){

 (new Thread(new ThreadDemo("first"))).start();
 (new Thread(new ThreadDemo("second"))).start();
 }
}

Notice that the synchronized method returned the
counter value.

 public synchronized int incrementCounter() {
 counter += 1;
 return counter;
 }

 public void run(){
 for(int i=0;i<10;i++){
 System.out.printf("Thread '%s' i=%d counter=%d %n",
 name,i,incrementCounter());
 }
 }

run() shouldn't reference the same counter from
multiple threads. Returning the value solves this
potential problem.

Tuesday:
Volatile Variables

So what does volatile do?

keyword: volatile

The "volatile" keyword tells the compiler not to cache a variable.

Goetz calls them "synchronized lite."

Advantages:

• They aren't cached, so you always get a valid value.

Disadvantage:

• It might be an old value.

• Writes may not be updated properly.

Goetz "cheap read-write lock"

public class CheesyCounter {
 // Employs the cheap read-write lock trick
 // All mutative operations MUST be done
 // with the 'this' lock held
 private volatile int value;

 public int getValue() { return value; }

 public synchronized int increment() {
 return value++;
 }
}

Using CheesyCounter.java:

class ThreadDemo implements Runnable {
 static CheesyCounter counter = new CheesyCounter();
 String name;
 ThreadDemo(String name){
 this.name = name;
 }

 public void run(){
 for(int i=0;i<10;i++){
 counter.increment();
 System.out.printf("Thread '%s' i=%d counter=%d %n",
 name,i,counter.getValue());
 }
 }
 public static void main(String[] args){

 (new Thread(new ThreadDemo("first"))).start();
 (new Thread(new ThreadDemo("second"))).start();
 }
}

CheesyCounter Run #1

07:22 PM imac2:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=2
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'second' i=1 counter=4
Thread 'first' i=2 counter=5
Thread 'second' i=2 counter=6
Thread 'first' i=3 counter=7
Thread 'second' i=3 counter=8
Thread 'first' i=4 counter=9
Thread 'second' i=4 counter=10
Thread 'first' i=5 counter=11
Thread 'second' i=5 counter=12
Thread 'first' i=6 counter=13
Thread 'second' i=6 counter=14
Thread 'first' i=7 counter=15
Thread 'second' i=7 counter=16
Thread 'first' i=8 counter=17
Thread 'second' i=8 counter=18
Thread 'first' i=9 counter=19
Thread 'second' i=9 counter=20
07:22 PM imac2:~/current/cs3773/week8$ %

CheesyCounter Run #2

07:22 PM imac2:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=1
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'first' i=2 counter=5
Thread 'first' i=3 counter=6
Thread 'second' i=1 counter=4
Thread 'first' i=4 counter=7
Thread 'first' i=5 counter=8
Thread 'first' i=6 counter=9
Thread 'first' i=7 counter=10
Thread 'second' i=2 counter=11
Thread 'first' i=8 counter=12
Thread 'second' i=3 counter=13
Thread 'second' i=4 counter=15
Thread 'second' i=5 counter=16
Thread 'second' i=6 counter=17
Thread 'second' i=7 counter=18
Thread 'first' i=9 counter=14
Thread 'second' i=8 counter=19
Thread 'second' i=9 counter=20
07:22 PM imac2:~/current/cs3773/week8$

But this will not work:

class ThreadDemo implements Runnable {
 static volatile int counter = 0; /*** NOT GOOD ENOUGH ***/
 String name;
 ThreadDemo(String name){
 this.name = name;
 }

 public void run(){
 for(int i=0;i<10;i++){
 counter += 1;
 System.out.printf("Thread '%s' i=%d counter=%d %n",
 name,i,counter);
 }
 }
 public static void main(String[] args){

 (new Thread(new ThreadDemo("first"))).start();
 (new Thread(new ThreadDemo("second"))).start();
 }
}

Run with "volatile counter"

07:21 PM imac2:~/current/cs3773/week8$ java ThreadDemo
Thread 'first' i=0 counter=2
Thread 'second' i=0 counter=2
Thread 'first' i=1 counter=3
Thread 'second' i=1 counter=4
Thread 'second' i=2 counter=6
Thread 'second' i=3 counter=7
Thread 'second' i=4 counter=8
Thread 'second' i=5 counter=9
Thread 'second' i=6 counter=10
Thread 'second' i=7 counter=11
Thread 'second' i=8 counter=12
Thread 'second' i=9 counter=13
Thread 'first' i=2 counter=5
Thread 'first' i=3 counter=14
Thread 'first' i=4 counter=15
Thread 'first' i=5 counter=16
Thread 'first' i=6 counter=17
Thread 'first' i=7 counter=18
Thread 'first' i=8 counter=19
Thread 'first' i=9 counter=20
07:21 PM imac2:~/current/cs3773/week8$

Deadlock scenario:

• Thread A locks object1

• Thread B locks object2

• Thread A tries to lock object1 and BLOCKS.

• Thread B tries to lock object2 and BLOCKS

Another danger with threading: deadlocks

A B

object1

• object1

object2

DeadlyEmbrace.java

public class DeadlyEmbrace implements Runnable {
 Object object1, object2;
 String name;
 DeadlyEmbrace(String name,Object object1,Object object2){
 this.name = name; this.object1 = object1; this.object2 = object2;
 }

 public void run(){
 System.out.println("Thread "+name+" starting up...");
 synchronized (object1) {
 System.out.println("Thread "+name+" grabbed "+object1);
 synchronized (object2) {
 System.out.println("Thread "+name+" grabbed "+object2);
 }
 }
 System.out.println("Thread "+name+" shutting down...");
 }

 public static void main(String[] args){
 Object a = new Object();
 Object b = new Object();
 new Thread(new DeadlyEmbrace("first",a,b)).start();
 new Thread(new DeadlyEmbrace("second",b,a)).start();
 }

Let's try it.
DeadlyEmbrace Run #1

07:38 PM imac2:~/current/cs3773/week8$ java DeadlyEmbrace

Thread first starting up...

Thread first grabbed java.lang.Object@c20e24

Thread first grabbed java.lang.Object@2e7263

Thread first shutting down...

Thread second starting up...

Thread second grabbed java.lang.Object@2e7263

Thread second grabbed java.lang.Object@c20e24

Thread second shutting down...

07:38 PM imac2:~/current/cs3773/week8$

DeadlyEmbrace Run #2:

07:38 PM imac2:~/current/cs3773/week8$ java DeadlyEmbrace

Thread first starting up...

Thread second starting up...

Thread second grabbed java.lang.Object@2e7263

Thread first grabbed java.lang.Object@c20e24

Results of multiple runs

Results of multiple runs

Run 1 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Run 8 — DEADLOCK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Run 8 — DEADLOCK

Run 9 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Run 8 — DEADLOCK

Run 9 — OK

Run 10 — DEADLOCK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Run 8 — DEADLOCK

Run 9 — OK

Run 10 — DEADLOCK

Run 11 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Run 8 — DEADLOCK

Run 9 — OK

Run 10 — DEADLOCK

Run 11 — OK

Run 12 — OK

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Run 8 — DEADLOCK

Run 9 — OK

Run 10 — DEADLOCK

Run 11 — OK

Run 12 — OK

Feeling Lucky?

Results of multiple runs

Run 1 — OK

Run 2 — DEADLOCK

Run 3 — OK

Run 4 — OK

Run 5 — OK

Run 6 — OK

Run 7 — OK

Run 8 — DEADLOCK

Run 9 — OK

Run 10 — DEADLOCK

Run 11 — OK

Run 12 — OK

Feeling Lucky?

I know what you're thinking. "Did he fire six shots or
only five?" Well, to tell you the truth, in all this
excitement I kind of lost track myself. But being as this
is a .44 Magnum, the most powerful handgun in the
world, and would blow your head clean off, you've got
to ask yourself a question: Do I feel lucky?

You are responsible for these bold, underlined
Java Reserved Words.

abstract

assert

boolean

break

byte

case

catch

char

class

[const]

continue

default

do

double

else

enum

extends

final

finally

float

for

[goto]

if

implements

import

instanceof

int

interface

long

native

new

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

try

void

volatile

while

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

Serialization &
Transient Variables

Java makes it easy to put data into a file.

java.io.Writer — Abstract class for writing to character streams

• Implements write(char[],int, int), flush() and close()

System.out — a java.io.PrintStream
java.lang.Object
 java.io.OutputStream
 java.io.FilterOutputStream
 java.io.PrintStream

java.io.FileWriter — Convenience class for writing character files
java.lang.Object
 java.io.Writer
 java.io.OutputStreamWriter
 java.io.FileWriter

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/OutputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/OutputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/FilterOutputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/FilterOutputStream.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Writer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Writer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/OutputStreamWriter.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/OutputStreamWriter.html

Creating a file with a buffered writer:

import java.io.*;

public class Writer {
 public static void main(String[] args){
 try {
 FileWriter out =
 new FileWriter("outfile.txt");
 out.write("In the file the bytes go!\n");
 out.close();
 } catch (java.io.IOException e){
 e.printStackTrace();
 }
 }
}

You can be a little more efficient with BufferedWriter:

java.io.BufferedWriter — More efficient; saves up writes.
java.lang.Object
 java.io.Writer
 java.io.BufferedWriter

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Writer.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Writer.html

Creating a file with a BufferedWriter:

import java.io.*;

public class Writer {
 public static void main(String[] args){
 try {
 BufferedWriter out =
 new BufferedWriter(
 new FileWriter("outfile.txt"));
 out.write("In the file the bytes go!\n");
 out.close();
 } catch (java.io.IOException e){
 e.printStackTrace();
 }
 }
}

PrintWriter gives you additional methods for "printing"

append(char c)

printf()

println()

write(char[] buf)

write(char[] buf,int offset, int len)

write(int c)

write(String s)

write(String s, int offset, int len)

http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintWriter.html

http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintWriter.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintWriter.html

But what if you want to put an object into a file?

First, you need to write the object into the file:

public class NamedLocation {
 String name;
 double x;
 double y;
 . . .
}

We would need to put into the file:

"NamedLocation"
name
x
y

… And we need a way to read it out.

"Serialization" — Literally turns the object into a "series of bytes."

"Serialization" turns objects into byte streams.

object file object

Java gives us serialization "for free."

To get serialization, just implement Serializable:

class NamedLocation implements Serializable {
 String name;
 final double x;
 final double y;
 NamedLocation(String name,double x,double y){
 this.name = name;
 this.x = x;
 this.y = y;
 }
 public String toString(){
 return "NamedLocation[name="+name+" x="+x+" y="+y+"]";

 }

}

You write serialized objects to an

public class SerializationDemo {
 public static void main(String[] args){
 NamedLocation loc = new NamedLocation("MyName",10,20);

 System.out.println("Writing loc="+loc+" to the file...");

 try {
 ObjectOutputStream oos = new ObjectOutputStream(
 new FileOutputStream("myfile.out"));
 oos.writeObject(loc);
 oos.close();
 } catch (java.io.IOException e){
 e.printStackTrace();
 }
 }
}

$ java SerializationDemo
Writing loc=NamedLocation[name=MyName x=10.0 y=20.0] to the file...
$

What's in myfile.out?

$ strings myfile.out
NamedLocation
namet
Ljava/lang/String;xp@$
MyName
$

$ hexdump myfile.out
0000000 ac ed 00 05 73 72 00 0d 4e 61 6d 65 64 4c 6f 63
0000010 61 74 69 6f 6e ee 6f be d3 d8 25 8a 9f 02 00 03
0000020 44 00 01 78 44 00 01 79 4c 00 04 6e 61 6d 65 74
0000030 00 12 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72
0000040 69 6e 67 3b 78 70 40 24 00 00 00 00 00 00 40 34
0000050 00 00 00 00 00 00 74 00 06 4d 79 4e 61 6d 65
000005f
09:31 PM imac2:~/current/cs3773/week8$

$ cat myfile.out
NamedLocation?o???%??DxDyLnametLjava/lang/String;xp@$@4tMyName
$

Read with ObjectInputStream

import java.io.*;

public class ReadingDemo {
 public static void main(String[] args){

 try {
 ObjectInputStream iis = new ObjectInputStream(
 new FileInputStream("myfile.out"));
 Object obj = iis.readObject();
 System.out.println("obj="+obj);
 iis.close();
 } catch (java.io.IOException e){
 e.printStackTrace();
 } catch (java.lang.ClassNotFoundException e){
 e.printStackTrace();
 }
 }
}

$ java ReadingDemo
obj=NamedLocation[name=MyName x=10.0 y=20.0]
$

So what does transient do?

transient prevents variables
from being written when an object is serialized.

Change NamedLocation to this:

class NamedLocation implements Serializable {
 transient String name;
 final double x;
 final double y;
 NamedLocation(String name,double x,double y){
 this.name = name;
 this.x = x;
 this.y = y;
 }
 public String toString(){
 return "NamedLocation[name="+name+" x="+x+" y="+y+"]";
 }
}

… And the name won't be saved.

2/25/08 9:40 PMhttp://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html

Page 9 of 10http://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html

Table 4-2 shows a comparison between the TestObject implementation and the modified version that uses
the transient keyword to prevent selected fields from being written out.

Serialization Comparison

TestObject TestObjectTrans

Save Time 990 ms 110 ms

Load Time 3,680 ms 1,040 ms

File Size 91.7K 1.6K

As you can see, using the transient keyword drastically improves the performance of serializing these
objects:

The time to flatten and save 50 of these objects was reduced by nine times.
The time to load and reconstruct the objects was reduced by four times.
The size of the resulting file was reduced by more than 50 times.

Note that this last figure is especially crucial if you are piping these objects over a network instead of just to
a local file. Making a change like this in an application that uses RMI to move objects could result in a
significant reduction in network traffic.

4.2.3 Analyzing Persistent State

If your software depends on the serialization mechanism, then you need to perform some analysis to
determine what object state information needs to be persistent and what can be recalculated after an object
has been reconstituted.

In the example in Listing 4-8, streaming out a simple object causes several Swing user interface components
to be streamed out as well. While this example might seem artificial, it's actually a simplified version of a
problem encountered by a group of developers who were working on a server program.

When the server process needed to be terminated, the program serialized a set of important objects and
streamed them to a file. When the server was restarted, this enabled it to re-create these objects and begin
running in the same state where it left off. The problem was that it took more than 30 minutes to stream
these objects to disk, which was clearly unacceptable. When the developers analyzed the required persistent
state of their objects, they found many things were being streamed that didn't need to be. In fact, because of
the recursive nature of serialization, almost the entire object heap was being streamed to disk. Careful use of
the transient keyword drastically reduced the time it took to write out their data.

Using volatile to avoid saving data can dramatically
save time & space

Note: If you do not save the transients, you need to initialize them when the object is read!
See http://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html

 private int value;
 private transient String name;
 private Date timeStamp;
 private transient JPanel panel;

http://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPIOPerformance.fm.html

You are now responsible for all of the
Java Reserved Words.

abstract

assert

boolean

break

byte

case

catch

char

class

[const]

continue

default

do

double

else

enum

extends

final

finally

float

for

[goto]

if

implements

import

instanceof

int

interface

long

native

new

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

try

void

volatile

while

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

