Anti-Forensics: Techniques, Detection and Countermeasures

Simson L. Garfinkel Naval Postgraduate School

What is Anti-Forensics?

Computer Forensics: "Scientific Knowledge for collecting, analyzing, and presenting evidence to the courts" (USCERT 2005)

Anti-Forensics: tools and techniques that frustrate forensic tools, investigations and investigators

Goals of Anti-Forensics:

- Avoiding detection
- Disrupting information collection
- Increasing the examiner's time
- Casting doubt on a forensic report or testimony (Liu and Brown, 2006)
- Forcing a tool to reveal its presence
- Subverting the tool using it to attack the examiner or organization
- Leaving no evidence that the AF tool has been run

One traditional Anti-Forensic technique is to overwrite or otherwise destroy data.

Overwriting: Eliminate data or metadata (e.g. disk sanitizers, Microsoft Word metadata "washers," timestamp eliminators.)

Disk Sanitizers; Free Space Sanitizers; File Shredders

• Microsoft Remove Hidden Data Tool; cipher.exe; ccleaner

Metadata Erasers

• Example: timestomp

Hard problem: What should be overwritten?

Anti-Forensic tools can hide data with cryptography or steganography.

- Cryptographic File Systems (EFS, TrueCrypt)
- Encrypted Network Protocols (SSL, SSH, Onion Routing*)
- Program Packers (PECompact, Burneye) & Rootkits
- Steganography
- Data Hiding in File System Structures
 - Slacker Hides data in slack space
 - FragFS Hides in NTFS Master File Table
 - RuneFS Stores data in "bad blocks"
 - KY FS Stores data in directories
 - Data Mule FS Stores in inode reserved space
 - Host Protected Areas & Device Configuration Overlay

*Onion routing also protects from traffic analysis

Anti-Forensics 3: Minimizing the Footprint

Overwriting and Data Hiding are easy to detect.

- Tools leave tell-tale signs; examiners know what to look for.
- Statistical properties are different after data is overwritten or hidden.

AF tools that minimize footprint avoiding leaving traces for later analysis.

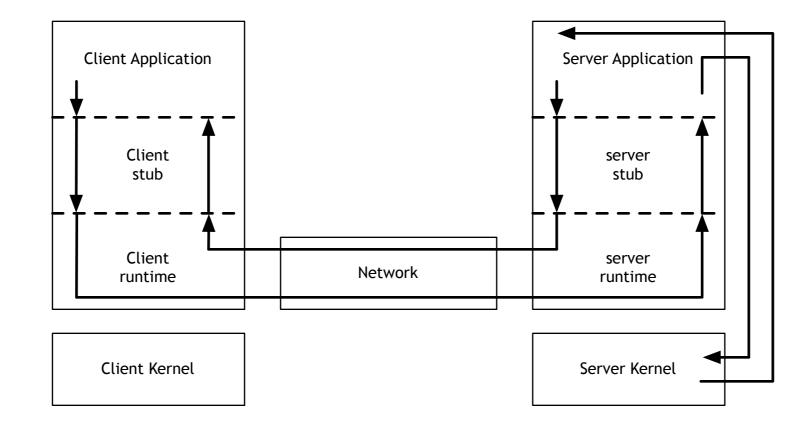
- Memory injection and syscall proxying
- Live CDs, Bootable USB Tokens
- Virtual Machines
- Anonymous Identities and Storage

(don't worry; we have slides for each of these)

Memory Injection and Userland Execve: Running a program without loading the code.

Memory Injection loads code without having the code on the disk.

• **Buffer overflow** exploits — run code supplied as (oversized) input


Userland Execve

- Runs program without using execve()
- Bypasses logging and access control
- Works with code from disk or read from network

Syscall proxying: Running a program without the code!

Syscall Proxying

- Program runs on one computer, syscalls executed on another.
- Program not available for analysis
- May generate a lot of network traffic
- Developed by Core Security; used in Impact

Live CDs, Bootable USB Tokens, Virtual Machines: Running code without leaving a trace.

Most forensic information is left in the file system of the running computer.

These approaches keep the attacker's file system segregated:

- In RAM (CDs & Bootable USB Tokens)
- In the Virtual Machine file (where it can be securely deleted)

Anonymous Identities and Storage: The attacker's data may be anywhere.

Attackers have long made use of anonymous e-mail accounts. Today these accounts are far more powerful.

- Yahoo and GMail both have 2GB of storage
- APIs allow this storage to be used as if it were a file system

Amazon's Elastic Compute Cloud (EC2) and Simple Storage Service (S3) provide high-capability, little-patrolled services to anyone with a credit card

- EC2: 10 ¢/CPU hour (Xen-based virtual machines)
- S3: 10 ¢/GB-Month

With BGP, it's possible to have "anonymous IP addresses."

- 1. Announce BGP route
- 2. Conduct attack
- 3. Withdraw BGP address

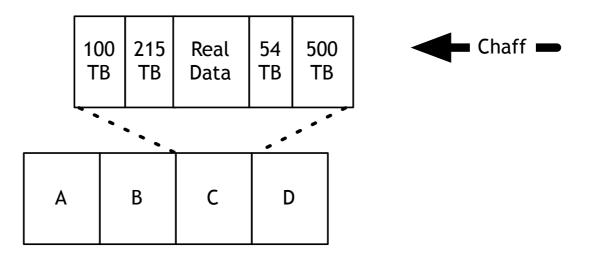
Being used by spammers today (http://www.nanog.org/mtg-0602/pdf/feamster.pdf)

Attacking the Investigator: AF techniques that exploit CFT bugs.

Craft packets to exploit buffer-overflow bugs in network monitoring programs like **tcpdump**, **snort** and **ethereal**.

Create files that cause EnCase to crash.

Successful attacks provide:

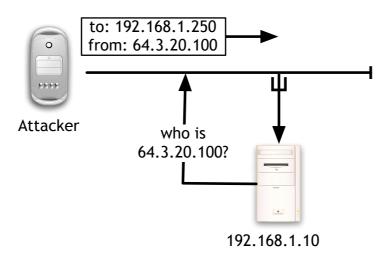

- ➡ Ability to run code on the forensic appliance
- Erase collected evidence
- Break the investigative software
- Leak information about the analyst or the investigation
- Implicate the investigator

Attacking the Investigator: Denial-of-Service Attacks against the CFT

Any CFT resource whose use is determined by input can be overwhelmed.

- Create millions of files or identities
- Overwhelm the logging facility
- Compression bombs 42.zip

The clever adversary will combine this **chaff** with real data, e.g.:


Anti-Forensic Tools can detect Computer Forensic Tools: cat-and-mouse.

SMART (Self-Monitoring, Analysis and Reporting Technology) drives report:

- Total number of power cycles
- Total time hard drive has been on

Network Forensics can be detected with:

- Hosts in "promiscuous" mode responding differently
 - to PINGs.
 - to malformed packets
 - to ARPs
- Hosts responding to traffic not intended to them (MAC vs. IP address)
- Reverse DNS queries for packets sent to unused IP addresses

Countermeasures for Anti-Forensics

Improve the tools — many CFTs are poorly written.

Save data where the attacker can't get at it:

- Log hosts
- CD-Rs

Develop new tools:

- Defeat encrypted file systems with keyloggers.
- Augment network sniffers with traffic analysis

	deliberately overwriting data. Although some shouldn't fall into the wrong hands, like any to
navigation Main Page Recent changes Random page Donations search Go Search	Contents [hide] 1 Traditional anti-forensics 1.1 Overwriting Data and Metdata 1.1.1 Secure Data Deletion 1.1.2 Overwriting Metadata 1.1.3 Preventing Data Creation 1.2 Cryptography, Steganography, and other
toolbox What links here Related changes Upload file Special pages Printable version Permanent link	1.2.1 Encrypted Data 1.2.2 Encrypted Network Protocols 1.2.3 Program Packers 1.2.4 Steganography 1.2.5 Generic Data Hiding 1.3 Detecting Forensic Analysis 2 References 2.1 See also 2.2 Externals Links
	Traditional anti-forensics

article

discussion

Anti-forensic techniques

This can include refusing to run when debugging mode is enabled, refusing to run when running inside of a virtual machine, or deliberately overwriting data. Although some anti-forensic tools have legitimate purposes, such as overwriting sensitive data that shouldn't fall into the wrong hands, like any tool they can be abused.

Contents [hide]

Traditional anti-forensics

1.1 Overwriting Data and Metdata
1.1.1 Secure Data Deletion
1.1.2 Overwriting Metadata
1.1.3 Preventing Data Creation
1.2 Cryptography, Steganography, and other Data Hiding Approaches

protect

history

Anti-forensic techniques try to frustrate forensic investigators and their techniques.

edit

2

delete

Simsong

move

my talk

watch

[edit]

log out

Find out more at the Forensics Wiki:

http://www.forensicswiki.org/

my preferences my watchlist my contributions

In Conclusion:

- Many forensic techniques in use today can be circumvented
- Circumvention tools are widely available
- Common approaches:
 - Overwriting data
 - Encrypting data
 - Anonymous identities & resources
 - Exploit bugs in computer forensic tools to hide
- New approaches:
 - Minimizing or eliminating memory footprints
 - Virtual machines
 - Direct attacks against computer forensic tools