Zero-Click Security

Simson L. Garfinkel
Center for Research on Computation and Society
Harvard University
March 6, 2006

The Tandy 200

Purchased used from a computer store in August 1998:

HCI-SEC: The merging of security and usability

2003: CRA "Grand Challenge"

U shilling a

2004: IEEE S&P Special Issue

2005: PITAC "priority"

2005: Cranor & Garfinkel Book

Aligning Security and Usability:

Zero-Click,

not

Zero-Visibility

Frequently requires rethinking and redesigning.

Hidden information is a widespread Usability/Security problem today.

Tandy 200

USB drive

Hard Drive

PDF file

There are roughly a dozen documented cases of people purchasing old PCs and finding sensitive data.

- A woman in Pahrump, NV bought a used PC with pharmacy records [Markoff 97]
- Pennsylvania sold PCs with "thousands of files" on state employees [Villano 02]
- Paul McCartney's bank records sold by his bank [Leyden 04]
- O&O Software GmbH 100 drives.[O&O 04]
- O&O Software GmbH 200 drives.[O&O 05]

None of these are scientifically rigorous studies.

This is a huge problem: 210 million drives were retired in 2005!

There is a significant market for used disk drives.

Retired drives are:

- Re-used within organizations
- Given to charities
- Sold at auction

About 1000 used drives/day sold on eBay.

In 1998 I decided to start purchasing hard drives on the secondary market.

2001: 100 drives

2005: 500 drives

2003: 150 drives

2006: 950 drives

[Garfinkel & Shelat 03] established the scale of the problem.

With 150 hard drives purchased on eBay we found:

- Thousands of credit card numbers
- Financial records
- Medical information
- Trade secrets
- Highly personal information

We did not determine why the data had been left behind.

There are three primary techniques for assuring data confidentiality.

- 1. Physical security.
- 2. Logical access controls. (operating system)
- 3. Cryptography (disk & link)

These techniques don't work when a disk is thrown out or repurposed.

- 3. Cryptography (disk & link)
- 4. (Physical destruction)

Most people don't encrypt their data.

FORMAT C: doesn't erase the hard drive.

```
C:\>format c:
The type of the file system is NTFS.
WARNING, ALL DATA ON NON-REMOVABLE DISK
DRIVE C: WILL BE LOST!
Proceed with Format (Y/N)?
```

FORMAT just writes a new root directory.

DEL doesn't delete files

```
C:\WINDOWS\system32\cmd.exe
C:\tmp>dir
Volume in drive C has no label.
Volume Serial Number is 1410-FC4A
 Directory of C:\tmp
10/15/2004
             09:20 PM
                            <DIR>
             09:20 PM
                           <DIR>
10/15/2004
10/03/2004
             11:34 AM
                                27,262,976 big_secret.txt
                 1 File(s)
                                 27,262,976 bytes
                 2 Dir(s)
                              4,202,078,208 bytes free
C:\tmp>del big_secret.txt
C:\tmp>dir
Volume in drive C has no label.
Volume Serial Number is 1410-FC4A
 Directory of C:\tmp
10/15/2004
             09:22 PM
                            <DIR>
             09:22 PM
10/15/2004
                            <DIR>
                 Ø File(s)
                                            0 bytes
                              4,229,296,128 bytes free
                 2 Dir(s)
C:\tmp>_
```

DEL simply removes the file's name from the directory.

Drives arrive by UPS and USPS

Drives are "imaged" with aimage.

Images stored on external firewire drives

Example: Disk #70: IBM-DALA-3540/81B70E32

Purchased for \$5 from a Mass retail store on eBay

Copied the data off: 541MB

Initial analysis:

Total disk sectors: 1,057,392

Total non-zero sectors: 989,514

Total files: 3

The files:

drwxrwxrwx	0 root	0 Dec 31	1979 ./
-r-xr-xr-x	0 root	222390 May 11	1998 IO.SYS
-r-xr-xr-x	0 root	9 May 11	1998 MSDOS.SYS
-rwxrwxrwx	0 root	93880 May 11	1998 COMMAND.COM

Clearly, this disk had been FORMATed...

```
C:\\MINDOWS\system32\cmd.exe - format c:

C:\\format c:
The type of the file system is NTFS.

WARNING, ALL DATA ON NON-REMOUABLE DISK
DRIVE C: WILL BE LOST!

Proceed with Format (Y/N)?
```

Windows FORMAT doesn't erase the disk... FORMAT just writes a new root directory.

UNIX "strings" reveals the disk's previous contents...

Insert diskette for drive
and press any key when ready
Your program caused a divide overflow error.
If the problem persists, contact your program vendor.
Windows has disabled direct disk access to protect your lo

The system has been halted. Press Ctrl+Alt+Del to restart You started your computer with a version of MS-DOS incompared version of Windows. Insert a Startup diskette matching this

To override this protection, see the LOCK /? command for m

OEMString = "NCR 14 inch Analog Color Display Enchanced SV Graphics Mode: 640 x 480 at 72Hz vertical refresh.

XResolution = 640

YResolution = 480

VerticalRefresh = 72

70.img con't...

ling the Trial Edition

IBM AntiVirus Trial Edition is a full-function but time-li evaluation version of the IBM AntiVirus Desktop Edition promay have received the Trial Edition on a promotional CD-RC single-file installation program over a network. The Trial is available in seven national languages, and each language provided on a separate CC-ROM or as a separa

EAS.STCm

EET.STC

ELR.STCq

ELS.STC

70.img con't...

MAB-DEDUCTIBLE

MAB-MOOP

MAB-MOOP-DED

METHIMAZOLE

INSULIN (HUMAN)

COUMARIN ANTICOAGULANTS

CARBAMATE DERIVATIVES

AMANTADINE

MANNITOL

MAPROTILINE

CARBAMAZEPINE

CHLORPHENESIN CARBAMATE

ETHINAMATE

FORMALDEHYDE

MAFENIDE ACETATE

Data left behind in computer systems is a serious social problem.

Large numbers of drives are being sold and given away.

Many of them appear to have hidden confidential information.

Computer Science is morally obligated to solve this problem!

To be effective, a solution must address the root cause

Usability Problem:

- Effective audit of information present on drives.
- Make DEL and FORMAT actually remove data.
 [Bauer & Priyantha 01]
- Provide alternative strategies for data recovery.

Education Problem:

- Add training to the interface.
 [Whitten 04]
- Regulatory requirements.
 [FTC 05, SEC 05]
- Legal liability.

To find that cause, I looked on the drives and contacted the data subjects.

Data on a hard drive is arranged in sectors.

The white sectors indicate directories and files that are visible to the user.

Data on a hard drive is arranged in sectors.

The brown sectors indicate files that were deleted.

Data on a hard drive is arranged in sectors.

The green sectors indicate sectors that were never used (or that were wiped clean).

Stack the disk sectors:

Zero Blocks

Deleted Files

Files

NO DATA: The disk is factory fresh.

FORMATTED: The disk has an empty file system

AFTER OS INSTALL: Temp. files have been deleted

AFTER A YEAR OF SERVICE

DISK NEARLY FULL!

FORMAT C:\ (to sell the computer.)

We can use forensics to reconstruct motivations:

Drives I collected 1998-2003 are dominated by failed sanitization attempts...

..but training failures are also important.

But what really happened?

I needed to contact the original drive owners.

The Remembrance of Data Passed Traceback Study. [Garfinkel 05]

- 1. Find data on hard drive
- 2. Determine the owner
- 3. Get contact information for organization
- 4. Find the right person *inside* the organization
- 5. Set up interviews
- 6. Follow guidelines for human subjects work

```
06/19/1999 /:dir216/Four H Resume.doc
03/31/1999 /:dir216/U.M. Markets & Society.doc
08/27/1999 /:dir270/Resume-Deb.doc
03/31/1999 /:dir270/Deb-Marymount Letter.doc
03/31/1999 /:dir270/Links App. Ltr..doc
08/27/1999 /:dir270/Resume=Marymount U..doc
03/31/1999 /:dir270/NCR App. Ltr..doc
03/31/1999 /:dir270/Admissions counselor, NCR.doc
08/27/1999 /:dir270/Resume, Deb.doc
03/31/1999 /:dir270/UMUC App. Ltr..doc
03/31/1999 /:dir270/Ed. Coordinator Ltr..doc
03/31/1999 /:dir270/American College ...doc
04/01/1999 /:dir270/Am. U. Admin. Dir..doc
04/05/1999 /:dir270/IR Unknown Lab.doc
04/06/1999 /:dir270/Admit Slip for Modernism.doc
04/07/1999 /:dir270/Your Honor.doc
```

This was a lot harder than I thought it would be.

Ultimately, I contacted 20 organizations between April 2003 and April 2005.

The leading cause: betrayed trust.

Trust Failure: 5 cases

- ✓ Home computer; woman's son took to "PC Recycle"
- ✓ Community college; no procedures in place
- Church in South Dakota; administrator "kind of crazy"
- Auto dealership; consultant sold drives he "upgraded"
- ✓ Home computer, financial records; same consultant

This specific failure wasn't considered in [GS 03]; it was the most common failure.

Second leading cause: Poor training and supervision

Trust Failure: 5 cases

Lack of Training: 3 cases

- ✓ California electronic manufacturer
- Supermarket credit-card processing terminal
- ✓ ATM machine from a Chicago bank

Alignment between the interface and the underlying representation would overcome this problem.

Sometimes the data custodians just don't care.

Trust Failure: 5 cases

Lack of Training: 3 cases

Lack of Concern: 2 cases

- Bankrupt Internet software developer
- ✓ Layoffs at a computer magazine

Regulation on resellers might have prevented these cases.

In seven cases, no cause could be determined.

Trust Failure: 5 cases

Lack of Training: 3 cases

Lack of Concern: 2 cases

Unknown Reason: 7 cases

- ✗ Bankrupt biotech startup
- ✗ Another major electronics manufacturer
- Primary school principal's office
- ✗ Mail order pharmacy
- ✗ Major telecommunications provider
- Minnesota food company
- **✗** State Corporation Commission

Regulation might have helped here, too.

I have identified five distinct patterns for addressing the sanitization problem.

Document Files, Applications, and Media

Naming these patterns is the first step to deployment.

The power of these patterns is that they apply equally well to other sanitization problems.

Document Files

Web Browsers

Information is left in document files.

- The *New York Times* published a **PDF file** containing the names of Iranians who helped with the 1953 coup. [Young 00]
- US DoJ published a PDF file "diversity report" containing embarrassing redacted information. [Poulsen 03]
- SCO gave a Microsoft Word file to journalists that revealed its Linux legal strategy. [Shankland 04]
- Multinational forces in Iraq published classified information about insurgency methods.

Acrobat is literally a threat to national security.

NSA recently published a "how to sanitize" guide.

Microsoft has tried to solve this problem with its "Remove Hidden Data" tool.

Microsoft has tried to solve this problem with its "Remove Hidden Data" tool.

Microsoft has tried to solve this problem with its "Remove Hidden Data" tool.

My patterns predict that Microsoft's tool will fail.

The information leaks because two patterns were not implemented.

Document Files, Applications, and Media

Current agenda: getting vendors to implement these patterns.

The techniques developed for [Garfinkel '05] are different than traditional forensics techniques.

Traditional forensics tools:

- Interactive user interface.
- Recovery of "deleted" files.
- Generation of "investigative reports" for courtroom use.
- Focus on one or a few disks.

In [Garfinkel '05], there were hundreds of disks to analyze.

Today's tools choke when confronted with thousands of disks.

- Has this drive been previously imaged?
- Which drives belong to my target?
- Do any drives belong to my target's associates?
- Where should I start?

Today's tools are for criminal investiations. Increasingly, we need tools for intelligence analysis.

Intelligence objectives can be furthered by correlating information from multiple drives.

- Where any drives were used by the same organization?
- What names/places/email addresses are in common?
- Which drives were used in a place or at a time of interest?

Example problem: Who owned this disk drive?

Approach #1: Find Microsoft Word files; determine owner.

- Needs forensic skill.
- Requires complete documents.

Approach #2: Compute a histogram of all email addresses.

- Works with any file system.
- Works with incomplete data.

The email histogram works even if you can't find any files.

The email histogram approach works quite well.

Drive #51: Top email addresses (sanitized)

Count	Address(es)
8133	ALICE@DOMAIN1.com
3504	BOB@DOMAIN1.com
2956	ALICE@mail.adhost.com
2108	JobInfo@alumni-gsb.stanford.edu
1579	CLARE@aol.com
1206	DON317@earthlink.net
1118	ERIC@DOMAIN1.com
1030	GABBY10@aol.com
989	HAROLD@HAROLD.com
960	ISHMAEL@JACK.wolfe.net
947	KIM@prodigy.net
845	ISHMAEL-list@rcia.com
802	JACK@nwlink.com
790	LEN@wolfenet.com
763	natcom-list@rcia.com

(Can we automatically sanitize this kind of information?)

Cross-Drive Forensics systematizes this approach.

"First Order Cross-Drive Forensics" analyzes each drive with a filter.

Drives with high response warrant further attention.

Example: The Credit Card Number Detector.

The CCN detector scans bulk data for ASCII patterns that look like credit card numbers.

CCNs are found in certain typographical patterns.

- CCNs are issued with well-known prefixes.
- CCNs follow the Credit Card Validation algorithm.
- Certain numeric patterns are unlikely.
 (e.g. 4454-4766-7667-6672)

CCN detector: written in flex and C++

Scan of disk #105: (642MB)

Test	# pass
typographic pattern	3857
known prefixes	90
CCV1	43
numeric histogram	38

Sample output:

'CHASE NA 5422-4128-3008-3685	pos=13152133
'DISCOVER 6011-0052-8056-4504	pos=13152440
.'GE CARD 4055-9000-0378-1959	pos=13152589
BANK ONE 4332-2213-0038-0832	pos=13152740
.'NORWEST 4829-0000-4102-9233	pos=13153182
'SNB CARD 5419-7213-0101-3624	pos=13153332

With a "credit card number detector," we can rapidly identify drives with leaked consumer information.

Second-order analysis uses correlation techniques to identify drives of interest.

Cross Drive Correlation

Second-order analysis uses correlation techniques to identify drives of interest.

Cross Drive Correlation

In this example, three pairs of drive appear to be correlated.

Let's look at drives #171 and #172 again.

Cross-drive analysis tells us that #171 and #172 are from the same medical center.

Drive #171: Development drive

- Has source code.
- 346 CCNS; 81 unique.

Drive #172: Production system.

- 31,348 CCNS; 11,609 unique
- Oracle database (hard to reconstruct).

The programmers used live data to test their system.

Second-order analysis:

<u>Identifiers:</u>

- CCNs
- Email addresses
- Message-IDs
- sector hashes

Possible Uses:

- Identifying new social networks
- Testing for inclusion in an existing network.
- Measuring dissemination of information

Reactions to this research

Legislative: "Fair and Accurate Credit Transactions Act of 2003"

Technical: Modifications to MacOS & Windows

Looking Forwards

Research Agenda:

- Fix security & privacy in current systems.
- Create clean new systems.
- Use forensic tools to make privacy arguments.
- Make security zero-click.

Pervasive HCI-SEC:

- Use signatures to fight phishing.
- Replace PKI with Key Continuity Management (KCM).
- Secure, privacy-aware data replication.

Questions?