
WEB OS DECEMBER 2005n WW18

WEB OS DECEMBER 2005n WW 19

I l l u s t r a t i o n b y S t e v e n A d l e r

Some call it the second coming of the dot-coms. The
blogosphere is buzzing, and new buzzwords are minted daily
in the press: “Web 2.0,” “Weblications,” and “WebOS”—
the Web-based Operating System. Email, the Internet’s first
killer app, has now largely migrated from the desktop to
the Web. Instant messaging, word processing, and even
spreadsheets aren’t far behind. Something is happening
here, as Bob Dylan once sang, but do we know what it is?

B Y A A R O N W E I S S

WEBOS: SAY
GOODBYE

to DESKTOP
APPLICATIONS

computer and the whole global network?

Déjà Vu All Over Again
To some veterans of the technology industry,
the excitement bubbling over WebOS sounds
more than a little familiar. Flashback to the
’70s, when central processing units were
housed in their own rooms, and computer
scientists and grad students huddled around
“dumb terminals” to write code in Fortran.
Dumb terminals were simply monitors and
keyboards, relying on processing power else-
where (the next room, usually), since it was
not feasible to equip each workstation with
its own processing unit. Even by the early
’80s, as the personal computer revolution
was just beginning to catch fire, dumb termi-
nals ruled, although by then young computer
scientists had the luxury of their Sony
Walkman to keep them company.

Historians—that is, those of us older than
20—will also remember the short-lived “thin
client” push during the dot-com boom of the
mid-’90s. Espoused most publicly by Oracle
chief Larry Ellison, thin clients represented a
vision of the WebOS to come. Selling cheap
hardware boxes that relied on Internet con-
nectivity for most of their productivity was
hailed as the future of personal computing.
But the vision was much too early. Thin
client advocates made the mistake of
exchanging power for connectivity. Thin
client machines themselves were underpow-
ered and kind of fey, particularly in a market
where full-muscled PC hardware was rapidly
declining in price. More importantly, thin
clients weren’t mobile, just when mobile com-
puting was taking off. And the Internet itself
did not reach a critical mass of ubiquity near-
ly as quickly as thin client investors had
assumed. In other words, almost everything
that could go wrong with the thin client ini-
tiative did go wrong. Believers in the WebOS
see the failed thin client movement not as
philosophically misguided, necessarily, but ill-
timed and poorly executed.

WEB OS DECEMBER 2005n WW20

The Web is making an evolutionary leap from
a document-delivery system to an application
framework. The new Web has the potential to
pull the rug out from under the desktop,
along with the applications and vendors who
have built their fortunes there. Of course, not
everyone is convinced that evolution equals
revolution. Critics say the WebOS is more hot
air than hot news. But WebOS evangelists
believe they know exactly what’s happening
here—and that it has already begun.

The WebOS Vision
The entirety of WebOS isn’t a real thing
(yet), nor is it a specific thing (yet). WebOS
is a concept which lays down a roadmap—
a gauntlet, even—for how a convergence of
software and the Web may up-end the way
we compute and disrupt entrenched market
forces. The history of personal computing
has so far been dominated by one-box
solutions—a physical container holding all
the software and hardware you need to run
your applications. A desktop operating sys-
tem like Microsoft Windows or Apple’s OS
X provides a series of interfaces between
the hardware inside the box and the soft-
ware you run—your word processors,
graphic design tools, Web browser, etc. The
desktop operating system expects most of
its resources to be located inside that
box—the graphics card to output video,
the hard disks to store data, and so on.

The Internet, and particularly the Web,
exploded the concept of computers as iso-
lated islands. We are now connected and
interconnected. Why, then, limit the oper-
ating system to one box? The WebOS
vision explodes the operating system itself,
outside the physical bounds of a box, and
across the Internet. Why limit file storage
to local disks? Why limit application logic
to local processing on your CPU? Why
limit access to documents to just one per-
son at a time? In other words, why not
erase the boundaries between your local

So it’s not so surprising that in 2005, col-
lege students queued up at workstations to
log into their Web-based email while tethered
to their iPods might not look like such a rev-
olution, especially to those who have been
around the block. In fact, it could almost
appear that we’ve come full circle—after
empowering ourselves for 20 years with per-
sonal computers that packed several times the
power of a ’70s mainframe into a small box,
we’re finally back to dumb terminals?

Not exactly. Remote computing in the
dumb terminal era was born of necessity.
Today’s WebOS revolution is being driven,
perhaps more than anything else, by mo-
bility—particularly among today’s profes-
sional workers and youth culture. By 2005,
laptop computer sales outstripped desktop
PC sales for the first time in history, with
over 53 percent of the total PC market. In
the US, broadband penetration exceeds 50
percent at home and 70 percent at the
workplace—numbers which are even higher
in urban areas, and significantly higher—
over 80 percent—in smaller technologically-
advanced countries such as South Korea
and Japan.

With urban and suburban populations
increasingly saturated with computing and
connectivity, the cord has been cut between
an individual and a particular machine.
Computing surrounds us, and our techno-
logical lives are rapidly becoming abstracted
from hardware, with computers themselves
simply becoming access points to our online
lives. In light of this, WebOS seems
inevitable.

Be Here Now
Inevitable? It’s already here. It is currently
fashionable to proclaim Google’s Gmail the
pioneer of WebOS: the service that brought
weblications to the masses, the iPod of Web
2.0, if you will. Putting aside the buzzword
overkill for a moment, application-like
behavior on the Web has been brewing and
evolving for at least ten years. One of the
most fascinating aspects of the WebOS story
is how it’s come along without anybody real-
ly planning for it.

The Web, and its underlying protocols
HTTP and HTML, were designed as a docu-
ment delivery system. Hyperlinks were the
big twist that had everyone excited about the
Web in the early ’90s. HTTP transports docu-
ments across the network and HTML
describes how to render them on the screen.
By today’s standards, the system seems
almost quaint.

It didn’t take long for enterprising engi-
neers, professional and hobbyist alike, to fig-
ure out that the Web could do more than
deliver static documents. A technology called
CGI—the Common Gateway Interface—was
cobbled together for Web servers, which let
them run programs to create results. Now,
rather than simply ask a server to “give me
the document called XYZ,” Web users could
ask for data to be generated on demand.
“Give me a climate report for every Tuesday
last year”—and the server could launch a
process to figure out the answer, and deliver
that answer to the browser. They called them
dynamic Web pages—pages put together
using a wide range of resources, from queries

WEB OS DECEMBER 2005n WW 21

It didn’t take long for enterprising engineers,
professional and hobbyist alike, to figure out that
THE WEB COULD DO MORE THAN DELIVER
STATIC DOCUMENTS.

to databases to internal calculations and any-
thing else to which the server has access.

CGI programs became increasingly sophis-
ticated, and eventually spawned a slew of
server-side programming languages designed
to generate Web page results triggered by user
requests. We’re barely past 1996 at this point
and the Web has already moved beyond sim-
ple document delivery.

Browsers were very limited front-ends,
however, since they didn’t offer the user a
whole lot of controls other than hyperlinks
and some form fields. Also, browsers were
entirely “dumb”—they did no processing of
their own. This changed with the introduc-
tion of JavaScript, which added client-side
programming to the browser. Now, Web
pages could contain code to tell the browser
to do stuff—calculate values, pop up win-
dows, make sounds. Web pages could deliver
miniature applications to the browser, rather
than simply text documents.

Technologies like CGI and JavaScript were
really introduced in the field—meaning,
rather than be coming from a top-down, cen-
tralized planning body, they first appeared in
practice. People, and businesses, invented
them because they needed them. The official
standards body for the Web—the World
Wide Web Consortium, or W3C—often
found itself playing catch-up. The Web was
being extended through sheer force of will,
rather than by design.

So, are weblications new? Even five years
ago you could visit MapQuest and generate
custom driving directions. Was that a webli-
cation? It was, which begs the question—
what’s so new right now? Why the
buzzwords? Why this article? The answer is
that a great wall has collapsed.

Imagine a Web page asks a Web server to
calculate, say, a metric-to-imperial conver-
sion. Assuming the Web server was pro-
grammed to handle this request, no problem.
Except that the server can’t return just the
answer—say, 42.7. What would the browser
do with that? The browser only knows how
to receive Web pages. So, the server has to
deliver a whole Web page containing the
results.

The process is like negotiating when to
meet your friend tonight for dinner, written
out entirely in longhand. “Dear Sidney,” you
begin, and make your request, complete with
dated greeting and proper signature. Sidney
replies with a formal letter. You reply with
another formal letter. And so on. There are
inevitably delays in transporting your letters
back and forth. The whole process is slow
and cumbersome. Now transplant this
exchange to text messaging on a cell phone.
“7 ok?” “can’t, 8?” “ok! Cya!” Done.

What has collapsed is a limitation—one
that kept client and server communicating
only in formal, verbose, round-trip
exchanges. Now, client and server can
exchange chatter, moving tidbits of data back
and forth, reacting to them in real-time. This
highly technical but extremely influential shift
is called asynchronous communication. To
use a popular example, say you are register-
ing for a site and you are asked to choose a
login name. Typically you would fill out the
form, click some kind of “submit” button,
and await a response. Should your chosen
name be unavailable, the server would deliver
a new page asking you to try again.

Using asynchronous communication, the
registration form can instantly validate your
login name against the server. No need to

WEB OS DECEMBER 2005n WW22

WHAT HAS COLLAPSED IS A LIMITATION—one that kept client and
server communicating only in formal, verbose, round-trip exchanges.

round trip the whole page. If the server says
no-go, the browser can tell you so immediate-
ly. It might even suggest available alternatives.
In other words, a Web page can now behave
just like desktop application, rather than like
two far-flung correspondents exchanging let-
ters. But where the desktop executes both the
front and back end of a program, a Web
application executes the front end on the
client, and the back end on the server, wher-
ever that may be.

Where did Web-based asynchronous com-
munication come from? Microsoft, actually.
They introduced the technology in Internet
Explorer 5, with a programming feature
called XMLHTTP built on their ActiveX
technology. Developers at the open-source
Mozilla organization created their own emu-
lation of Microsoft’s new object, known as
the XMLHttpRequest Object. To fully lever-
age the technology and build desktop-like
Web-based applications, XMLHttpRequest is
used in conjunction with other pre-existing
Web development technologies. Together, the
constellation has come to be known infor-
mally as AJAX—Asynchronous JavaScript
and XML.

Like CGI and JavaScript before it, AJAX
has not come down from an official stan-
dards body. Indeed, some Web developers
reject AJAX on the basis that neither it nor
the XMLHttpRequest object is standard—
they have not been approved by the W3C.
Yet, AJAX development is proliferating in the
field, powering many of the Web-based appli-
cations that are behind the WebOS buzz.

AJAX or Not
GMail is an AJAX Web application. So are
Google Maps and Google Suggest. Google’s
endorsement of AJAX development is good
enough for many developers, and may solidi-
fy it as a de facto standard, until official stan-
dards bodies catch up yet again. But whether
or not AJAX technology is standardized mat-
ters little—the breakthrough for WebOS is

not the specific cluster of technologies in
vogue now, but that they are being used at
all. Clearly, asynchronous communication on
the Web is here to stay, regardless of which
technologies are used. And that means Web-
based applications are here now, maturing
and evolving every day.

When Gmail was introduced, it took a
swipe at Yahoo and Hotmail, the incumbent
Web-based email providers. Gmail offered
both an increase in storage space and an
advanced interface. Yahoo and Hotmail are
now about to strike back, with impending
launches of their own AJAX-based email.
Yahoo is generating major buzz with its
soon-to-be-released WebOS email interface,
which looks and behaves very much like
Microsoft Outlook on the desktop. Users can
drag-and-drop messages into folders, enjoy
address-book-based auto-completion when
composing new messages, view multiple mes-
sages in a tabbed layout, and sort and search
seemingly on the fly.

While competition among the big boys
legitimizes and popularizes Web-based appli-
cations, many smaller developers are working
in the trenches to expand their scope well
beyond email.

Don’t have an instant-messaging client
handy? Visit meebo.com, an AJAX-based IM
interface for the Web. With just a browser
you can sign on to your AOL, Yahoo, GTalk,
or MSN IM, and chat with your buddies
through an interface virtually identical to
desktop IM.

The hottest area for Web-based applica-
tion development is office productivity. Want
to write, save, and access documents from
anywhere? gOffice features an online word
processor. As does Writely. Or SynchroEdit,
with which several people can collaborate
simultaneously online. Or the FCKEditor, an
open source Web-based word processor
developers can integrate into any site. All fea-
ture Word-like composition screens, with on-
the-fly formatting tools like styles, fonts,

WEB OS DECEMBER 2005n WW 23

alignment, and many of the goodies we’ve
been using to format documents on the desk-
top for two decades.

Then there’s Kiko, a Web-based shareable
calendar that can read iCal/Outlook formats,
generate RSS data, and is of course accessible
globally.

Or, for a non-AJAX twist on a Web-based
application, ThinkFree Office relies on Java
to deliver a Web-based Office suite, with
word processing, presentation, and spread-
sheet applications.

Smaller applications, too numerous to
list, are filling out the WebOS at the edges—
bookmark managers, HTML editors, and
map generators. Experimental projects like
Openomy, an online filesystem, are laying
the groundwork for less visible WebOS
foundations.

Even the red hot online music market is
moving to the Web. Apple’s iTunes proved
that selling legitimate digital music online is a
viable, profitable business model. But iTunes
works by downloading music to the buyer,
who listens to it offline—from their desktop,
iPod, or other audio device. In contrast, com-
petitors Napster, RealNetworks, and America
Online have all announced plans to offer
Web-based music services. Customers will
stream their music directly from the vendors’
sites, in effect creating an iTunes-on-the-Web.

Regardless of which technologies they use,
developers are rushing headlong into Web-
based application development. Some are
undoubtedly motivated by the WebOS’ wide-
open possibilities. Others, like gold-rushers
before them, are hoping to establish a
foothold in a burgeoning market.

An Eruption of Disruption
On the desktop, applications run on top of
the operating system. But Web-based applica-
tions run on top of the browser. Doesn’t that
make the browser an operating system? In a
way, it does—which is exactly the WebOS
vision. Of course, today’s Web browsers are

still bound to some extent to their underlying
operating system. Internet Explorer is
designed to function in a Windows environ-
ment. But as cross-platform browsers like
Firefox proliferate, reliance on the operating
system becomes less important. The operating
system is increasingly relegated to handling
low-level functions, like writing data to the
hard disk.

The problem for operating system vendors
like Microsoft and Apple is that nobody buys
an operating system because of how it writes
data to the hard disk. Throughout the era of
the personal computer, the operating system
has defined the identity of a system. Even
though we ultimately use a computer for its
applications, Apple has enjoyed great success
creating customer loyalty through the design
and personality of its operating system.
Microsoft, of course, has achieved a domi-
nant position in the industry through wide-
spread adoption of Windows.

So what if you didn’t need Windows?
What if you managed your email through
your browser, wrote your reports and docu-
ments through a browser-based word proces-
sor, saved your data on remote servers,
played games through Web sites—what
would you need your operating system for?

Most everyone agrees this vision of
WebOS is years away. For some, it is a vision
of utopia—the ultimate technological libera-
tion. To others, WebOS is a vision of oppor-
tunity, the chance to generate new revenues in
markets where old incumbents have reigned.
And to those incumbents, the WebOS vision
could be something of a nightmare.

For Microsoft in particular, WebOS pre-
sents a potential threat to the company’s very
core. In 2000 Microsoft unveiled their much-
heralded “dot Net” strategy, devised in part to
anticipate the possible rise of a non-
Microsoft-based WebOS. Dot Net was a
broad tent encompassing a variety of tech-
nologies, ultimately aiming to capture the net-
work-based operating system before it could

WEB OS DECEMBER 2005n WW24

mature elsewhere. While dot Net still exists
today, it has been absorbed into the array of
tools available to Windows and Web develop-
ers. It did not define Web development. The
Internet proved larger than Microsoft’s strate-
gy. And although today’s Web-based applica-
tions based on AJAX techniques evolved from
Microsoft’s XMLHTTP innovation, the tools
now exist in the wild, open and free from any
one company’s control.

WebOS presents a challenge to a market
leader like Microsoft. How do they aggres-
sively position themselves in an emerging
market without cannibalizing their current
business models? Microsoft Office, for exam-
ple, currently enjoys an over 90-percent mar-
ket share in the office-suite market. Giving
away free access to Web-based productivity
tools could undermine that business. But
allowing others to enter the Web application
space and establish their own tools could be
even worse.

To address the challenge, Microsoft
announced in November plans to release
“Windows Live” and “Office Live”—Web-
based platforms aimed at consumers and
small businesses. Both are said to provide
some of the functions for which users typical-
ly turn to their desktop: email, instant mes-
saging, and word processing. Plans for a
tiered pricing structure include advertising-
supported free access, a sign that Microsoft is
being pushed into new and unfamiliar territo-
ry—a business model led by Google.

To current and future Microsoft competi-
tors, the WebOS is all upside. Google is keen-
ly aware of this, and is proving it with their
avalanche of Web-based product releases.

Microsoft is clearly keen to battle back, but
risks upsetting their established apple cart.
Which is precisely why WebOS is being
described as a potentially disruptive technolo-
gy. Perhaps disruptive is too polite a word.
WebOS could be an earthquake.

Is this the big one? Not everyone thinks
so.

Whoa There
Critics of both Web-based applications and
AJAX techniques in particular suggest that
enthusiasts might be getting a little ahead of
themselves.

Privacy advocates, for example, wonder
how comfortable people would be turning
over their work for storage on remote
servers. Would you trust third parties to
securely store your documents, spreadsheets,
and other files? Yet, WebOS advocates argue
that competition among Web-based applica-
tion vendors will lead them to provide better
backup and security than you have at home
(and maybe the office). And besides, they say,
millions have flocked to Web-based email,
despite these very same concerns.

Another concern raised is whether Web-
based applications are really a Trojan horse
for transforming software licensing from
product to service. For years, major software
vendors have openly dabbled with the idea of
shifting the software business to a rental or
subscription model, guaranteeing ongoing
revenues and eliminating the need to force
and cajole users into upgrades they may not
be motivated to buy. Whether or not today’s
WebOS developers buy into this, their efforts
could grease the path toward software sub-

WEB OS DECEMBER 2005n WW 25

major software vendors have long dabbled with
the idea of SHIFTING THE SOFTWARE BUSINESS TO
A RENTAL OR SUBSCRIPTION MODEL, which
WebOS facilitates.

scriptions. The counterargument suggests that
WebOS will increase competition, letting the
marketplace decide. All WebOS applications
would be on equal footing, because the tradi-
tional obstacles of distribution are eliminat-
ed—meaning, in theory, more players, and
more licensing models to choose from.

WebOS applications, though, could be
said to remove control from the end user.
Some see this as offering positives and nega-
tives. On the positive side, because WebOS
applications are essentially vertical, they can
be kept always up to date, for all users every-
where at once. If the vendor fixes a bug in a
WebOS application, everyone benefits
instantly. Everyone uses the same version at
the same time. This could lead to reduced
costs in product support and end-user fees.
But critics warn, this also puts complete con-
trol in the vendor’s hands at all times. If you
don’t renew your subscription, do you lose
access to your data? What if you did renew,
but the payment was incorrectly processed?
What if the vendor decides to eliminate a fea-
ture you relied upon for the product’s value?
A desktop application isn’t going to slide out
from under you. You are free to buy and use
a copy of Microsoft Word 97 for all eternity,
and it will never change.

Those with a fresh memory for the failure
of thin clients might ask, isn’t it still too
soon? Broadband penetration, especially in
the US, is far from universal, and the broad-
band we do have isn’t that great. It’s certainly
no substitute for the responsiveness of a
three-gigahertz PC on your lap.

Numerous critics also say that AJAX and
related techniques in vogue today for building
Web applications aren’t good enough. They
aren’t standardized, they rely on browser
gimmickry, stretching browsers—and the
Web in general—way beyond what they were
designed for. Put another way, today’s Web
applications are pushing our current tech-
nologies beyond their tolerances, with weak
tools nowhere near as robust or mature as

those available for developing desktop appli-
cations. HTML, they say, is a cruddy inter-
face language, and AJAX just a duct-tape
approach to cramming a motley collection of
tools together.

Ends and Means
But WebOS advocates might say, “Who
cares?” WebOS isn’t about today’s tools—
AJAX or Java or whatever. Those will
mature. They will become standardized. It
isn’t about today’s slow and spotty broad-
band. What matters about WebOS is not the
tech used to get there, but why people want
to use WebOS software.

It’s already been proved that users love the
results. Web-based email, after all, could be
described as technologically inferior to desk-
top email on many levels. End users don’t
seem to care. Because the value we’re looking
for today, in a mobile, connected world, is in
a service’s ubiquity—not its underlying frame-
work, or whether the code is elegant, or
based on standards. Simply that the service is
here, there, and everywhere.

End users, it seems, are willing to put up
with all the other deficiencies. At least, for
email. But is email just a special case, or a
divining rod pointing us toward the promise
of WebOS?

You don’t have to throw a rock very far to
hit an extreme opinion somewhere on the
Internet—that the WebOS is nothing but
hype, it’s the next dot-com bubble, or that it’s
the savior of mankind and the future of all
computing. WebOS may be none of those
things. How disruptive will it become? Google
is banking heavily on it, and Microsoft’s
recent actions indicate they’re onto Google’s
plan. What will they do about it? Those
answers aren’t yet known, but the questions
prove that WebOS is a real market and we
are, in fact, already immersed in it. ~

WEB OS DECEMBER 2005n WW26

Aaron Weiss is a technology writer and Web
developer in upstate New York: www.bordella.com.

PERMISSION TO MAKE DIGITAL OR HARD

COPIES OF ALL OR PART OF THIS WORK FOR

PERSONAL OR CLASSROOM USE IS GRANT-

ED WITHOUT FEE PROVIDED THAT COPIES

ARE NOT MADE OR DISTRIBUTED FOR PROFIT

OR COMMERCIAL ADVANTAGE AND THAT

COPIES BEAR THIS NOTICE AND THE FULL

CITATION ON THE FIRST PAGE. TO COPY

OTHERWISE, TO REPUBLISH, TO POST ON

SERVERS OR TO REDISTRIBUTE TO LISTS,

REQUIRES PRIOR SPECIFIC PERMISSION

AND/OR A FEE.

© ACM 1091-556/05/1200 $5.00

