
IN OCTOBER 2002, ONE OF OUR

users raised a req ticket with this message-.

When book number p859 is entered in the
Web-based Library Catalogue search this
error message comes up: Internal Server
Error

At first glance, most experienced administrators
would give a diagnosis of "broken CGI script";
however, as it would turn out, this was far from
the case. Examination of the Web server's logs
showed an unusually large number of HTTP
requests for our home page, which was causing
Apache to hit its per-user process limit. There was
no obvious reason for a surge in interest in our
Web pages, so we responded:

It looks like our Web server may be under
an attack of some sort! There are lots of
people requesting our home page and the
server is running out of processes for
Webnobody! This isn't leaving enough space
to complete the library lookup. I've no idea
what is going on at the moment—between
18:00 and 18:59 we saw four times as many
requests as we did this time yesterday.

The source of this traffic was far removed from
the original error message and was eventually
unearthed using a mix of investigation and guess­
work. It's the investigation, ultimate causes, and
our response to this traffic that I'm going to talk
about in this article.

Analyzing the Problem

Our first thought was that our home page had
been linked to from some popular Web site or
referred to in some piece of spam. Our Apache
server had originally been configured to log using
the common log file format, so we naturally
switched to the combined format, which also
records the referring URL and the User-Agent as
reported by the browser making the request [1].

To our amazement, the majority of the requests
included neither of these pieces of information.
However, this seemed to provide a way of easily
identifying these unusual requests. Further study
showed that the machines making these requests
were connecting regularly, some as often as once a
minute (to the nearest second), and they rarely
requested any page bar our home page. Figure 1
shows the autocorrelation of the requests load,
with strong peaks at multiples of 60s. For com­
parison, the autocorrelation without these unusu-

I al requests is also shown [2].

DAVID MALONE

unwanted HTTP:
who has the time?
David is a system administrator at Trinity College,
Dublin, a researcher in NUI Maynooth, and a com­
mitter on the FreeBSD project. He likes to express
himself on technical matters, and so has a Ph.D. in
mathematics and is the co-author of IPv6 Network
Administration (O'Reilly, 2005).

dwwaione@rnaths.tcd.ie

THANKS
Ian Dowse and I conducted the original investigation.
Colm MacCarthaigh provided us with the required
Apache changes and Niall Murphy helped improve sev­
eral drafts of this article.

LOGIN: APRIL 2006 UNWANTED HTTP: WHO HAS THE TIME? 49

mailto:dwwaione@rnaths.tcd.ie

A u t o c o r r e I a 11 o n o f r e q u e s t s .-•' s e c c r> d

A i i r e q u e s t s
Without musteru requests

^djjjM

0 £®Q 408 60Q 80S 1000

lag in seconds

FIGURE 1. AUTOCORRELATION OF

THE SERVER'S LOAD

Using periodic requests for I as a signature, we
found that this had actually been going on for
months. The number of hosts making these
requests had been gradually increasing. This made
it seem less likely that these requests were an
orchestrated attack and more likely that it was
some sort of quirk or misconfiguration.

Using tcpdump [3] we recorded a number of
these requests. A normal TCP three-way hand­
shake was followed by the short HTTP request
shown below, contained in a single packet. Our
server would reply with a normal HTTP response,
headers, and then the content of the home page.

GET/HTTP/1.0
Pragma: no-cache

*
The request above is unusual. It does not include
the Referer and User-Agent headers mentioned
above. Also, it does riot include the Host header,
which is used to ensure the correct operation of
HTTP virtual hosting. Even though the Host
header is not part of HTTP 1.0, most HTTP 1.0
clients send a Host header. Virtual hosting is such
a common technique that it seemed impossible
that this could be any sort of normal Web client.
In fact, the lack of a Host header indicated that
the software making the request was probably not
interested in the content returned.
Other than the content, the only other informa­
tion returned by Apache was the HTTP headers of

;LOCIN: VOL. 31, NO. 2

the response. These headers were the Date, the
Server version, the Content-Type, and a header
indicating that the connection would be closed
after the page had been sent. After staring at all
this for a bit, it occurred to us that something
might be using our home page for setting the
clocks on machines, as the Date header was the
only part of the response that was changing.

We made connections back to several of the IP
addresses in question and found that the connect­
ing machines seemed to be Web proxies or gave
signs of running Windows. We picked a random
sample of 10 to 20 machines and made an effort
to identify a contact email address. We sent short
queries to these email addresses, but no responses
were received.

A post [4] to the comp.protocols.time.ntp Usenet
group was more productive. We asked for a list of
software that might use the HTTP date header to
set the time. This produced a list of possibilities,
which we investigated.

Tardis [5] was identified as a likely source of the
queries: it had an HTTP time synchronization
mode and listed our Web server as a server for
this mode. We contacted the support address for
Tardis and asked why our server was listed, and
why someone would implement an HTTP time
synchronization mode when there were other,
better protocols available.

Tardis support explained that they had a lot of
requests to add a method of setting the time
through a firewall, and thus Tardis added a feature
using HTTP to do this. At the time they imple­
mented this feature they scanned a list of public
NTP servers [6] to find ones also running HTTP
servers. The host running our Web server had
been a public NTP server around 10 years previ­
ously, and due to a misunderstanding had not
been removed from the list until mid-2000 [7].

The software only listed four servers for this mode
of operation: a host in Texas A&M University, a
host in Purdue University, AltaVista's address with­
in Digital, and our server. Tardis would initially
choose a server at random and then stick with it
until no response was forthcoming, when it would
select a different server. We suspect that the spike
in load that we saw corresponded to the HTTP
server on one of these machines being unavail­
able, resulting in a redistribution of the clients of
this machine between the remaining hosts.

Note that the default polling interval in Tardis was
once every few hours. However, the software's
graphical interface included a slider which

allowed the poll interval to be reduced to once per
minute.

Tackling the Problem

In the discussions that followed with Tardis sup­
port we agreed that future versions of Tardis
would only list our official NTP server, and only
for Tardis's NTP mode. We also suggested that
allowing users to automatically set their clock
once per minute was probably a bad idea and sug­
gested modifications to the method used. In par­
ticular, using a HEAD rather than a GET request
could significantly reduce the amount of data
transferred, and setting the User-Agent field
would make it easier for server administrators to
identify such requests.

We did also suggest that our college be given a
complimentary site license for Tardis in exchange
for the not inconsiderable traffic shipped to Tardis
users. For example, in the first 16 hours after
enabling combined logging, we saw 400,000 con­
nections from about 1800 different IP addresses.
We estimated the resulting traffic at around
30GB/month.

However, it was some time before a new release of
Tardis was planned, so we had to take some
action to prevent future incidents of overload on
our server. A first simple step was to increase
process limits for the Web server, which had plen­
ty of capacity to spare.

A second step was to use FreeBSD's accept filters
[8]. Accept filters are a socket option that can be
applied to a listening socket that delays the return
of an accept system call until some condition is
met. Usually the accept system call returns when
the TCP three-way handshake is complete. We
chose to apply a filter that delays the return of the
accept system call until a full HTTP request is
available. We knew that the request that Tardis
was making arrived in a single packet one round-
trip-time later. Thus the filter saves dedicating an
Apache process to each request for the duration of
the round trip (and avoids a small number of con­
text switches).

While these measures helped prevent our server
being overloaded, they did little to reduce the
actual number of requests and volume of traffic
being served to Tardis users. Using Apache's con­
ditional rewriting rules, as shown below, we were
able to match Tardis requests and, rather than
returning the full home page (about 3KB), were
able to return a much smaller page (about 300
bytes).

RewriteCond %{THE_REQUEST} A G E ! \ A HTTP/1 .[011$
RewriteCond %{HTTP_USER_AGENT} A$
RewriteCond %{HTTP_REFERER) A$
RewriteRule A/$ AA/elcome.tardis.asis [L]

Using Apache's asis module [9], we were able to
return custom headers, including a redirect to our
real home page, in case some requests from gen­
uine browsers were accidentally matched by the
rewrite rules.

This significantly reduced the amount of data that
we returned, but we also wanted to reduce the
total number of clients that we were serving. We
considered blacklisting the IP addresses of clients
making these requests. However, we decided that
this was not appropriate, for two reasons. First, a
number of the client IPs were the addresses of
large HTTP proxy servers and we did not want to
exclude users of these proxies from accessing our
Web pages. Second, the large number of IPs
would make this a high-maintenance endeavor.

Instead, we decided to return a bogus HTTP date
header in response to requests matching our
Tardis rewrite rule, in the hope that this would
encourage Tardis users to reconfigure their clients.
By default Apache does not allow the overriding
of the date header, but Colm MacCarthaigh of the
Apache developer team provided us with a patch
to do this. The page was altered to return a date of
Fri, 31 Dec 1999 23:59:59 GMT. A link to another
page explaining why we were returning an incor­
rect time was included in the body of this page.

We expected this to cause significant numbers of
queries, and so prepared an FAQ entry for our
request system to allow our administrators to
respond quickly. However, we have only had to
reply to a handful of email queries about this
anomaly.

This countermeasure had a noticeable impact on
the number of clients connecting to our server.
Figure 2 shows the number of requests from
Tardis users per hour, where we began returning a
bogus time at hour number 1609. Alhough the
number of requests is quite variable, our counter-
measure quickly reduced the number by a factor
of roughly five. Tardis support suggests that this is
actually users reconfiguring Tardis, rather than
some sanity check within Tardis itself. Note that
the reduction achieved by this technique is actual­
ly more prominent than the impact of the new
release of Tardis a year later.

;LOGIN: APRIL 2006 UNWANTED HTTP: WHO HAS THE TIME? 51

Contemplations...

In dealing with this unwanted traffic, we were for­
tunate in several respects. Though there were only
small hints as to the source of the traffic, they
were sufficient to find the origin. The traffic also
had a clearly identifiable signature, in that com­
mon headers were missing, and was not deliber­
ately designed to be hard to identify. This is in
stark contrast to spam, where successful attempts
to identify features of spam quickly lead to a new
generation of further obfuscated spam.

Though unwittingly inflicted upon us, this attack
was quite like a DDoS. The number of hosts in­
volved was in the thousands, making it infeasible
to deal with each host by hand. Thankfully we
were able to reduce the amount of traffic (both
bytes and requests), since the hosts were request­
ing a valid service via a well-formed protocol
dialog, allowing us to tailor the response appro­
priately.

. . . ON DIAGNOSIS

At the time, our efforts to diagnose the problem
seemed haphazard. On reflection, the steps fol­
lowed do seem to have been sensible and moder­
ately generic:

• Identify some rogue requests.

• Try to spot a signature that matches these
requests.

• Look at all requests matching the signature
(and refine the signature if necessary).

• Examine the corpus of requests, looking for
indications of their likely origin.

Of course, to identify a signature requires some
knowledge of what constitutes a normal request.
In our case, had we been using the combined log
file format all along, we might have realized soon­
er that something unusual was going on. In this
case, simply monitoring the number of requests to
the server would probably not have identified the
problem, as the load on a server can plausibly
increase gradually without arousing attention.
However, as we saw from Figure 1, higher-order
statistics make the problem much more obvious.

. . . ON COUNTERMEASURES

Our initial countermeasure was to send a smaller
response to requests matching the signature. This
technique has been adopted as a response to being
Slashdotted [10] by a number of organizations.
For example, Mozilla's Bugzilla database now
returns a short static page in response to links
from Slashdot. Similarly, it is not uncommon to
follow a link from Slashdot to find a page that
says, "If you really want to download the 1.5MB
PDF report, please go to this page." In the case of
one of the other Web servers listed by Tardis, they
had no content at /, and were able to create a
short page to satisfy the requests.

In our case, we identified that the client making
the requests was not a full Web browser. This is
why we could use an automatic redirect to accom­
modate legitimate requests accidentally matched
by the rewrite rules. Unfortunately, this option is
not available to those who have been Slashdotted.

As a general technique to stop remote sites from
linking into specific parts of a Web site, it is possi­
ble to generate URLs that have a limited lifetime.
However, such systems typically frustrate book­
mark systems and search engines alike. Similarly,
some people use limited lifetime email addresses
to avoid spam. A more extreme version of these
techniques could use limited lifetime DNS entries.
Options like this were not available to us, as the
URL and DNS name in question were too well
known.

A consideration that we considered to be impor­
tant in designing any response to an HTTP prob­
lem was that legitimate users and problem users
may both be behind the same Web proxy (or NAT

52 ;LOGIN: VOL. 31, NO. 2

device). A student at a local university working
on a spidering project repeatedly crawled the
Mathworld [11] site. As a response, the
Mathworld operators blocked access from the IP
they saw the requests coming from. This resulted
in blocking the student's entire department!

The final part of our countermeasure was de­
signed to attract the attention of users involved
in the problem. Importantly, changing the date
returned by our Web server is only likely to
attract the attention of users who are using that
date for something unusual. It might possibly
have confused the caching scheme of some
browsers, but we have heard no reports to this
effect. Notifying users who are not involved in the
problem, as often occurs when virus notifications
are returned in response to forged email address­
es, can be counterproductive.

. . . ON SIMILAR NTP-RELATED INCIDENTS

There are eerie similarities between this event
and a number of other incidents. At about the
same time as our incident, CSIRO had to take
action because of hundreds of thousands of clients
accessing their server from outside Australia. The
subsequent incident at Wisconsin [12], where the
address of an NTP server was hardwired into a
mass-produced DSL router, is probably best
known.

Fortunately, our problem was on a smaller scale.
Unlike the Wisconsin incident, the extent of the
problem had actually been augmented by users
configuring the system to poll frequently, rather
than simple bad system design (though providing
a slider that can be set to poll once per minute
probably counts as bad design). It is amusing to
note that we actually had to patch the source of
Apache to produce our deliberate misconfigura-
tion. This must be a rare example of a Windows
GUI providing you with easy-to-use rope to hang
yourself, while the config file-based system at the
other end requires more work to induce "errors"!

One of the solutions considered at Wisconsin was
to abandon the IP address of the host in question;
however, this was not the final solution used.
There have been incidents of the abandonment of
domains because of poor design choices in time
synchronization software [13]. We did consider
moving our Web server before we had put our
countermeasures in place, but this would have
placed a much larger burden on our system
administration staff.

An interesting question is, why has an apparently

innocent service, time synchronization, caused so
many problems? A significant part of the problem
seems to be misuse of lists of well-known servers
[6]. Though the list includes a clear statement
that it is "updated frequently and should not be
cached," many people serve local copies. A quick
search with Google identifies many pages listing
our retired server as a current NTP server, even
though it has not been on the official list since
2000. Some of these pages include the retired
server in example source code.

This suggests that providing standardized dynam­
ic methods for determining an appropriate NTP
server might be worth the development effort.
Attempts to provide pools of active NTP servers
behind one DNS name have proved quite success­
ful in recent years [14]. Multicast NTP would pro­
vide a more topologically aware technique for dis­
covering NTP servers; however, the still-limited
availability of multicast makes this less practical.
Making a number of anycast servers (or, more
exactly, shared unicast servers) might also be ben­
eficial. This technique has already been used suc­
cessfully for the DNS roots and 6to4 relay routers
[15]. Anycast NTP has been successfully deployed
in the Irish Research and Education Network,
HEAnet.

What other protocols/servers may be subject to
similar problems? There are obvious parallels
with DNS root servers, which are also enumerated
with a highly cached list. The high level of bogus
queries and attacks arriving at the root servers has
been well documented [16].

Conclusions

The investigation of this problem was an interest­
ing exercise in the sorts of problems that sysad-
mins end up tackling. We had to use many of the
standard tools: log files, diagnostic utilities,
Usenet, reconfiguration, and a little software
hacking.

Our countermeasures remain in place today and
seem relatively successful, as the unwanted traffic
remains significantly reduced. The incident itself
seems to fit into a larger pattern of problems with
time synchronization software and statically con­
figured services.

REFERENCES

[1] The common log file format was designed to be
a standard format for Web servers and was used by
the CERN httpd: see

; L O G I N : APRIL 2 0 0 6 U N W A N T E D HTTP: W H O HAS THE TIME? 53

http://www.w3.org/Daemon/User/Config/Logging
.html. More recently the combined format has
become more common: http://httpd.apache.org
/docs/logs.html.

[2] Autocorrelation is a measure of how much cor­
relation you see when you compare a value now
with a value in the future: see http://en.wikipedia
.org/wiki/Autocorrelation.

[3] Tcpdump's -X option is good for this kind of
thing: http://www.tcpdump.org/.

[4] The thread on comp.protocols.time.ntp can be
found at http://groups.google.com/group/comp
.protocols.time.ntp/browse_thread/thread
/710cc3fb87bd08cc/026820ef0e6b4165.

[5] The home page for Tardis Time Synchroniza­
tion Software is at http://www.kaska.demon.co.uk/.

[6] David Mills's list of Public NTP Secondary
(stratum 2) Time Servers was traditionally at
http://www.eecis.udel.edu/~mills/ntp/clock2.htm
but now lives in the NTP Wiki at http://ntp.isc.org/
bin/vie w/Servers/WebHome.

[7] Archive.org is very useful for checking the his­
tory of Web pages: http://www.archive.org/.

[8] FreeBSD's accept filters were developed by
David Filo and Alfred Perlstein. There are filters
that wait until there is data or a complete HTTP
request queued on a socket: http://www.freebsd
.org/cgi/man.cgi?query=accept_filter.

[9] The Apache Module for sending a file as is,
mod_asis, is documented at http://httpd.apache
. org/docs-2.0/mod/mod_asis. html.

[10] Being Slashdotted is, of course, being linked
to from Slashdot and suffering an unexpected
increase in requests as a consequence. Wikipedia
has a nice entry at http://en.wikipedia.org/wiki
/Slashdotted.

[11] Eric Weisstein's Mathworld is an online ency­
clopedia of mathematics predating the flurry of
Wiki activity: http://mathworld.wolfram.com/.

[12] Dave Plonka's well-known report on routers
flooding the University of Wisconsin time server
can be found at http://www.cs.wisc.edu/~plonka
/netgear-sntp/.

[13] A description of why the UltiMeth.net
domain was abandoned can be found at
http://www.ultimeth.com/Abandon.html.

[14] The NTP Server Pool project lives at
http://www.pool.ntp.org/.

[15] RFC 3258 describes "Distributing Authorita­
tive Name Servers via Shared Unicast Addresses,"
which is basically making DNS queries to an any-
cast address. A similar trick for finding a 6to4 relay
is described in RFC 3068. Both these techniques
seem to work pretty well in practice.

[16] There are a number of studies of requests
arriving at the DNS root servers. Check out "DNS
Measurements at a Root Server," available on the
CAIDA Web site at http://www.caida.org
/outreach/papers/bydate/.

54 ; L O C I N : VOL. 31 , NO. 2

http://www.w3.org/Daemon/User/Config/Logging
http://httpd.apache.org
http://en.wikipedia
http://www.tcpdump.org/
http://groups.google.com/group/comp
http://www.kaska.demon.co.uk/
http://www.eecis.udel.edu/~mills/ntp/clock2.htm
http://ntp.isc.org/
http://Archive.org
http://www.archive.org/
http://www.freebsd
http://httpd.apache
http://en.wikipedia.org/wiki
http://mathworld.wolfram.com/
http://www.cs.wisc.edu/~plonka
http://UltiMeth.net
http://www.ultimeth.com/Abandon.html
http://www.pool.ntp.org/
http://www.caida.org

