
Laboratory for Dependable Distributed Systems

FireWire
all your memory are belong to us

Michael Becher, Maximillian Dornseif, Christian N. Klein

http://md.hudora.de/presentations/#firewire-cansecwest

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Agenda
• Who we are and what we do

• Introduction to FireWire

• Technical Details of FireWire

• Demo

• Implementation Details

• Forensics by FireWire

• What to do about the issue

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Who we are
• Laboratory for Dependable Distributed Systems

at RWTH-Aachen University

• Founded in late 2003 for theoretical & practical
security research, topics include:

• Security Education

• Sensor Networks

• Honeypot technology

• Breaking Stuff

• Notable classes include “Hacker Seminar”,
“Hacker Praktikum”, “Pen-Test Praktikum”,
“Aachen Summerschool applied IT-Security”,
“Computer Forensics” ... and the “RedTeam”

• http://mail-i4.informatik.rwth-aachen.de/mailman/
listinfo/lufgtalk/

Laboratory for Dependable Distributed Systems

Introduction into
FireWire

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

What is Firewire?
• Developed by Apple Computers since

1985

• IEEE 1394 (1995), IEEE 1394a (2000),
IEEE 1394b (2002).

• Marketed by Apple as “Firewire” or
“FireWire”

• Marketed by Sony as “iLink”

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

FireWire
• Serial bus, similar but more sophisticated

than USB

• Faster

• Peer-to-Peer, needs no computer

• More Power

• in many respects

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Marketplace
• Apple - pushing FireWire hard:

• Since January 1999 in Desktops

• Since January 2000 in Notebooks

• September 2000 where the last non-
FireWire machines shipped

• October 2001: iPod as FireWire killer-app

• Sony - we’ll come to that

• Others: most upper class systems come with
FireWire

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

FireWire by Sony

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

More FireWire
• Audio

• Printers

• Scanners

• Cameras

• GPS

• Lab Equipment

• Industrial Control

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Things to come

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Confusion

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Interesting use:
Target Disk Mode

• Press “T” while powering up

• Macintosh will emulate a Firewire disk drive

Technical Details of
FireWire/OHCI

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

64 bit unified Memory space: 10 bit bus ID,
6 bit node ID, 48 bit per node

10 bit bus ID 6 bit node ID 48 bit mem location

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

64 bit unified Memory space: 10 bit bus ID,
6 bit node ID, 48 bit per node

10 bit bus ID 6 bit node ID 48 bit mem location

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

64 bit unified Memory space: 10 bit bus ID,
6 bit node ID, 48 bit per node

10 bit bus ID 6 bit node ID 48 bit mem location

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

64 bit unified Memory space: 10 bit bus ID,
6 bit node ID, 48 bit per node

10 bit bus ID 6 bit node ID 48 bit mem location

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

OHCI
• Asynchronous functions

• Can be used to access on-board RAM
and RAM on extension cards (PCI)

“physical requests, including physical read, physical write
and lock requests to some CSR registers (section 5.5),
are handled directly by the Host Controller without
assistance by system software.” (OHCI Standard)

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

OHCI Filters
• “Asynchronous Request Filters”

“The 1394 Open HCI allows for selective access to host memory and the
Asynchronous Receive Request context so that software can maintain host
memory integrity. The selective access is provided by two sets of 64-bit
registers: PhysRequestFilter and AsynchRequestFilter. These registers allow
access to physical memory and the AR Request context on a nodeID
basis.” (OHCI Standard)

• PhysicalRequestFilter Registers (set and clear)
“If an asynchronous request is received, passes the
AsynchronousRequestFilter, and the offset is below PhysicalUpper-Bound
(section 5.15), the sourceID of the request is used as an index into the
PhysicalRequestFilter. If the corresponding bit in the PhysicalRequestFilter is
set to 0, then the request shall be forwarded to the Asynchronous Receive
Request DMA context. If however, the bit is set to 1, then the request shall be
sent to the physical response unit.” (OHCI Standard)

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

• quartlet write request transmit:

• for details see:

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Exploiting Reads
• We can read arbitrary memory locations.

So we can:

• Grab the Screen contents

• Just search the memory for strings

• Scan for possible key material
• “Playing hide and seek with stored keys” by Someren/Shamir 1998

http://www.ncipher.com/resources/downloads/files/white_papers/keyhide2.pdf

• Parse the whole physical memory to
understand logical memory layout.

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Exploiting Writes
• We can write arbitrary data to arbitrary

memory location. So we can:

• Mess up

• Change screen content

• Change UID/GID of a certain process

• Inject code into a process

• Inject an additional Process

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Demo

Implementation Details

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Implementation

• MacOS X (IOFireWire* Frameworks)
IOCreatePluginInterfaceForService(self->aDevice, kIOFireWireLibTypeID,
kIOCFPlugInInterfaceID, &cfPlugInInterface, &theScore);
(*cfPlugInInterface)->QueryInterface(cfPlugInInterface,
CFUUIDGetUUIDBytes(kIOFireWireDeviceInterfaceID), (void **)&fwIntf);
(*fwIntf)->Open(fwIntf);
(*fwIntf)->Write(fwIntf, self->aDevice, &fwaddr, (void *) buffer, &bufsize, false, 0);
(*fwIntf)->Read(fwIntf, self->aDevice, &fwaddr, (void *) buffer, &bufsize, false, 0);

• Linux (libraw1394)
handle = raw1394_new_handle();
raw1394_set_port(handle, 0);
raw1394_write(handle, node_id, fwaddr, bufsize, (quadlet_t *) buf);

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

pyfw
• python warper around native FireWire APIs

• used for all our demos

• ported since 2004-05-04 08:45 to Linux
and iPod Linux

• Get it at http://md.hudora.de/presentations/
#firewire-cansecwest

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Demo

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

read write

MacOS works works

FreeBSD works works

Linux nope works

Windows 2000 CRASH CRASH

Windows XP nope nope

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

read write

MacOS 10.3.9 nope nope

FreeBSD works works

Linux nope works

Windows 2000 ? ?

Windows XP nope nope

Forensics by Firewire

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

The forensics schism
• Unplug, do post-mortem disk-analysis

• Misses Processes, open connections, etc.

• Gather information on the live system,
afterwards do a clean shutdown and do
afterwards disk-analysis

• Contaminates evidence during the
information gathering

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Live Memory Dumps
• Being able to dump the whole memory

without software support would solve the
schism

• Tribble is a specialized pice of hardware
being able to dump physical memory via
DMA transfers over the PCI bus

• If you can do the same via Firewire, you get
away with a software only solution

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Forensics Challenges

• There is little experience in reconstructing
logical/virtual memory from physical
memory dumps

• To find open network connections etc. we
have to parse a bunch of kernel structures

Defenses

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Shields-Up!

• Ensure that only fully trusted devices are
connected to your FireWire ports

• Press you driver/OS vendors about
FireWire filtering

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Filtering: Linux
ohci1394.c
/* Accept Physical requests from all nodes. */
reg_write(ohci,OHCI1394_AsReqFilterHiSet, 0xffffffff);
reg_write(ohci,OHCI1394_AsReqFilterLoSet, 0xffffffff);
/* Turn on phys dma reception.
 *
 * TODO: Enable some sort of filtering management.
 */
if (phys_dma) {
 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0xffffffff);
 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0xffffffff);
 reg_write(ohci,OHCI1394_PhyUpperBound, 0xffff0000);
} else {
 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0x00000000);
 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0x00000000);
}
DBGMSG("PhyReqFilter=%08x%08x",
 reg_read(ohci,OHCI1394_PhyReqFilterHiSet),
 reg_read(ohci,OHCI1394_PhyReqFilterLoSet));

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Filtering: MacOS
IOFireWireController.cpp
IOFWSecurityMode mode = kIOFWSecurityModeNormal;
OSString * securityModeProperty = OSDynamicCast(\
OSString,options->getProperty("security-mode"));
if(securityModeProperty != NULL &&
 strcmp("none", securityModeProperty->getCStringNoCopy()) != 0)
{
 // set security mode to secure/permanent
 mode = kIOFWSecurityModeSecurePermanent;
}

[...]

// shut them all down!
fFWIM->setNodeIDPhysicalFilter(kIOFWAllPhysicalFilters, false);

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Be Prepared for Forensics

• You might want to keep FireWire ports on
incident prone systems at hand

• Keep them physically secured

• Have some software ready to do memory
dumps via FireWire

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

• References

• http://md.hudora.de/presentations/#firewire-
cansecwest

• updated slides

• pyfw MacOS/Linux code

• Videos of the Demos

• Within a few days:

• Linux image for the iPod with all the goodies
http://mail-i4.informatik.rwth-aachen.de/mailman/listinfo/lufgtalk/

• Thanks

• Christian N Klein for the initial MacOS code

• Michael Becher for the Linux/iPod code

