
Conservative Logic

B i l l S i l v e r

19 May 1978

A b s t r a c t

This paper is an attempt to organize and present the model of computation known as
Conservative Logic, originally conceived and developed by Edward Fredkin. Conservative
Logic is an attempt to structure acomputation by means of certain global laws, similar to the
conservation laws of physics, the most important of which states that acomputation must
conserve information. While it is acommonly held belief that useful computation in general
must destroy information. Conservative Logic is shown to be both rich in structure and
every bit as powerful as more conventional computer logic. In addition, the model treats in
aprecise way concepts which are usually ignored in conventional logic, such as fanout and
the role of the wire in communicating information.

The basic definitions and principals are given, the conservative logic gates and basic circuits
are developed, and some theoretical results are presented. Selector notation, an algebra for
writing and transforming Boolean functions, is presented. Selector notation is convenient for
working with conservative logic circuits, and may have applications in other areas as well.
Finally, several open questions in conservative logic are discussed.

Conservative Logic 2 I n t r o d u c t i o n

1 . I n t r o d u c t i o n

Conservative Logic (CL) is amodel of computation which arises out of the belief that there
is acommon ground between the study of computation and the study of physics. This
common ground is atwo-way street; physical law may have something fundamental to
contribute to the study of computation, and computer science may provide facinating
alternatives to the more traditional models of basic physical phenomina. While acomplete
treatment of these possibilities is beyond the scope of this paper, they will be used to
motivate the development of CL. It is not necessary for the reader to accept our philosophy
in order to appreciate the results that follow, however it should be useful to know why we
were led in the direct ion that we took.

Much of the descriptive power of physics comes from the existence of global laws,
such as the law of conservation of energy. These laws apply to systems as awhole,
independent of microscopic entities involved or of the ways in which those entities interact.
In fact, the laws governing the interaction of acollection of fundamental particles may be
totally unknown, and yet those particles when taken as awhole are seen to obey the
conservation laws. Thus we can analyze and predict the behaviour of large and complex
systems without knowing the details of the system at the microscopic level.

Qiiite the opposite is true in the study of computation. We build large and complex
systems consisting of tens or hundreds of thousands of basic elements (gates and flip-flops
for hardware systems, instructions for software) and yet to analyze them requires
understanding the role of each and every one of them. While the situation is greatly
simplified by breaking such systems up into modules, there are still no global laws or
principals governing such systems as awhole. The value of such laws is clear; aphysicist,
for example, can tell you that no engine can be built that is more efficient than the Carnot
engine, independent of its internal construction, by appealing to the laws of thermodynamics.
It is very difficult, on the other hand, to characterize the efficiency of computer circuits or
programs. While this can be done for many particular algorithms, such as asorting
procedure, we have yet to find laws that apply to all algorithms. Such laws might be used to
answer some very general questions about computation, such as the relationship between the
amount of memory and the amount of time needed by acomputation.

The fact that conservation laws have been valuable in physics does not mean that we
can just require that computer circuits obey such alaw and expect wonderful results to
follow. Rather, our motovation for considering computer logic circuits that obey aglobal
conservation law comes from the desire to model our universe as adescrete, digital
computation. It may very well turn out, however, that this approach will contribute anew
understanding to the theory of computation.

We begin by stating what we believe is one of the most fundamental principals of
physical theory:

Conservative Logic 3 I n t r o d u c t i o n

The laws of physics are invariant with respect to the reversal of time.

In particular, we believe that physics is exactly reversible; replace twith -t and asystem will
evolve backwards, eventually reaching any previous state. This statement is easily shown to
be true for classical mechanics and electromagnetism, and while it is open to question in
quantum theory, we accept this principal in the discusson that follows. It is important to
realize that this does not mean that aprevious state can always be attained forward in time.
If you drop an egg on the floor there may be no process which will restore it to its original
state, but if you could somehow set the world in reverse it would in fact attain its previous
state as awhole egg.

If aprocess is to be reversible, its state must at each moment contain enough
information to return to any previous state. While this information may change in form as
the system evolves, it can never be lost. Thus we arrive at anew law for physics, alaw
which we will require our circuits to obey, the law of Conservation of Information.

If physics is to be modelled as adigital computation, then that computation must be
reversible, it must conserve information. Such an idea, however, is completely at odds with
the way computer circuits and programs are designed today. In fact, many computer
scientists will tell you, if they’ve thought about it at all, that useful computation in general
must create and destroy information. If we are to claim that computation can model physics,
we must show that computation can be made reversible without sacrificing any of its power
or convenience. Conservative Logic will be seen to satisfy these requirements.

Another principal which we will adopt in our development of CL is the equivalence of
memory and communication. It may be seen that what we commonly call memory and what
we call communication are just conceptual manifestatons of the same physical process: the
transmission of information form one point in space-time to another point in space-time.
What would look like memory in one reference frame would look like communication in a
frame which was moving with respect to the first. Similarly, what one observer might
consider communication would look like memory to an observer at rest with respect to the
information being communicated.

2. Basic Principals for Conservative Logic Circuits

Conservative Logic is amodel of digital, binary hardware systems, such as might be found
in ageneral purpose computer. It is similar to conventional digital logic in that abasic
atomic processing element, the gate, is defined which may be interconnected to form circuits
to compute any desired function. The interconnections are made by means an atomic
memoi y/communication element, the zuire, according to the rules specified below. In this

Conservative Logic Basic Principals4

regard, CL attempts to include the cost of wires and fanout, aphysical fact that is usually
overlooked in conventional logic. (In this section we consider only the general properties
that CL gates must satisfy. In the next section we will look for particular gates that meet
these conditions, but it should be remembered that there are many gates that satisfy the
requirements of CL.)

The gate is an atomic logic element with some number of binary inputs and outputs,
where each output is some combinational (the gate has no memory) Boolean function of the
inputs, subject to the following constraints;

1) The gate must be auniversal computing element.
2) The gate must conserve information.

The requirement that the gate be universal means that by appropriate interconnection of
gates it is possible to generate any Boolean function of any number of variables on some
output. This requirement is satisfied by very simple conventional gates, such as the NAND
gate. The requirement that the gate conserve information means that the gate must be
reversible; the inputs must be uniquely determined by the outputs. Clearly, if agate is to
conserve information it must have at least as many outputs as inputs, and for simplicity we
only consider those gates where the number of inputs and outputs are equal. In this case,
there must be aone-to-one mapping between input and output states, i.e. the set of output
states must be apermutation of the set of input states (remember that agate with n
inputs/outputs has 2^ input/output states). Finally, agate is assumed to operate in zero time.

The wire is an atomic memory/communication element whose role is to move one bit
of information from one point in space-time to another, such that the two points are
separated by one unit of time. Thus the wire has one binary input and one binary output,
where the output is what the input was one time unit ago. For simplicity we assume that all
wires operate totally synchronously, somewhat like D-flip/flops of conventional logic, all
connected to amaster clock. The logic symbol for the wire is:

In order to guarantee that reversible circuits will be constructed out of the reversible
gates, we must impose the following interconnection rules:

In any closed conservative logic circuit:
1) To each input of agate must be connected the output of one wire.
2) To each output of agate must be connected the input of one wire.
3) To the input of each wire must be connected the output of one gate or wire.

Conservative Logic 5 Basic Principals

4) To the output of each wire must be connected the input of one gate or wire.

Thus CL circuits may not have any "loose ends", and wires may not be used to generate
fanout. Wires may be connected in chains to make delays or serial memories, however.

It will often be the case that we want to design amodule that is intended to be
connected to other modules, and consequently will need inputs and outputs. Thus it is not a
violation of the interconnection rules if one end of awire is left unconnected if it is intended
that that wire serve as an input or output to the module. It is understood, however, that in
acomplete system all such wires must be connected to something, in accordance with the
rules. This restriction applies even if the input or output is just aconstant (i.e. 0or 1).
Inputs and outputs are symbolized with half awire, as follows:

>
N P U T O U T P U T

Finally, some definitions before we look at specific gates.

ACL circuit is called combinational if, after its inputs have remained constant for
sufficient time, its outputs are uniquely determined by only the present values of the inputs.
The circuit has no memory other than the input to output delay due to its wires. This
definition corresponds to the one for conventional logic.

ACL circuit is called sequential if it is not combinational.

ACL circuit is called loop-free if it contains no closed loops, i.e. no feedback. While a
loop-free circuit is clearly combinational, the converse is not true if the signal on the
feedback part of the loop is constant over all inputs and all time. Combinational non-loop-
free circuits will be seen to be very important in later sections.

3. The Conservative Logic Cates

We will now look for agate which satisfies the constraints imposed in the preceeding
section. We are looking for nBoolean functions of ninputs that when taken together are
both universal and reversible. Presumably we would like to use the smallest nfor which
this is possible. We can immediatly rule out n=l, for none of the four 1-input Boolean
functions (F(a) =0, 1, a, or -ia) are universal.

Conservative Logic 6 T h e C L G a t e s

There are 16 Boolean functions of two variables, allowing 16̂ =256 possible gates for
n=2. Alittle thought shows that only the following functions may be used if the gate is to be
r e v e r s i b l e ;

F(a, b) b , - l b , a © b , a s b (© i s X O R , = i s E Q V)a , - . a ,

XOR and EQV by themselves are known not to be universal, and in fact combining them
with NOT does not help, so we must conclude that n=2 will not work.

The so far uninteresting situation changes drastically for n=3. In fact, there are so
many universal, reversible 3-input/3-output gates that we will introduce anew conservation
law to narrow the search: gates will be required to conserve the number of one’s and zero’s
presented to the inputs. Gates obeying this law will be refered to as bit-conserving gates. It
is important to realize that bit-conserving does not imply reversible, and reversible does not
imply bit-conserving. In fact, most bit-conserving gates are not reversible, and vica versa.
Also, note that since wires conserve bits, our circuits will be bit-conserving too.

One way of looking at agate that conservs bits is to see that its function is to permute
its input signals in some way, where the permutation is some function of the inputs. (Note
that this is quite different from saying that the input states are permutted to get the output
states, acondition required for reversibility.) From this perspective we are led to consider a
very simple bit-conserving gate, defined as follows (the logic notation is conventional
Boolean algebra):

i n p u t s o u t p u t s l o g i c n o t a t i o n
A A (A)
B i f A = 1 t h e n B e l s e C

i f A = 1 t h e n C e l s e B
(A a B V - i A a C)
(A a C V - i A a B)c

Thus it may be seen that the inputs Band Care either swapped or not, depending on A.
The gate is clearly reversible, since we can determine whether or not Band Chave been
swapped by looking at the first output, which is just A.

The gate we have Just defined will be called the selector gate, and its logic symbol and
agraphical description of its operaton are given in Figure 1. The selector gate has formed
the basis for most of the work that has been done in Conservative Logic. Our next step is
t o s h o w t h a t i t i s u n i v e r s a l .

Conservative Logic 7 T h e C L G a t e s

A = 1 A = 0

A > — T T - l A A > — T T I A

B > — - I B B > — - I c

C > - - - I c c > — - I B

F i g u r e 1 - S e l e c t o r g a t e l o g i c s y m b o l a n d o p e r a t i o n .

Normally, alogic family may be shown universal by showing that aset of Boolean
functions previously known to be universal can be generated. For example, the sets {AND,
NOT} and {NOR} are universal, among many others. Such aproof, however, assumes that
many inputs may be connected to one output as needed, which is not allowed by our
interconnection rules. Thus we must also show that out gates are capable of generating
fanout themselves, without help from wires. Figure 2shows that the selector gate is capable
of fanout and can generate the set {AND, OR, NOT}, and is therefore universal.

A > — T T - l A A > — T T - l A

1 > — - I A B > — — I A a B

0 > — - I A A > — — I A v B

F i g u r e 2 - P r o o f t h a t t h e s e l e c t o r g a t e i s u n i v e r s a l .

The selector gate is not the only way we can dream up to permute three signals as a
function of those signals. Suppose we say that the signals will be rotated either up or down,
as shown in Figure 3. We can think of many conditions to use to control the direction of
rotation, such as rotate down if there are an odd number of I’s, or rotate down if the
majority of the inputs are 1. Interestingly enough, the two gates just mentioned are identical,
as well as being reversible and universal, as the reader may verify. Thus we have another
gate that can serve as the basis for Conservative Logic, which will be called the symmetric

Conservative Logic 8 T h e C L G a t e s

majoritylparity (SMP) gate.

r o t a t e d o w n r o t a t e u p

A > — - I C A > — - I B

B > - - - 1 A B > — - I c

c > — - I B C > — - 1 A

o d d p a r i t y o r
m a j o r i t y a r e 1

e v e n p a r i t y o r
m a j o r i t y a r e 0

F i g u r e 3 - T h e s y m m e t r i c m a j o r i t y / p a r i t y (S M P) g a t e .

We could write the output functions for the SMP gate in Boolean algebra, as we did
for the selector gate, and in fact we could use Boolean algebra to describe the behaviour of
any combinational CL circuit. We have found it much more convenient, however, to
develop anew algebra for the description of CL circuits. This algebra is called selector
notation, and will be presented in the next section.

4 . S e l e c t o r N o t a t i o n

Selector notation is away of writing Boolean functions of any number of variables that is
convenient for use in describing and analyzing CL circuits. The notation itself is essentially
identical to one developed by John McCarthy for describing LISP conditionals. There is
one syntactic construct, the selector expression, and many rules for transforming and
simplifying such expressions.

Aselector expression is either abinary constant (0 or 1), abinary variable or its
complement, or astring of the form A->B,C (reads Aselects B,C) where A, B, and Care
selector expressions. The value of the expression A->B,C is Bif the value of Ais 1, and Cif
the value of Ais 0. Since aselector expression is not easily confused with an expression
written in conventional Boolean Algebra, we will often give an expression in both forms to
aid in becomming familiar with selector notation. Thus we would write

A->B, C=AaB V- iAaC

Conservative Logic 9 S e l e c t o r N o t a t i o n

where the left side is written in selector notation and the right side is its equivalent in
Boolean Algebra.

The following table summarizes the basic transformations that can be made to selector
expressions. The symbols ABCDEand Frepresent any selector expression.

l ^ A , B = A d e fi n i t i o n

0 - ^ A , B = B

A ^ B , B = B

A - > 1 , 0 = A f a n o u t

A ^ O , 1 = - . A i n v e r t

-iA-»B, C=A->C, B s y m m e t r y

A - » l , B = B ^ l , A = A v B O R r u l e

A - > B , 0 = B - > A , 0 = A a B A N D r u l e

A-+B, -iB =B-*A, -lA =AeB E Q V r u l e

A-»- iB , B=B-»- iA , a=AffiB X O R r u l e

A^(B^C, D), (B-^E, F) =B^CA^C, E), (A-»D, F) l e v e l s w a p

If Eis any selector expression and Ais any variable, let Ey^^j be the result of replacing any
desired A’s with I’s and vica versa in E, and let E^̂ ^q be defined similarly for O’s. Then we
can always rewrite Eas follows;

This transformation as avery powerful simplification aid, as may be seen in the following
example:

E

(A^B, C)^(A-4C, B), a

=A^((1-»B, O^d^C, B), 1), ((0-»B, C)-»(0-^C, B), 0)

Conservative Logic 10 S e l e c t o r N o t a t i o n

=A-+(B-4C, 1), (C->B, 0) b y d e fi n i t i o n

=A^(B-^C, 1), (B-»C, 0) A N D r u l e

=A^(B-^C, A), (B->C, A)

=B-+G, A

We can now give the expressions for the outputs of our two CL gates in selector
n o t a t i o n :

i n p u t s s e l e c t o r SMP

A A A-^B,C
B^C, A
C->A, B

B A^B, C
A-^C, BC

The expressions for the selector gate should be obvious. Those for the SMP gate are not at
all obvious from the definition given in Section 3, and it should be instructive for the reader
to verify them.

5. Basic Conservative Logic Circuits

We now show that we can easily make all of the basic functions that we are familiar with
from conventional logic.

I n g e n e r a l :

A > - - T T - l A
A > — — I A - » B , C

B > — I A ^ B , C B > — — I B - » C , A

C > - - —IA-»C, B C > — — I C - > A , B

Conservative Logic I I B a s i c C i r c u i t s

f a n o u t a n d i n v e r t (a l s o k n o w n a s t h e S P Y c i r c u i t) :

A > - - T T - l A
A > — - I A

1 > — I - I A 0 > — - I A

0 > - | - I A 1 > — - I A

A N D :

A > T - l A
A > — - - 1 A - » 0 , B = A a B

B > — - - 1 A - ^ B , 0 = A a B 0 > — - I A

0 > — — I A - * 0 , B = A a B B > — — I A - » B , 0 = A a B

O R :

A > T - l AT

A > — — I A ^ B , 1 = A v B

1 > — — I A ^ 1 , B = A v B B > — — I A - » l , B = A v B

B > - - — I A ^ B , 1 = A v B 1 > — - I A

AND/OR:

A > — T T - l A
A > — — 1 A - » l , B = A v B

B > - - A > —- - I A - ^ B , 0 = A a B — I A - > B j 0 = A a B

A > - - — I A ^ 1 , B = A v B B > — - I A

Conservative Logic 12 B a s i c C i r c u i t s

XOR/EQV;

A > ■ AT

T h e r e i s n o c o r r e s p o n d i n g
S M P c i r c u i t , a l t h o u g h X O R
and EQV can be made seper -
a t e l y .

B > - - A-»B, B=AeB

B > - - A->B, B=A®B

Figure 4gives an example of amore advanced combinational CL circuit, a1-line to 4-
line demultiplexor/decoder. When used as ademultiplexor, the data input signal will
appear on the output line selected by the control inputs, and the other outputs will be 0. If
the data input is made aconstant 1, the circuit will function as a2-to-4 decoder.

s 2“ >--

2 ' > -
E
L
e

1 z
T

i z °0 >

o > -I oo
o

r l>' u

T
P

i 2 . u

^ I
F i g u r e 4 - l - t o - 4 D e m u l t i p l e x o r

So far we have only looked at combinational circuits. We can, of course, take almost
any combinational circuit and make it sequential by adding appropriate feedback loops.
This approach to sequential circuit design tends to produce complex and difficult to
understand circuits. What is usually done instead in conventional logic is to use basic
sequential building blocks (flip/flops) and connect them with combinational circuits. Thus
all of the state information is held in the filp/flops and not in random feedback loops. The
same approach can be taken with CL circuits.

Figure 5shows aminimal J/--K flip/flop. Note that it has no clock input; the
absolute synchronization of all wires serves as our master clock. ADflip/flop can be made
by connecting the Jand -iK inputs together (by means of afanout gate). We can, of course,
make more elaborite flip/flops, with an actual clock input and set and clear direct inputs.

Conservative Logic 13 B a s i c C i r c u i t s

4

i a

-(̂ cxrbô ej - y
K >

F i g u r e 5 - M i n i m a l J / - . K fl i p / fl o p

Figure 6shows acircuit which uses the J/K flip/flop, atwo-input binary serial adder.
At each time step, the next higher order bits of the numbers to be added are presented to
the circuit, which adds them to the carry generated by the previous input. While the total
delay thru the circuit is 9time steps, anew input can be accepted each time step because of
the highly pipelined nature of CL circuits. Also, notice how the one fairly useless output
generated by the flip/flop is used to help get back the original inputs. This avoids the need
to have to consider that "garbage" signal as an output of the circuit (more about garbage in
Section 6).

-
0 0-

Or-{>

A > 4 4
1>o >

H>●D̂
0 o VB > f o

■1 8- I X - ^

f A

H > 0 - d > (A + B

i fl + B

i\Ajte.rF\guc£ 6■" Tujo lAput Se

Conservative Logic 14 B a s i c C i r c u i t s

A > — - I A

B > — - I B

1 > - - — I A + B

0 > — — I A + B

F i g u r e 6 - T w o i n p u t s e r i a l a d d e r

6 . T h e o r e t i c a l R e s u l t s

We have seen two possible bases for Conservative Logic, the selector gate and the SMP
gate, and we have seen how to construct many of the basic functions that we are familiar
with from conventional logic. There are, however, anumber of important questions that
must be answered about the system that we have defined. These questions concern the
nature of CL circuits that can be built within the restrictions imposed by our interconnection
r u l e s .

The gates that we have defined are universal, but that only means that any function
can be generated on some output wire. Many other signals may be generated in the process
of computing adesired function, and our interconnection rules require that they all be used
somewhere, that they cannot be ignored. If an output is generated in the process of
computing adesired function that is truely useless for the purposes of our design, we refer to
that signal as garbage. Since all garbage must be used, we are naturally very interested in
functions that can be computed without generating any. Clearly, if afunction is not
reversible it cannot be computed without garbage, for there must be extra outputs to contain
the input information not contained in the function. Thus, the question that we would like
to answer is "For what reversible functions can aCL circuit be contructed that computes
that function without any extra inputs or outputs?" We will restrict our discussion in this
s e c t i o n t o c o m b i n a t i o n a l c i r c u i t s .

Another interesting (although somewhat less important) question we would like to
answer is "What other gates could we have chosen as the basis for Conservative Logic?" As
we will see, there are 16,777,216 ways of selecting 3Boolean functions of 3variables; we
would like to know if the two that we have chosen are the simplest, or the most interesting,
or the most powerful of the ones we could have picked. In fact, we will show that they are
the only ones (that conserve bits)! We will do this before returning to our main question.

Conservative Logic 15 T h e o r e t i c a l R e s u l t s

Agate with 3binary input wires and 3binary output wires has 2̂ =8possible input
and output states. The purpose of agate is to map each input state into some output state.
In general, for each of the eight inputs states there are eight possible output states, giving 8
=16,777,216 possible gates. Most of these gates are not reversible, however. To be reversible,
each input must map into adifferent output. There are 8! =40320 ways to sepecify such a
mapping, the number of permutations of eight things.

8

If agate is going to conserve bits, input states may only map into output states with
the same number of I’s and O’s, like this:

{000} -> { 0 0 0 }
{001,010,100} -> { 0 0 1 , 0 1 0 , 1 0 0 }
{011, 101, 110} { 0 11 , 1 0 1 , 11 0 }- >

{ 1 1 1 } - > { 1 1 1 }

o o

There are T3 31=729 such mappings. Finally, if agate is to conserve both bits and
information, each of the mappings shown above must be 1to 1, giving 3!'3! =36 possibilities.
These observations are summarized in the following table:

c o n s e r v e

i n f o r m a t i o n

n o y e s

conserve no| 16, 777,216 | 4 0 3 2 0
bits I +

7 2 9 1y e s j 3 6

So we see that there are 36 3-input/3-output bit and information conserving gates,
although since we have counted any fixed rearrangement of the input or output wires as a
seperate gate, many of these might be equivalent. One of them certainly is the identity gate
(i.e the outputs just copy the inputs), for this function clearly conserves bits and is reversible.
In fact w'e have counted 6of these, corresponding to the 6possible permutations of the 3
output wires. The identity gate is not universal, however, so it cannot serve as the basis for
CL. The selector gate must surely be included, since we know that it conserves both
quantities. We have counted 18 of these, corresponding to 6permutations of the outputs for
each of 3choices of the control input. Similarly, we have counted 12 SMP gates,
corresponding to 6permutations of the outputs for each of 2choices of the controlling
condition (rotate down on even or odd parity, for example}. Since we have covered each of
the 36 possibilities, we have shown the following theorem:

Tlioerem 1. There are exactly two bit-conserving, information conserving, universal 3-
input/3-output gates. These are the selector gate and the symmetric majority/parity gate.

Conservative Logic 16 T h e o r e t i c a l R e s u l t s

There are in fact many reversible gates that do not conserve bits, and we could in principal
use one of those as abasis for CL. None of them are as simple as the bit-conserving ones,
however, so we have not investigated any of them in any detail.

Returning to our main question, we first notice that except for time delays, we can
make an SMP gate out of selector gates without any garbage, as shown in Figure 7.
Similarly, we can make aselector gate out of SMP gates without garbage, as shown in
Figure 8. Notice the constant feedback that was used in making the selector gate. The
constant 1was needed to generate the desired function, but since the circuit generates a1
itself we can connect these two points and avoid the need to regard them as inputs and
outputs. In fact, it is easy to show that no loop-free SMP circuit can generate the selector
gate without garbage.

B,C

c, A
C b , B

A >
HB >

■|>C > I

F igure 7 -SMP ga te made ou t o f se lec to r ga tes

i >

\ fi{>C >
-1 R-i>6,C■oB >

-!>

R >

4

F igure 8-Se lec tor ga te made ou t o f SMP gates .

An interesting historical note is that while the circuit of Figure 7was found easily, for
along time it was not known whether acircuit like Figure 8could be made at all.
Considerable effort was expended both trying to prove that it couldn’t be done and trying to

Conservative Logic 17 T h e o r e t i c a l R e s u l t s

find one. The question was finally settled with acircuit that used nine gates. The circuit
given above was found and shown minimal in number of gates by exhaustive search with a
computer program written by Guy Steele.

We know that alt CL circuits are reversible, but as pointed out in Section 1this does
not necessarily imply that the inverse of afunction can be computed forward in time. We
will now show that this can be done for any loop-free circuit made out of selector gates, by
constructing a"mirror-image" circuit (for the rest of this secton we assume that the circuits
mentioned are made out of selector gates only).

Lemma 1. If aloop-free circuit can be constructed that produces outputs Fj from inputs Xj,
then acircuit can be constructed that produces Xj from Fj (with no extra inputs or outputs).

Proof: The proof is by induction on the number nof gates in the circuit that generates the
Fj’s from the Xj’s.
Basis: The only one gate circuit is the gate itself, which happens to be its own inverse:

A > - - T T - l A

A-^B, C>-- - I B

A->Cj B>— - I c

Induction: Assume the theorem for n=k. Consider any loop-free circuit Cwith k+1
gates. Since the circuit is loop-free and contains afinite number agates, there must be
at least one gate whose three outputs are all outputs of the circuit. Select any such gate,
call it G, and consider the circuit C’ with Gremoved. Let the outputs of C’ be Fj’.
Now C’ is ak-gate circuit that produces Fj’ from Xj, and Gis aone gate circuit that
produces Fj from Fj’. By the induction hypothesis we can make Xj from Fj’, and we
can certainly make Fj’ from Fj using Gitself. Therefore, we can make Xj from Fj and
since we introduced no extra inputs or outputs in the construction, we have the
t h e o r e m .

We can now extend this lemma to any combinational circuit.

Theorem 2. If Fj can be produced from Xj by any combinational circuit, then there exists a
circuit to produce Xj from Fj.

Proof: Acombinational circuit Cin general may have some constant feedback signals Kj.
Consider the equivalent loop-free circuit made by breaking all of the feedback loops.
This new circuit C’ will have inputs Kj in addition to the Xj’s, and produce the Kj’s as

Conservative Logic 18 T h e o r e t i c a l R e s u l t s

output in addition to the Fj’s. By Lemma 1we can construct acircuit to produce Xj
and Kj from Fj and Kj. We can now reconnect the input and output Kj’s and we are
d o n e .

We now show avery general way to use garbage generated in acircuit, namely to
turn that garbage back, into the original inputs (see Figure 9).

X I > — - I X I

> —

X n > — — I X n

1 > — — I F (X l , . . . , X n)

0 > — — I F (X l , . . . , X n)

F igu re 9 -Genera l f unc t i on box tha t can be made w i th no ga rbage

Theorem 3. The circuit of Figure 9can be consrtucted for any Boolean function F.

Proof: Since the gate is universal, acirciut can be constructed that takes as input the Xj’s,
and possibly some constants Kj, and produces outputs Fj one of which is the desired
function F. We then use our spy circuit as follows:

F > - T I FT

1 > — - I F

0 > — - I F

Using an extra 1and 0, we have copied Fand produced an --F. By Theorem 2, we can
use the original Ftogether with the rest of the Fj’s to get back the Xj’s and the Kj’s.
Finally, we connect the output Kj’s to where they are needed as input, and we are done.

Before we can show our main resu l t we need to show that we can bu i ld ac i rcu i t that

Conservative Logic 19 T h e o r e t i c a l R e s u l t s

acts like ageneral permutation box.

Lemma 2- Given any set of signals Xj, acircuit can be constructed that takes those signals
and some number of control signals Cj as input and produces as output the Cj’s and any
permutation Pj of the Xj’s by appropriate settings of the Cj’s.

Proof: The proof is by induction on the number nof signals in the set Xj (n>l).
Basis: For n=2, we observe that the gate can generate both permutations of its 2nd
and 3rd inputs by appropriatly setting the first.

Induction: Assume the lemma for n=k. Figure 10 shows how to use ak-signal
permutter to make ak+l-signal permutter (this construction is not very efficient, but
existance is all that we are trying to show). The circuit works by building anetwork
that allows the k+lst signal to be inserted anywhere among the outputs of the k-signal
permutter. All of the control signals needed as input are produced as output, and no
extra inputs or outputs are generated.

I C■Jl+i

i P1

y, >
I C

Vv'S\<̂ rol
pe-cfouf-ltr

t c
c,> ■JtyK

^Pk.
\ P K-t- i

c „ >
s

f c

F i g u r e 1 0 - C o n s t r u c t i o n f o r t h e p e r m u t a t i o n b o x

Now for the main result and its consequences.

Conservative Logic 2 0 T h e o r e t i c a l R e s u l t s

Theorem 4. If Fj is any set of functions of the set Xj that conserve bits and information, a
circuit can be constructed that generates the Fj’s from the Xj’s.

Proof: Since Fj is abit conserving function of Xj, any particular value of Fcan be viewed
as just apermutation of the corresponding input bits of X. The permutation may be
different for each of the possible input values, but it is in fact uniquely determined by
the input. Thus, by using the permutation box of Lemma 2we can build acircuit that
produces Fj from Xj and an appropriate set of control signals Cj, which are themselves
some function of Xj. Since Fj is an information conserving function, Xj is afunction
of Fj and so Cj must also be afunction of Fj. Therefore, by Theorem 3we can
generate Cand -iC from either Xor Fand nI’s and nO’s, where nis the number of
signals in C. By Theroem 2we can then generate Fand the constants from F, C, and
-■C. Putting this all together as shown in Figure 11, we see that we have in fact
generated Fj from Xj without any extra inputs or outputs.

Fa+
^ - n

+2 .

A- Signal ■ w" A .■ r \

c ;
4 -

K K.

C x
■4- 0i -
K

K

F igure 11 -B lock d iagram for proof o f Theorem 4

Corollary 4.1. Any bit and information conserving function can be generated by acircuit of
SMP gates with no extra inputs or outputs.

Corollary 4.2. If Fis any information conserving set of functions of X, the following circuit
can be made without garbage:

X > — - I F

X > — - I F

We have shown the strongest result possible, that afunction can be generated from

% Conservative Logic 21 T h e o r e t i c a l R e s u l t s

either of our two gates if and only if that function is reversible and bit conserving. If our
interconnection rules had been too restrictive, or our gates not powerful enough, this might
not have been possible.

