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A new kind of cipher that would

take millions of years to break

by Martin Gardner

i v . ;

"Few persons can be made to believe
that it is not quite an easy thing to invent
a method of secret writing which shall
baffle investigation. Yet it may be
roundly asserted that human ingenuity
cannot concoct a cipher which human
ingenuity cannot resolve."

—EDGAR ALLAN POE

The upward creep of postal rates
accompanied by the deterioration
of postal service is a trend that

> inay or may not continue, but as far as
"[most private communication is con-
cerned, in a few decades it probably will
«ot; matter. The reason is simple. The

: transfer of information will probably be
much faster and much cheaper by "elec-
tronic mail" than by conventional postal

- systems. Before long it should be possi-
ble to go to any telephone, insert a mes-
sage into an attachment and dial a num-
ber. The telephone at the other end will
print out the message at once.

Government agencies and large busi-
nesses will presumably be the first to
make extensive use of electronic mail,
followed by small businesses and pri-
vate individuals. When this starts to
happen, it will become increasingly de-

. sirable to have fast, efficient ciphers to
safeguard information from electronic
eavesdroppers. A similar problem is in-
volved in protecting private information
stored in computer memory banks from
snoopers who have access to the mem-

. ory through data-processing networks.
It is hardly surprising that in recent

years a number of mathematicians have
asked themselves: Is it possible to devise
a cipher that can be rapidly encoded and
decoded by computer, can be used re-
peatedly without changing the key and
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A Caesar cipher with a 10-shift

is unbreakable by sophisticated crypt-
analysis? The surprising answer is yes.
The breakthrough is scarcely two years
old, yet it bids fair to revolutionize the
entire field of secret communication. In-

' deed, it is so revolutionary that all previ-
ous ciphers, together with the tech-
niques for cracking them, may soon
fade into oblivion.

An unbreakable code can be unbreak-
able in theory or unbreakable only in
practice. Edgar Allan Poe, who fancied
himself a skilled cryptanalyst, was con-
vinced that no cipher could be invented
that could not also be "unriddled." Poe
was certainly wrong. Ciphers that are
unbreakable even in theory have been in
use for half a century. They are "one-
time pads," ciphers that are used only
once, for a single message. Here is a sim-
ple example based on a shift cipher,
sometimes called a Caesar cipher be-
cause Julius Caesar used it.

First write the alphabet, followed by
the digits 0 through 9. (For coding pur-
poses 0 represents a space between
words, and the other digits are assigned
to punctuation marks.) Below this write
the same sequence cyclically shifted to
the right by an arbitrary number of
units, as is shown in color in the illustra-
tion on this page. Our cipher consists in
taking each symbol in the plaintext (the
message), finding it in the top row, and
replacing it with the symbol directly be-
low it. The result is a simple substitution
cipher, easily broken by any amateur.

In spite of its simplicity, a shift cipher
can be the basis of a truly unbreakable
code. The trick is simply to use a dif-
ferent shift cipher for each symbol in
the plaintext, each time choosing the
amount of shift at random. This is easily
done with the spinner shown in the top
illustration on the opposite page. Sup-
pose the first word of plaintext is THE.
We spin the arrow and it stops on K. This
tells us to use for encoding T a Caesar
cipher in which the lower alphabet is
shifted 10 steps to the right, bringing A
below K as is shown in the illustration.
T, therefore, is encoded as J. The same
procedure is followed for every symbol
in the plaintext. Before each symbol is

encoded, the arrow is spun and the low-
er sequence is shifted accordingly. The
result is a ciphertext starting with j and
a cipher "key" starting with K. Note
that the cipher key will be the same
length as the plaintext.

To use this one-time cipher for send-
ing a message to someone—call him Z—
we must first send Zthe key. This can be
done by a trusted courier. Later we send
to Z, perhaps by radio, the ciphertext. Z
decodes it with the key and then de-
stroys the key. The key must not be used
again because if two such ciphertexts
were intercepted, a cryptanalyst might
have sufficient structure for breaking
them.

It is easy to see why the one-time ci-
pher is uncrackable even in principle.
Since each symbol can be represented
by any other symbol, and each choice of
representation is completely random,
there is no internal pattern. To put it
another way, any message whatever
having the same length as the ciphertext
is as legitimate a decoding as any other.
Even if the plaintext of such a coded
message is found, it is of no future help
to the cryptanalyst because the next
time the system is used the randomly
chosen key will be entirely different.

One-time pads are in constant use to-
day for special messages between high
military commanders, and between gov-
ernments and their high-ranking agents.
The "pad" is no more than a long list of
random numbers, perhaps printed on
many pages. The sender and receiver
must of course have duplicate copies.
The sender uses page 1 for a cipher, then
destroys the page. The receiver uses his
page 1 for decoding, then destroys his
page. When the Russian agent Rudolf
Abel was captured in New York in
1957, he had a one-time pad in the form
of a booklet about the size of a postage
stamp. David Kahn, who tells the story
in his marvelous history The Codebreak-
ers, says that the one-time pad is the
standard method of secret radio com-
munication used by the U.S.S.R. The fa-
mous "hot line" between Washington
and Moscow also makes use of a one-
time pad, the keys being periodically de-
livered through the two embassies.

If the one-time pad provides absolute
secrecy, why is it not used for all secret
communication? The answer is that it is
too impractical. Each time it is em-
ployed a key must be sent in advance,
and the key must be at least as long as
the anticipated message. "The problem
of producing, registering, distributing
and canceling the keys," writes Kahn,
"may seem slight to an individual who
has not had experience with military
communications, but in wartime the
volumes of traffic stagger even the signal
staffs. Hundreds of thousands of words
may be enciphered in a day; simply to
generate the millions of key characters
required would be enormously expen-
sive and time-consuming. Since each

messaj
cation
shippii
equiva
volum

Let i
ing it i
peated
Until r
kind v
breaka
has en<
Then i
propos
ation \
"unbre
from t
known
cipher;
in the
practic
strong!
ly desi;
ciple tl
but on]
for mi]

The
marka
Dime
electric
sity. T
by the
in 197
per "N
(IEEE
ory, Ni
Hellm;
able ci
sendin;
the mi
can be
they c;
and th
provid
unlike
forged
from y
A actu
As sig
eavesd

The;
made ]
man c;
Such a
erties:
teger x
it has a
back ti
for col
tion an
tion a
known
to disc

The
that gi'
a trapi
hard H
possibJ
less on
is hide
"trapd'
cannot
the bui



message must have its unique key, appli-
cation of the ideal system would require
shipping out on tape at the very least the
equivalent of the total communications
volume of a war."

Let us qualify Poe's dictum by apply-
ing it only to ciphers that are used re-
peatedly without any change in the key.
Until recently all cipher systems of this
kind were known to be theoretically
breakable provided the code breaker
has enough time and enough ciphertext.
Then in 1975 a new kind of cipher was
proposed that radically altered the situ-
ation by supplying a new definition of
"unbreakable," a definition that comes
from the branch of computer science
known as complexity theory. These new
ciphers are not absolutely unbreakable
in the sense of the one-time pad, but in
practice they are unbreakable in a much
stronger sense than any cipher previous-
ly designed for widespread use. In prin-
ciple these new ciphers can be broken,
but only by computer programs that run
for millions of years!

The two men responsible for this re-
markable breakthrough are Whitfield
Difne and Martin E. Hellman, both
electrical engineers at Stanford Univer-
sity. Their work was partly supported
by the National Science Foundation
in 1975 and was reported in their pa-
per "New Directions in Cryptography"
(IEEE Transactions on Information The-
ory, November, 1976). In it Dime and
Hellman show how to create unbreak-
able ciphers that do not require advance
sending of a key or even concealment of
the method of encoding. The ciphers
can be efficiently encoded and decoded,
they can be used over and over again
and there is a bonus: the system also
provides an "electronic signature" that,
unlike a written signature, cannot be
forged. If Zreceives a "signed" message
from A, the signature proves to Z that
A actually sent the message. Moreover,
A's signature cannot be forged by an
eavesdropper or even by Z himself!

These seemingly impossible feats are
made possible by what Dime and Hell-
man call a trapdoor one-way function.
Such a function has the following prop-
erties: (1) it will change any positive in-
teger x to a unique positive integer y; (2)
it has an inverse function that changes y
back to x; (3) efficient algorithms exist
for computing both the forward func-
tion and its inverse: (4) if only the func-
tion and its forward algorithm are
known, it is computationally infeasible
to discover the inverse algorithm.

The last property is the curious one
that gives the function its name. It is like
a trapdoor: easy to drop through but
hard to get up through. Indeed, it is im-
possible to get up through the door un-
less one knows where the secret button
is hidden. The button symbolizes the
"trapdoor information." Without it one
cannot open the door from below, but
the button is so carefully concealed that
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Randomizer for encoding a "one-time pad"

the probability of finding it is practically
zero.

Before giving a specific example, let
us see how such functions make the new
cryptographic systems possible. Sup-
pose there is a group of businessmen
who want to communicate secrets to one
another. Each devises his own trapdoor
function with its forward and backward
algorithms. A handbook is published in
which each company's encoding (for-
ward) algorithm is given in full. The de-
coding (inverse) algorithms are kept se-
cret. The handbook is public. Anyone
can consult it and use it for sending a
secret message to any listed company.

Suppose you are not a member of the
group but you want to send a secret mes-
sage to member Z First you change
your plaintext to a long number, using a
standard procedure given in the hand-
book. Next you look up Z's forward al-
gorithm and your computer uses it for
rapid encoding of the ciphertext. This
new number is sent to Z. It does not
matter at all if the ciphertext is over-
heard or intercepted because only Z
knows his secret decoding procedure.
There is no way a curious cryptanalyst,
studying Z's public encoding algorithm,
can discover Z's decoding algorithm. In
principle he might find it, but in practice
that would require a supercomputer and
a few million years of running time.

An outsider cannot "sign" a message
to Z, but any member of the group can.

Here is the devilishly clever way the sig-
nature works. Suppose A wants to sign a
message to Z. He first encodes the plain-
text number by using his own secret in-
verse algorithm. Then he encodes the
ciphertext number a second time, using
Z's public algorithm. After Z receives
the ciphertext he first transforms it by
applying his own secret decoding algo-
rithm, then he applies A s public encod-
ing algorithm. Out comes the message!

Z knows that only A could have sent
this doubly encoded ciphertext because
it made use of A s secret algorithm. A *s
"signature" is clearly unforgeable. Z
cannot use it to send a message purport-
ing to come from A because Z still does
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The answers to last month's bisection problems
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Dividing polyominoes into four congruent parts

not know ,4 's secret decoding algorithm.
Not only that, but if it were to become
necessary at some future time to prove
to a third party, say a judge in a court of
law, that A did in fact send the message,
this can be done in a way that neither A,
Z nor anyone else can dispute.

Dime and Hellman suggested in their
paper a variety of trapdoor functions
that might be used for such systems.
None is quite what is desired, but early
this year there was a second break-
through. Ronald L. Rivest, Adi Shamir
and Leonard Adleman, computer scien-
tists at the Massachusetts Institute of
Technology, developed an elegant way
to implement the Diffie-Hellman system
by using prime numbers.

Rivest obtained his doctorate in com-
puter science from Stanford University
in 1973 and is now an associate profes-
sor at M.I.T. Once he had hit on the
brilliant idea of using primes for a pub-
lic cipher system, he and his two collab-
orators had little difficulty finding a sim-
ple way to do it. Their work, supported
by grants from the NSF and the Office of
Naval Research, appears in On Digital
Signatures and Public-Key Cryptosystems
(Technical Memo 82, April, 1977), is-
sued by the Laboratory for Comput-
er Science, Massachusetts Institute of
Technology, 545 Technology Square,
Cambridge, Mass. 02139. The memo-
randum is free to anyone who writes
Rivest at the above address enclosing
a self-addressed, 9-by-12-inch clasp en-
velope with 35 cents in postage.

To explain Rivest's system we need a
bit of background in prime-number the-
ory. The fastest-known computer pro-
grams for deciding whether a number is
prime or composite (the product of
primes) are based on a famous theory of
Fermat's stating that if p is prime, and a
is any positive number less than p. then
ap-\ = i (modulo p). Suppose we want
to test a large odd number n (all primes
except 2 are of course odd) for primali-
ty. A number a is selected at random
and raised to the power of n — 1, then
divided by n. If the remainder is not
1, n cannot be prime. For example,
22i-i = 4 (modulo 21), therefore 21 is
composite. What, however, is the con-
nection between 2 (the randomly chosen
a) and 3 and 7, the two prime factors of
21? There seems to be no connection
whatever. For this reason Fermat's test
is useless in finding prime factors. It
does, however, provide a fast way of
proving that a number is composite.
Moreover, if an odd number passes the
Fermat test with a certain number of
random as, it is almost certainly prime.

This is not the place to go into more
details about computer algorithms for
testing primality, which are extremely
fast, or algorithms for factoring com-
posites, all of which are infuriating-
ly slow. I content myself with the fol-
lowing facts, provided by Rivest. They
dramatize the staggering gap in the re-



quired computer time between the two
kinds of testing. For example, to test a
130-digit odd number for primality re-
quires at the most (that is, when the
number actually is prime) about seven
minutes on a PDP-10 computer. The
same algorithm takes only 45 seconds to
find the first prime after 2200. (It is a 61-
digit number equal to 2200 + 235.)

Contrast this with the difficulty of
finding the two prime factors of a 125-
or 126-digit number obtained by multi-
plying two 63-digit primes. If the best
algorithm known and the fastest of to-
day's computers were used, Rivest esti-
mates that the running time required
would be about 40 quadrillion years!
(For a good discussion of computer
methods of factoring into primes, see
Donald E. Knuth's Seminumerical Algo-
rithms, Section 4.5.4.) It is this practical
impossibility, in any foreseeable future,
of factoring the product of two large
primes that makes the M.I.T. public-key
cipher system possible.

To explain how the system works, the
M.I.T. authors take as an example of
plaintext a paraphrase of a remark in
Shakespeare's Julius Caesar (Act 1,
Scene 2): ITS ALL GREEK TO ME.

This is first changed to a single num-
ber, using the standard key: A = 01, B
= 02 z = 26, with 00 indicating a
space between words. The number is
09201900011212000718050511002015
001305.

The entire number is now encoded by
raising it to a fixed power s, modulo a
certain composite number r. The com-
posite r is obtained by randomly select-
ing (using a procedure given in the
M.I.T. memorandum) two primes, p and
q, each of which is at least 40 digits long,
and multiplying them together. The
number s must be relatively prime to
p - 1 and q - 1. Numbers s and r are
made public, to be used in the encoding
algorithm. The encoding operation can
be done very efficiently even for enor-
mous values of r; indeed, it requires less
than a second of computer time.

The two prime factors of r are with-
held, to play a role in the secret inverse
algorithm. This inverse algorithm, used
for decoding, consists in raising the ci-
phertext number to another power /,
then reducing it to modulo r. As before,
this takes less than a second of computer
time. The number /, however, can be
calculated only by someone who knows
p and q, the two primes that are kept
secret.

If the message is too long to be han-
dled as a single number, it can be broken
up into two or more blocks and each
block can be treated as a separate num-
ber. I shall not go into more details.
They are a bit technical but are clearly
explained in the M.I.T. memo.

To encode ITS ALL GREEK TO ME,
the M.I.T. group has chosen s = 9,007
and r = 1143816257578888676692357
79976146612010218296721242362562
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Solutions to four equal-division problems

56184293570693524573389783059712
35639587050589890751475992900268
79543541.

The number r is the product of a
64-digit prime p and a 65-digit prime q,
each randomly selected. The encoding
algorithm changes the plaintext num-
ber (09201...) to the following cipher-
text number: 1999$ 513\149780510045
23171227402606474232040170583914
63103703717406259716089489275043
09920962672582675012893554461353
823769748026.

As a challenge to Scientific American
readers the M.I.T. group has encoded
another message, using the same public
algorithm. The ciphertext is shown in
the bottom illustration on page 121. Its
plaintext is an English sentence. It was
first changed to a number by the stan-
dard method explained above, then the
entire number was raised to the 9,007th
power (modulo r) by the shortcut meth-
od given in the memorandum. To the
first person who decodes this message
the M.I.T. group will give $100.

To prove that the offer actually comes
from the M.I.T. group, the following
signature has been added: 1671786 v\ 5
031808442460152t713 89168$ 982^54369
01D32 J15 83 hi 21783 5O0'8446929j)626l55

£792£37llr4490S09}5786p865lS662y9
\ ^ 84dj)040$702P3 73.
The signature was encoded by using

the secret inverse of the encoding algo-
rithm. Since the reader has no public en-
coding algorithm of his own, the second
encoding operation has been omitted.
Any reader who has access to a comput-
er and the instructions in the M.I.T.

memorandum can easily read the signa-
ture by applying the M.I.T. group's
public encoding algorithm, that is, by
raising the above number to the power
of 9,007, then reducing it to modulo r.
The result is 060918192000191512220
51800230914190015140500082114041
805040004151212011819. It translates
(by the use of the standard key) to FIRST
SOLVER WINS ONE HUNDRED DOLLARS.
This signed ciphertext could only come
from the M.I.T. group because only its
members know the inverse algorithm
by which it was produced.

Rivest and his associates have no
proof that at some future time no one
will discover a fast algorithm for factor-
ing composites as large as the r they used
or will break their cipher by some other
scheme they have not thought of. They
consider both possibilities extremely re-
mote. Of course any cipher system that
cannot be proved unbreakable in the ab-
solute sense of one-time pads is open to
sophisticated attacks by modern crypt-
analysts who are trained mathemati-
cians with powerful computers at their
elbow. If the M.I.T. cipher withstands
such attacks, as it seems almost certain it
will, Poe's dictum will be hard to defend
in any form.

Even in the unlikely event that the
M.I.T. system is breakable there are
probably all kinds of other trapdoor
functions that can provide virtually un-
breakable ciphers. Dime and Hellman
are applying for patents on cipher devic-
es based on trapdoor functions they
have not yet disclosed. Computers and
complexity theory are pushing cryptog-
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A bilaterally symmetric tetrad with 18 sides

raphy into an exciting phase, and one
that may be tinged with sadness. All
over the world there are clever men and
women, some of them geniuses, who
have devoted their lives to the mastery
of modern cryptanalysis. Since World
War II even those government and mili-
tary ciphers that are not one-time pads
have become so difficult to break that
the talents of these experts have gradu-
ally become less useful. Now these peo-
ple are standing on trapdoors that are
about to spring open and drop them
completely from sight.

The top illustration on page 122
shows how the 12 shapes given last

month can be divided into congruent
halves. The bottom illustration on the
same page shows how nine, of the 12
order-5 polyominoes can be dissected
into the same four congruent parts. The
three blank polyominoes cannot be cut
into four congruent parts of any shape.

The illustration on the preceding page
answers the four problems at the end of
last month's column. To bisect the nine
squares draw the 10th square shown
with broken lines. Rule AB to get point
C, then join P to C. If the squares have

sides of length 1, then CD equals 1/4,
and it is easy to see that PC bisects the
original figure. To bisect the five circles
add three additional circles as shown by
the broken lines. The line through the
centers of two circles obviously halves
the total area. (Both problems are from
A Problem a Day, by R. M. Lucey, Pen-
guin Books, 1937.)

The hexagon at the bottom is trisected
by joining /"to Cand D. the midpoints of
two sides. Assume that the equilateral
triangles have areas of 1. The area of
PAB is 1, therefore the area of PBE is 2
and the rest follows. I was unable to find
any comparably simple way to trisect a
regular pentagon with a line through a
corner.

The middle two hexagons show how
Leo Moser proved that the minimum-
length curve bisecting an equilateral tri-
angle is the arc of a circle. Whatever the
shape of the bisecting curve, it will form
a closed curve if the triangle is reflected
around one vertex as is shown. Such a
curve cuts the hexagon in half, and it has
a fixed area. The figure of minimum pe-
rimeter that encloses a given area is the
circle, therefore the minimum-length
bisecting curves inside each triangle are
arcs of a circle. (This exercise is from
Mathematical Quickies, by Charles W.
Trigg, McGraw-Hill, 1967.)

Comments on the mail response to
April's short problems follow:

The generalization of the pool-ball
problem to triangles of order n, bearing
consecutive numbers starting with 1, has
been solved. Herbert Taylor found an
ingenious way to prove that no TAD
(triangle of absolute differences) could
be made with triangular arrays of order
9 or higher. Computer programs elimi-
nated TAD's of orders 6, 7 and 8, there-
fore the unique solution for the 15 pool
balls is the largest TAD of this type.

A Cipher that Defeated Poe
"Ge Jeasgdxv,

Zij gl mw, laam. xzy zmlwhfzek
ejlvdxw kwke tx lbr atgh lbmx aanu
bai Vsmukkss pwn vlwk agh gnumk
wdlnzweg jnbxw oaeg enwb zwmgy
mo mlw wnbx mw al pnfdcfpkh wzkex
hssf xkiyahul. Mk num yexdm wbxy
sbc hv wyx Phwkgnamcuk?"

In 1839, in a regular column Edgar
Allan Poe contributed to a Philadelphia

•periodical, Alexander's Weekly Messen-
ger, Poe challenged readers to send him
{cryptograms (monoalphabetic substitu-
tion ciphers), asserting that he would
solve them all "forthwith." One G. W.
Kulp submitted a ciphertext in longhand.
It was printed as shown above in the is-
sue of February 26, 1840. Poe "proved "
in a subsequent column that the cipher

• was a hoax—"a jargon of random char-

acters having no meaning whatsoever."
In 1975 Brian J.Winkel, a mathemati-

cian at Albion College, and Mark Lys-
ter, a chemistry major in Winkel's cryp-
tology class, cracked Kulp's cipher. It is
not a simple substitution—Poe was right
—but neither is it nonsense. Poe can
hardly be blamed for his opinion. In ad-
dition to a major error by Kulp there are
15 minor errors, probably printer's mis-
takes in reading the longhand.

Winkel is an editor of a new quarterly,
Cryptologia, available from Albion Col-
lege, Albion, Mich. 49224, at $16 per
year. The magazine stresses the mathe-
matical and computational aspects of
cryptology. The first issue (January.
1977) tells the story of Kulp's cipher and
gives it as a challenge to readers. So far
only three readers have broken it. I shall
give the solution next month.

Solomon W. Golomb proposed three
candidates for further investigation:

1. If all numbers in a TAD of order
greater than 5 are distinct but not con-
secutive, how big is the largest number
forced to be? (Example: An order-6
TAD is possible with the largest number
as low as 22.)

2. Using all numbers from 1 to k, but
allowing repeats, how big can k b,e in a
TAD of order n?(Example: An order-6
TAD is possible with k as high as 20.)

3. For what orders is it possible to
form a TAD modulo m, where m is the
number of elements in the triangle and
the numbers are consecutive from 1 to
m?Each difference is expressed modulo
m. Such triangles can be rotated so that
every element below the top row is the
sum (modulo m) of the two numbers
above it. Here, in rotated form, are the
four order-4 solutions:

1694 2783 6149 7238
753 951 753 951
28 46 28 46
0 0 0 0

A backtrack program by Golomb and
Taylor found no solution for order 5.
Col. George Sicherman, who invented
the original pool-ball problem, reports a
computer proof of impossibility for or-
der 6. Higher orders remain open.

Robert Ammann, Greg Frederickson
and Jean L. Loyer each found an 18-sid-
ed polygonal tetrad with bilateral sym-
metry [see illustration on this page],
thus improving on the 22-sided solution
I had published.

Dan Eilers, Allen I. Janis, Scott Kim,
P. H. Lyons, Robert Mathews (with
Martin G. Wallser), James Newton and
Mike Tempest each found a second so-
lution (there are no more) for the lost-
king tour on the order-5 square.

When I ended the column with limer-
icks of decreasing length, I referred to
the one-line limerick as the "last of
four." Draper L. Kauffman, John Little,
John McKay, Thomas D. Nehrer and
James C. Vibber were the first of many
who told me I should have called it the
last-but-one of five. The fifth, of course,
has no lines, which is why other readers
failed to notice it.

Tom Wright of Ganges, British Co-
lumbia, wrote: "I was interested in the
limerick paradox, particularly in the de-
creasing two-line and one-line limericks.
I wondered if you had, in fact, added the
no-line limerick (about the man from
Nepal), and I looked minutely to see if it
wasn't there. On examination, my first
impulse was to assume that it was in-
deed not there, since no space was pro-
vided, but further cogitation suggested
that a no-line poem, requiring no space,
might indeed be there. Unable to resolve
this paradox by any logical proof, I am
abjectly reduced to asking you whether
or not a no-line limerick was not printed
in the space not provided, or not."
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