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Introduction

Introduction

o Java runtime uses automatic memory management
o Developers no longer control data lifetimes

o Sensitive data cannot be explicitly destroyed

o Multiple copies can be created
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Introduction

Research Questions

o How many secrets are retained?

o Should we be concerned?

o Can we fix the problem (without vendor intervention)?
o Is our solution useful?
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Background

Related Work

o Viega explains the insecurity of managed runtimes [1]
o Chow et al. solve secure deallocation on Unix [2, 3]

o CleanOS: Objects encrypted using a shared key [4]

o Anikeev et al. focuses on Android’s collector [5]

o Li shows RSA keys are retrievable in Python [6]
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Background

Generational GC Heap Overview RICE

o Tracing GC: Looking for live objects from a set of roots
o Heap engineered for expected object life-time
o Partitions managed to meet performance goals

oung Generation enured Generation

Survivor||Survivor

Space Space

Figure: Typical generational heap layout.
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Background

Generational GC Heap Overview

o low- or out-of-memory events trigger collection

o GCvs. Full GC
o Young generation: copy or mark-sweep-copy
o Tenure generation: mark-sweep-compact

oung Generation enured Generation

Survivor|[Survivor

Space Space

Figure: Typical generational heap layout.
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Background

Generational GC Heap Overview

o Promote objects from one heap to the next one

o Eden Space — Survivor Space
o Survivor Space — Tenure Space

oung Generation enured Generation

Survivor|[Survivor

Space || Space

Figure: Typical generational heap layout.
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Background

Other Factors Affecting Measurement

o GC algorithms and various collection conditions

o Internal JVM memory management system

o Interactions between JVM internals and program data
o Java Native Interface (not evaluated)
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Problem

Unmanaged Data Lifetime Overview
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Figure: Example data lifetime in unmanaged memory.
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Problem

Managed Data Lifetime Overview

Data
JVMGC Dereferenced

a_ Object Copied Latent Secrets
a, Allocation | Data Mutations | Latent Secrets Latent Secrets

Program Execution

Address

Figure: Example data lifetime in managed memory.
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Problem

Why is data being retained?

Object[2]
0x91e541e0 [ 0x00000001 Mark
0x63e32080 Type: Object(]
0x91e541e8 | 0x00000002 Array Size: 2
0x91e541f8 =t= | Ref: Object[0]
0x91b98d68 ] Ref: Object[1]
String
L 0x91e541f8 | 0x00000005 Mark
0x63dba190 Type: String
0x91e541f0 | 0x91e54208 =t=m | Ref: char][]
0x00000000 .I
char[5] = “match”
L 0x91€54208 | 0x00000001 Mark
0x63db4130 Type: char[]
0x91e54210 | 0x00000005 Array Size: 5
0x0061006d
0x91e54218 | 0x00630074
0x00000068

Figure: string[2] on the heap.
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Problem

Why is data being retained? (2

Object[2]
0x91e541e0 [ 0x00000001 Mark
0x63e32080 Type: Object[]
0x91e541e8 | 0x00000002 Array Size: 2
0x91e641£8==m | Ref: Object[0]
0x91698d68 ] Ref: Object(1] l String
. 0x91e641f8 | 0x00000005 Mark
String 0x63dba190 | | |Type: String
0x91e641f0 | 0x91e64208 Ref: char(]
0x91e541f8 | 0x00000000 Mark 0%00000000
0x63dbal90 Type: String
0x91e541f0 | 0x91e54208 Ref: charl[]
0x00000000 char[5] = “group”
” P 0x91e64208 | 0x00000001 Mark
char[5] = ‘match 0x63db4130 Type: charf]
0x91e64210 | 0x00000005 Array Size: 5
0x91e54208 | 0x00000000 Mark 0200720067
0263db4130 | | | Type: charf] 0x91e64218 | 00075006
0x91e54210 [ 0x00000005 Array Size: 5 000000070
0x0061006d
0x91e54218 | 0x00630074
0x00000068

Figure: string[0] is reassigned but the old value remains.
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Approach

Measuring Latent Secrets: Methodology

o Quantify data retention using TLS Keys

o Vary memory pressure
o Use well-known software examples
o Vary heap size 512MiB-16GiB

o Modify HotSpot JVM to perform sanitization
o Re-evaluate data retention
o Measure the performance impacts
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Approach

Measuring Latent Secrets: TLS Clients

Apache HTTP TLS
. ) Apache HTTP - . .
Basic TLS Client . Client with
TLS Client
BouncyCastle
1. Wrap TLS socket 1. Library creates socket 1. Library creates socket
2. Manual HTTP 2. Apache handles the 2. Apache handles the
communication communication communication
3. Rely on the Java 3. Rely on the Java 3. Rely on the BouncyCastle
Cryptography library Cryptography library Cryptography library
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Approach

Measuring Latent Secrets: Memory Pressure  RICE

High Memory Low Memory
Pressure Pressure
1. High Memory Contention 1. Low Memory Contention
2. Consume up to 80% 2. Consume up to 20%
3. 192 requests per running 3. 48 requests per running
session (thread) session (thread)
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Approach

(1) Standard Output Logged

Measuring Latent Secrets: Test Bench

NFS Server

(2) User name, Session ID,

Java Experiments Manager

Java Experiment Session

Initial

(3) TLS PMS Data and
MS Keys Logged

Authentication
Request

Authentication

Web

File Request

File Requests

Standard Output

Linux Virtual Machine

[l
Web Server

Figure: Overview of experiment and captured data.
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Approach

Measuring Latent Secrets: Data Processing RICE

o Dump virtual machine system memory (e.g. RAM)
o Grep RAM for captured TLS key material

o Reconstruct the JVM process memory

o Grep process memory for TLS key material

o Reorder TLS sessions and count keys
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Approach

Reducing Latent Secrets

Failed Approach
o Modify the Java Crytography TLS Routines
o Sanitize out-of-scope references
o Explicit clean-up when sockets close or shutdown
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Approach

Reducing Latent Secrets

Successful Implementation
o Modify the JVM and GC algorithms
o Zero unused space after each collection
o Zero internally managed memory when deallocated
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Approach

Reducing Latent Secrets

Successful Implementation

o Dangling references cannot be collected
o GC must occur on each heap space
o Sanitization may not be timely
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Results

Results - SerialGC HMP
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Figure: TLS keys recovered from HMP clients.
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Results

Results - SerialGC LMP
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(a) Socket Results (b) Apache Results

Figure: TLS keys recovered from LMP clients.
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Results

Results - G1GC Sockets Client
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Figure: TLS keys recovered from Socket clients using G1GC.
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Results

Benchmarking Results
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Figure: Benchmarks show modifications reduced performance.
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Conclusions

Conclusions

o Quantified data retention in the HotSpot JVM

o Measured these secrets in a general manner

o Developed several strategies to reduce latent secrets
o Data security at the expense of performance
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Conclusions

Questions
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