Present but unreachable
Reducing persistent latent secrets in HotSpot JVM

Adam Pridgen ! Simson L. Garfinkel 2 Dan S. Wallach !

'Rice University, Houston, TX, USA

2George Mason University, Fairfax, VA, USA

Hawaii International Conference on System Sciences, 2017

% RICE

Pridgen, Garfinkel, and Wallach Present but unreachable

Introduction

Introduction

o Java runtime uses automatic memory management
o Developers no longer control data lifetimes

o Sensitive data cannot be explicitly destroyed

o Multiple copies can be created

Pridgen, Garfinkel, and Wallach Present but unreachable

Introduction

Research Questions

o How many secrets are retained?

o Should we be concerned?

o Can we fix the problem (without vendor intervention)?
o Is our solution useful?

Pridgen, Garfinkel, and Wallach Present but unreachable

Introduction

Talk Overview

@ Introduction
@ Background
@ Problem
@ Approach

@) Results

@ Conclusions

@ References

Pridgen, Garfinkel, and Wallach Present but unreachable

Background

Related Work

o Viega explains the insecurity of managed runtimes [1]
o Chow et al. solve secure deallocation on Unix [2, 3]

o CleanOS: Objects encrypted using a shared key [4]

o Anikeev et al. focuses on Android’s collector [5]

o Li shows RSA keys are retrievable in Python [6]

Pridgen, Garfinkel, and Wallach Present but unreachable

Background

Generational GC Heap Overview RICE

o Tracing GC: Looking for live objects from a set of roots
o Heap engineered for expected object life-time
o Partitions managed to meet performance goals

oung Generation enured Generation

Survivor||Survivor

Space Space

Figure: Typical generational heap layout.

Pridgen, Garfinkel, and Wallach Present but unreachable

Background

Generational GC Heap Overview

o low- or out-of-memory events trigger collection

o GCvs. Full GC
o Young generation: copy or mark-sweep-copy
o Tenure generation: mark-sweep-compact

oung Generation enured Generation

Survivor|[Survivor

Space Space

Figure: Typical generational heap layout.

Pridgen, Garfinkel, and Wallach Present but unreachable

Background

Generational GC Heap Overview

o Promote objects from one heap to the next one

o Eden Space — Survivor Space
o Survivor Space — Tenure Space

oung Generation enured Generation

Survivor|[Survivor

Space || Space

Figure: Typical generational heap layout.

Pridgen, Garfinkel, and Wallach Present but unreachable

Background

Other Factors Affecting Measurement

o GC algorithms and various collection conditions

o Internal JVM memory management system

o Interactions between JVM internals and program data
o Java Native Interface (not evaluated)

Pridgen, Garfinkel, and Wallach Present but unreachable

Problem

Unmanaged Data Lifetime Overview

o
7
<
°
kel
<

a0 | Allocation | Data Mutations | Sanitization | Deallocation |

Program Execution

Figure: Example data lifetime in unmanaged memory.

Present but unreachable

Pridgen, Garfinkel, and Wallach

Problem

Managed Data Lifetime Overview

Data
JVMGC Dereferenced

a_ Object Copied Latent Secrets
a, Allocation | Data Mutations | Latent Secrets Latent Secrets

Program Execution

Address

Figure: Example data lifetime in managed memory.

Present but unreachable

Pridgen, Garfinkel, and Wallach

Problem

Why is data being retained?

Object[2]
0x91e541e0 [0x00000001 Mark
0x63e32080 Type: Object(]
0x91e541e8 | 0x00000002 Array Size: 2
0x91e541f8 =t= | Ref: Object[0]
0x91b98d68] Ref: Object[1]
String
L 0x91e541f8 | 0x00000005 Mark
0x63dba190 Type: String
0x91e541f0 | 0x91e54208 =t=m | Ref: char][]
0x00000000 .I
char[5] = “match”
L 0x91€54208 | 0x00000001 Mark
0x63db4130 Type: char[]
0x91e54210 | 0x00000005 Array Size: 5
0x0061006d
0x91e54218 | 0x00630074
0x00000068

Figure: string[2] on the heap.

Pridgen, Garfinkel

Problem

Why is data being retained? (2

Object[2]
0x91e541e0 [0x00000001 Mark
0x63e32080 Type: Object[]
0x91e541e8 | 0x00000002 Array Size: 2
0x91e641£8==m | Ref: Object[0]
0x91698d68] Ref: Object(1] l String
. 0x91e641f8 | 0x00000005 Mark
String 0x63dba190 | | |Type: String
0x91e641f0 | 0x91e64208 Ref: char(]
0x91e541f8 | 0x00000000 Mark 0%00000000
0x63dbal90 Type: String
0x91e541f0 | 0x91e54208 Ref: charl[]
0x00000000 char[5] = “group”
” P 0x91e64208 | 0x00000001 Mark
char[5] = ‘match 0x63db4130 Type: charf]
0x91e64210 | 0x00000005 Array Size: 5
0x91e54208 | 0x00000000 Mark 0200720067
0263db4130 | | | Type: charf] 0x91e64218 | 00075006
0x91e54210 [0x00000005 Array Size: 5 000000070
0x0061006d
0x91e54218 | 0x00630074
0x00000068

Figure: string[0] is reassigned but the old value remains.

unreachable

Approach

Measuring Latent Secrets: Methodology

o Quantify data retention using TLS Keys

o Vary memory pressure
o Use well-known software examples
o Vary heap size 512MiB-16GiB

o Modify HotSpot JVM to perform sanitization
o Re-evaluate data retention
o Measure the performance impacts

Pridgen, Garfinkel, and Wallach Present but unreachable

Approach

Measuring Latent Secrets: TLS Clients

Apache HTTP TLS
.) Apache HTTP - . .
Basic TLS Client . Client with
TLS Client
BouncyCastle
1. Wrap TLS socket 1. Library creates socket 1. Library creates socket
2. Manual HTTP 2. Apache handles the 2. Apache handles the
communication communication communication
3. Rely on the Java 3. Rely on the Java 3. Rely on the BouncyCastle
Cryptography library Cryptography library Cryptography library

Pridgen, Garfinkel, and Wallach Present but unreachable

Approach

Measuring Latent Secrets: Memory Pressure RICE

High Memory Low Memory
Pressure Pressure
1. High Memory Contention 1. Low Memory Contention
2. Consume up to 80% 2. Consume up to 20%
3. 192 requests per running 3. 48 requests per running
session (thread) session (thread)

Pridgen, Garfinkel, and Wallach Present but unreachable

Approach

(1) Standard Output Logged

Measuring Latent Secrets: Test Bench

NFS Server

(2) User name, Session ID,

Java Experiments Manager

Java Experiment Session

Initial

(3) TLS PMS Data and
MS Keys Logged

Authentication
Request

Authentication

Web

File Request

File Requests

Standard Output

Linux Virtual Machine

[l
Web Server

Figure: Overview of experiment and captured data.

Pridgen, Garfinkel, and Wallach

Present but unreachable

Approach

Measuring Latent Secrets: Data Processing RICE

o Dump virtual machine system memory (e.g. RAM)
o Grep RAM for captured TLS key material

o Reconstruct the JVM process memory

o Grep process memory for TLS key material

o Reorder TLS sessions and count keys

Pridgen, Garfinkel, and Wallach Present but unreachable

Approach

Reducing Latent Secrets

Failed Approach
o Modify the Java Crytography TLS Routines
o Sanitize out-of-scope references
o Explicit clean-up when sockets close or shutdown

Pridgen, Garfinkel, and Wallach Present but unreachable

Approach

Reducing Latent Secrets

Successful Implementation
o Modify the JVM and GC algorithms
o Zero unused space after each collection
o Zero internally managed memory when deallocated

Pridgen, Garfinkel, and Wallach Present but unreachable

Approach

Reducing Latent Secrets

Successful Implementation

o Dangling references cannot be collected
o GC must occur on each heap space
o Sanitization may not be timely

Pridgen, Garfinkel, and Wallach Present but unreachable

Results

Results - SerialGC HMP

m w0
% 30![un MKB Hits K] wn MKB Hits
28 i PMS Hits 98 ke e
n9 25|| e Unique Keys N9 Unique Keys
c 20! | = Oracle & c e
oL = Modified &1 8510 o
© T 1Tl \\\\\\\\\\\ : II
=015 !
Y \‘\\ L._
o9 \\\\\\\\\\ Ow
o 8 10 & ““v o 8
Fole | :
5 — g
g " e .
" 3
2]

05 1 2 4 8 16

05 1 2 4 8 16
Memory Size in GiB Memory Size in GiB

(a) Socket Results (b) Apache Results

Figure: TLS keys recovered from HMP clients.

Pridgen, Garfinkel, and Wallach Present but unreachable

Results

Results - SerialGC LMP

9] n

® 30| MKB Hits o un MKB Hits
- un “ un

oo i PMS Hits oo 15/ wm PMS Hits
Vo 25) Lo)

no Unique Keys no Unique Keys
= Oracle r=a Oracle
£ 20 racl gc e
5 _5 Modified 5 _5 10 Modified
- 015 -0

Y— Y—

o¢ S0

< 310 <3

(T3]]

29 Qo

Ec Ex

S S

= =4

o U

05 1 2 4 8 16 05 1 2 4 8 16
Memory Size in GiB Memory Size in GiB

(a) Socket Results (b) Apache Results

Figure: TLS keys recovered from LMP clients.

Pridgen, Garfinkel, and Wallach Pres

Results

Results - G1GC Sockets Client

= = N N
o w o (S,

Recovered in 1000s
(9]

Number of Latent Secrets

o

nn MKB Hits
PMS Hits
=== Unique Keys
=== QOracle
Modified

o e

\v“mmmw

s
T

05 1 2 4 8

Memory Size in GiB

(a) HMP Results

w0

%
Sai
Vo
22307
3.525
37820
59015
-~ 0
églo
DCC 5
Z o0

e MKB Hits
PMS Hits

Unique Keys

Oracle
Modified

S
» \)
W\ et
\\\\\\\H\\\H\\\H\\\i “‘
Ly

1 4 8
Memory Size in GiB

(b) LMP Results

0.5 16

Figure: TLS keys recovered from Socket clients using G1GC.

Pridgen, Garfinkel, and Wallach

Presen

ut unreachable

Results

Benchmarking Results

10
— OpenDK — SerialGC @@ 8-CPUs
= Modified v G1GC A4 4-CPUs

-
v

Time in Seconds
=
o

Memory Size in GiB

(a) tradebeans-Day Trader

10
— OpenDK — SerialGC @@ 8-CPUs
15/ — Modified we G1GC A4 4-CPUs

Time in Seconds
=
o

1 2 4 8 16
Memory Size in GiB

(b) 1usearch-Text Searching

Figure: Benchmarks show modifications reduced performance.

Pridgen, Garfinkel, and Wallach Present but unreachable

Conclusions

Conclusions

o Quantified data retention in the HotSpot JVM

o Measured these secrets in a general manner

o Developed several strategies to reduce latent secrets
o Data security at the expense of performance

Pridgen, Garfinkel, and Wallach Present but unreachable

Conclusions

Questions

Pridgen, Garfinkel, and Wallach Present but unreachable

References

[1] J. Viega, “Protecting sensitive data in memory,” 2001.

[2] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum, “Understanding data lifetime via whole
system simulation,” in Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, SSYM’'04,
(Berkeley, CA, USA), pp. 22—22, USENIX Association,
2004.

[3] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum,
“Shredding your garbage: Reducing data lifetime through
secure deallocation,” in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, SSYM'05,
(Berkeley, CA, USA), pp. 22—22, USENIX Association,
2005.

[4] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu,
and N. Sarda, “Cleanos: limiting mobile data exposure with
idle eviction,” in Presented as part of the 10th USENIX

Pridgen, Garfinkel, and Wallach Present but unreachable

Conclusions

Symposium on Operating Systems Design and
Implementation (OSDI 12), pp. 77-91, 2012.

[5] M. Anikeey, F. C. Freiling, J. Gétzfried, and T. Miller,
“Secure garbage collection: Preventing malicious data
harvesting from deallocated java objects inside the dalvik
vm,” Journal of Information Security and Applications,
vol. 22, pp. 81-86, 2015.

[6] Y. Li, “Where in your ram is “python san_diego.py”?,” 2015.

Pridgen, Garfinkel, and Wallach Present but unreachable

	Introduction
	Background
	Problem
	Approach
	Results
	Conclusions
	References

