
Present but unreachable
Reducing persistent latent secrets in HotSpot JVM

Adam Pridgen 1 Simson L. Garfinkel 2 Dan S. Wallach 1

1Rice University, Houston, TX, USA

2George Mason University, Fairfax, VA, USA

Hawaii International Conference on System Sciences, 2017

Pridgen, Garfinkel, and Wallach Present but unreachable 1



Introduction

Introduction RICE

Java runtime uses automatic memory management
Developers no longer control data lifetimes
Sensitive data cannot be explicitly destroyed
Multiple copies can be created

Pridgen, Garfinkel, and Wallach Present but unreachable 2



Introduction

Research Questions RICE

How many secrets are retained?
Should we be concerned?
Can we fix the problem (without vendor intervention)?
Is our solution useful?

Pridgen, Garfinkel, and Wallach Present but unreachable 3



Introduction

Talk Overview RICE

1 Introduction

2 Background

3 Problem

4 Approach

5 Results

6 Conclusions

7 References

Pridgen, Garfinkel, and Wallach Present but unreachable 4



Background

Related Work RICE

Viega explains the insecurity of managed runtimes [1]
Chow et al. solve secure deallocation on Unix [2, 3]
CleanOS: Objects encrypted using a shared key [4]
Anikeev et al. focuses on Android’s collector [5]
Li shows RSA keys are retrievable in Python [6]

Pridgen, Garfinkel, and Wallach Present but unreachable 5



Background

Generational GC Heap Overview RICE

Tracing GC: Looking for live objects from a set of roots
Heap engineered for expected object life-time
Partitions managed to meet performance goals

Figure: Typical generational heap layout.

Pridgen, Garfinkel, and Wallach Present but unreachable 6



Background

Generational GC Heap Overview RICE

low- or out-of-memory events trigger collection
GC vs. Full GC

Young generation: copy or mark-sweep-copy
Tenure generation: mark-sweep-compact

Figure: Typical generational heap layout.

Pridgen, Garfinkel, and Wallach Present but unreachable 6



Background

Generational GC Heap Overview RICE

Promote objects from one heap to the next one
Eden Space → Survivor Space
Survivor Space → Tenure Space

Figure: Typical generational heap layout.

Pridgen, Garfinkel, and Wallach Present but unreachable 6



Background

Other Factors Affecting Measurement RICE

GC algorithms and various collection conditions
Internal JVM memory management system
Interactions between JVM internals and program data
Java Native Interface (not evaluated)

Pridgen, Garfinkel, and Wallach Present but unreachable 7



Problem

Unmanaged Data Lifetime Overview RICE

Figure: Example data lifetime in unmanaged memory.

Pridgen, Garfinkel, and Wallach Present but unreachable 8



Problem

Managed Data Lifetime Overview RICE

Figure: Example data lifetime in managed memory.

Pridgen, Garfinkel, and Wallach Present but unreachable 9



Problem

Why is data being retained? RICE

Figure: String[2] on the heap.

Pridgen, Garfinkel, and Wallach Present but unreachable 10



Problem

Why is data being retained? (2) RICE

Figure: String[0] is reassigned but the old value remains.

Pridgen, Garfinkel, and Wallach Present but unreachable 11



Approach

Measuring Latent Secrets: Methodology RICE

Quantify data retention using TLS Keys
Vary memory pressure
Use well-known software examples
Vary heap size 512MiB-16GiB

Modify HotSpot JVM to perform sanitization
Re-evaluate data retention
Measure the performance impacts

Pridgen, Garfinkel, and Wallach Present but unreachable 12



Approach

Measuring Latent Secrets: TLS Clients RICE

Pridgen, Garfinkel, and Wallach Present but unreachable 13



Approach

Measuring Latent Secrets: Memory Pressure RICE

Pridgen, Garfinkel, and Wallach Present but unreachable 14



Approach

Measuring Latent Secrets: Test Bench RICE

Figure: Overview of experiment and captured data.

Pridgen, Garfinkel, and Wallach Present but unreachable 15



Approach

Measuring Latent Secrets: Data Processing RICE

Dump virtual machine system memory (e.g. RAM)
Grep RAM for captured TLS key material
Reconstruct the JVM process memory
Grep process memory for TLS key material
Reorder TLS sessions and count keys

Pridgen, Garfinkel, and Wallach Present but unreachable 16



Approach

Reducing Latent Secrets RICE

Failed Approach

Modify the Java Crytography TLS Routines
Sanitize out-of-scope references
Explicit clean-up when sockets close or shutdown

Pridgen, Garfinkel, and Wallach Present but unreachable 17



Approach

Reducing Latent Secrets RICE

Successful Implementation

Modify the JVM and GC algorithms
Zero unused space after each collection
Zero internally managed memory when deallocated

Pridgen, Garfinkel, and Wallach Present but unreachable 17



Approach

Reducing Latent Secrets RICE

Successful Implementation

Modify the JVM and GC algorithms
Zero unused space after each collection
Zero internally managed memory when deallocated

Limitations
Dangling references cannot be collected
GC must occur on each heap space
Sanitization may not be timely

Pridgen, Garfinkel, and Wallach Present but unreachable 17



Results

Results - SerialGC HMP RICE

(a) Socket Results (b) Apache Results

Figure: TLS keys recovered from HMP clients.

Pridgen, Garfinkel, and Wallach Present but unreachable 18



Results

Results - SerialGC LMP RICE

(a) Socket Results (b) Apache Results

Figure: TLS keys recovered from LMP clients.

Pridgen, Garfinkel, and Wallach Present but unreachable 19



Results

Results - G1GC Sockets Client RICE

(a) HMP Results (b) LMP Results

Figure: TLS keys recovered from Socket clients using G1GC.

Pridgen, Garfinkel, and Wallach Present but unreachable 20



Results

Benchmarking Results RICE

(a) tradebeans-Day Trader (b) lusearch-Text Searching

Figure: Benchmarks show modifications reduced performance.

Pridgen, Garfinkel, and Wallach Present but unreachable 21



Conclusions

Conclusions RICE

Quantified data retention in the HotSpot JVM
Measured these secrets in a general manner
Developed several strategies to reduce latent secrets
Data security at the expense of performance

Pridgen, Garfinkel, and Wallach Present but unreachable 22



Conclusions

Questions RICE

Pridgen, Garfinkel, and Wallach Present but unreachable 23



References

[1] J. Viega, “Protecting sensitive data in memory,” 2001.

[2] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum, “Understanding data lifetime via whole
system simulation,” in Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, SSYM’04,
(Berkeley, CA, USA), pp. 22–22, USENIX Association,
2004.

[3] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum,
“Shredding your garbage: Reducing data lifetime through
secure deallocation,” in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, SSYM’05,
(Berkeley, CA, USA), pp. 22–22, USENIX Association,
2005.

[4] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu,
and N. Sarda, “Cleanos: limiting mobile data exposure with
idle eviction,” in Presented as part of the 10th USENIX

Pridgen, Garfinkel, and Wallach Present but unreachable 23



Conclusions

Symposium on Operating Systems Design and
Implementation (OSDI 12), pp. 77–91, 2012.

[5] M. Anikeev, F. C. Freiling, J. Götzfried, and T. Müller,
“Secure garbage collection: Preventing malicious data
harvesting from deallocated java objects inside the dalvik
vm,” Journal of Information Security and Applications,
vol. 22, pp. 81–86, 2015.

[6] Y. Li, “Where in your ram is “python san_diego.py”?,” 2015.

Pridgen, Garfinkel, and Wallach Present but unreachable 23


	Introduction
	Background
	Problem
	Approach
	Results
	Conclusions
	References

