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Introduction

Introduction RICE

Java runtime uses automatic memory management
Developers no longer control data lifetimes
Sensitive data cannot be explicitly destroyed
Multiple copies can be created
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Introduction

Research Questions RICE

How many secrets are retained?
Should we be concerned?
Can we fix the problem (without vendor intervention)?
Is our solution useful?

Pridgen, Garfinkel, and Wallach Present but unreachable 3



Introduction

Talk Overview RICE
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Background

Related Work RICE

Viega explains the insecurity of managed runtimes [1]
Chow et al. solve secure deallocation on Unix [2, 3]
CleanOS: Objects encrypted using a shared key [4]
Anikeev et al. focuses on Android’s collector [5]
Li shows RSA keys are retrievable in Python [6]
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Background

Generational GC Heap Overview RICE

Tracing GC: Looking for live objects from a set of roots
Heap engineered for expected object life-time
Partitions managed to meet performance goals

Figure: Typical generational heap layout.
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Background

Generational GC Heap Overview RICE

low- or out-of-memory events trigger collection
GC vs. Full GC

Young generation: copy or mark-sweep-copy
Tenure generation: mark-sweep-compact

Figure: Typical generational heap layout.
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Background

Generational GC Heap Overview RICE

Promote objects from one heap to the next one
Eden Space → Survivor Space
Survivor Space → Tenure Space

Figure: Typical generational heap layout.
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Background

Other Factors Affecting Measurement RICE

GC algorithms and various collection conditions
Internal JVM memory management system
Interactions between JVM internals and program data
Java Native Interface (not evaluated)
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Problem

Unmanaged Data Lifetime Overview RICE

Figure: Example data lifetime in unmanaged memory.
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Problem

Managed Data Lifetime Overview RICE

Figure: Example data lifetime in managed memory.
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Problem

Why is data being retained? RICE

Figure: String[2] on the heap.

Pridgen, Garfinkel, and Wallach Present but unreachable 10



Problem

Why is data being retained? (2) RICE

Figure: String[0] is reassigned but the old value remains.
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Approach

Measuring Latent Secrets: Methodology RICE

Quantify data retention using TLS Keys
Vary memory pressure
Use well-known software examples
Vary heap size 512MiB-16GiB

Modify HotSpot JVM to perform sanitization
Re-evaluate data retention
Measure the performance impacts
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Approach

Measuring Latent Secrets: TLS Clients RICE
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Approach

Measuring Latent Secrets: Memory Pressure RICE
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Approach

Measuring Latent Secrets: Test Bench RICE

Figure: Overview of experiment and captured data.
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Approach

Measuring Latent Secrets: Data Processing RICE

Dump virtual machine system memory (e.g. RAM)
Grep RAM for captured TLS key material
Reconstruct the JVM process memory
Grep process memory for TLS key material
Reorder TLS sessions and count keys
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Approach

Reducing Latent Secrets RICE

Failed Approach

Modify the Java Crytography TLS Routines
Sanitize out-of-scope references
Explicit clean-up when sockets close or shutdown
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Approach

Reducing Latent Secrets RICE

Successful Implementation

Modify the JVM and GC algorithms
Zero unused space after each collection
Zero internally managed memory when deallocated
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Approach

Reducing Latent Secrets RICE

Successful Implementation

Modify the JVM and GC algorithms
Zero unused space after each collection
Zero internally managed memory when deallocated

Limitations
Dangling references cannot be collected
GC must occur on each heap space
Sanitization may not be timely
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Results

Results - SerialGC HMP RICE

(a) Socket Results (b) Apache Results

Figure: TLS keys recovered from HMP clients.
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Results

Results - SerialGC LMP RICE

(a) Socket Results (b) Apache Results

Figure: TLS keys recovered from LMP clients.
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Results

Results - G1GC Sockets Client RICE

(a) HMP Results (b) LMP Results

Figure: TLS keys recovered from Socket clients using G1GC.
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Results

Benchmarking Results RICE

(a) tradebeans-Day Trader (b) lusearch-Text Searching

Figure: Benchmarks show modifications reduced performance.
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Conclusions

Conclusions RICE

Quantified data retention in the HotSpot JVM
Measured these secrets in a general manner
Developed several strategies to reduce latent secrets
Data security at the expense of performance
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Conclusions

Questions RICE
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