
TECHNICAL NOTE

DIGITAL & MULTIMEDIA SCIENCES

Simson L. Garfinkel,1 Ph.D.

The Prevalence of Encoded Digital Trace
Evidence in the Nonfile Space of Computer
Media*,†,‡

ABSTRACT: Forensically significant digital trace evidence that is frequently present in sectors of digital media not associated with allocated
or deleted files. Modern digital forensic tools generally do not decompress such data unless a specific file with a recognized file type is first
identified, potentially resulting in missed evidence. Email addresses are encoded differently for different file formats. As a result, trace evidence
can be categorized as Plain in File (PF), Encoded in File (EF), Plain Not in File (PNF), or Encoded Not in File (ENF). The tool bulk_extractor
finds all of these formats, but other forensic tools do not. A study of 961 storage devices purchased on the secondary market and shows that
474 contained encoded email addresses that were not in files (ENF). Different encoding formats are the result of different application programs
that processed different kinds of digital trace evidence. Specific encoding formats explored include BASE64, GZIP, PDF, HIBER, and ZIP.

KEYWORDS: forensic science, digital forensics, optimistic decompression, bulk_extractor, real data corpus, encoded nonfile, Microsoft
Xpress, BASE64, GZIP, PDF, ZIP

This study demonstrates that forensically significant digital
trace evidence that is compressed or otherwise encoded is fre-
quently present in sectors of digital media that are not associated
with allocated or deleted files. This finding is important, because
modern digital forensic tools generally do not decompress or
otherwise decode bytes in unallocated sectors unless a specific
file with a recognized file type is first identified. As a result,
today’s digital forensic tools potentially miss important evidence.
It has long been established (1,2) that a variety of information

can be present in Nonfile (NF) space on digital media. Such
information includes:
• Files that have been deleted and have had their file system

metadata overwritten, such that they can no longer be readily
identified. (Such files can sometimes be recovered through
file carving).

• Files that were previously written to the disk and have since
been partially overwritten, so that the entire file cannot be
recovered, not even with carving.

• Remnants of files that have been relocated as a result of file
system defragmentation operations, such that some sectors
are still recoverable.

• Remnants of files from previous file systems, after which the
drive was subsequently reformatted or damaged.

Previous research (3,4) also established at least five potential
sources of compressed or otherwise encoded data on digital media:
• Manyweb browsers download data fromweb servers as compressed

streams and store these streams directly in theweb cache.
• NTFS file compression may result in disk sectors that contain

compressed data.
• Windows hibernation files, compressed with Microsoft’s

XPress algorithm (5), are defragmented by Windows back-
ground tasks.

• Files are frequently bundled into archive formats that employ
compression (e.g., ZIP, RAR, and .tar.gz).

• The .docx and .pptx file formats used by Microsoft Office
store content as compressed XML files in ZIP archives (6).

In all cases, when these files are relocated during the course
of defragmentation, or when they are deleted and partially over-
written, compressed data can be left in unallocated sectors.
The phrases optimistic decompression (3) and optimistic

decoding refer to a data analysis approach in which a sequence
of bytes is examined to see whether it can be decompressed or
otherwise decoded. If so, the bytes are decoded and processed.
This approach is “optimistic” because the software proceeds with
the assumption that the decompression or decoding will be suc-
cessful, and the results are interpreted, even if there is corruption
or truncation that might prevent the recovery of the entire origi-
nal data stream.
This study gauges the overall usefulness of optimistic methods

by examining the results of their application to a corpus of more
than a thousand images from hard drives, USB storage devices,
and flash cards (referred to here as “drives” or “drive images”).
Clearly, the value of optimistic techniques depends on the

subject media under examination. A drive that consists solely of
blank sectors will not benefit from the technique, but a drive that

1Department of Computer Science, Naval Postgraduate School, 1186 North
Utah Street, Arltington, VA 22201-4758.

*Presented in part at the 65th Annual Meeting of the American Associa-
tion of Forensic Sciences, February 18–23, 2013, in Washington, DC.
†Funded by the U.S. Department of Defense.
‡The views presented in this article are those of the author and do not neces-
sarily represent the views of the Department of Defense or its components.

Received 2 April 2013; and in revised form 29 June 2013; accepted 13
July 2013.

Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Journal of Forensic Sciences published by Wiley Periodicals, Inc. on behalf of American Academy of Forensic Sciences

1This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

J Forensic Sci, 2014
doi: 10.1111/1556-4029.12528

Available online at: onlinelibrary.wiley.com



has been heavily used may contain important trace evidence that
can be revealed through no other approach. Optimistic methods
are generally unknown to today’s digital forensics practitioners
and unimplemented by today’s digital forensics tools. The pur-
pose of this article is to present the techniques and experimen-
tally determine their usefulness for recovering digital trace
evidence on a variety of media.

Materials and Methods

The term “digital trace evidence” is frequently used to describe
digital evidence that might have high probative value in a forensic
investigation. Examples of digital trace evidence include email
addresses, credit card numbers, and Internet search terms.
Although digital trace evidence may be insufficient to defini-

tively confirm or deny a hypothesis of an activity, the evidence
can be used for corroboration or for the production of new leads.
Thus, digital trace evidence is most useful during the investiga-
tion phase of a new case.
If optimistic techniques are generally useful for processing

digital trace evidence, then there should be digital trace evidence
that can be recovered no other way. This article proves that
hypothesis by showing that many used disk drives contain email
addresses in compressed data streams that are not contained
within recoverable files. These email addresses can only be
recovered through optimistic means.

The Conventional Forensic Pipeline

Modern computer forensic tools employ more-or-less the same
approach to process digital media. We call this approach the foren-
sic pipeline. The pipeline can be applied directly to subject media,
ideally connected to the examiner’s computer with a write-blocker
to prevent accidental media compromise, or it can be applied to a
sector-for-sector copy (a disk image) of the original media.
The forensic pipeline starts with the tool attempting to identify

disk partition and file system structures, collectively referred to
as filesystem metadata. Once identified, the pipeline enumerates
every directory and file on the disk image, each directory is
scanned, and each file is identified. For each file, the file type is
determined, text is extracted and optionally indexed, pictures and
videos are processed into thumbnails, and other format-specific
steps are executed. Because of varying engagement rules, most
of today’s tools can be programmed to process allocated files, or
both allocated and deleted files.
This top-down processing of computer media mirrors the way

that a layperson would most likely analyze the contents of a
drive. The process is easy to teach, easy to practice, and easy to
explain in court.
In many cases, additional steps are employed to recover evi-

dence from sectors that are unallocated and cannot be mapped to
deleted files or directories. This article refers to such sectors as
the NF space. This space is typically processed with regular
expressions to scan for email addresses, credit card numbers,
and other kinds of recognizable text, and with file carvers such
as Adroit (7) and PhotoRec (8) to recover digital images, mov-
ies, and other kinds of media.

Conventional Extraction of Digital Trace Evidence

This section demonstrates why the simplistic strategy
described in the previous section does not work for many types
of files currently in use on digital computers.

Figure 1 shows Microsoft Word for Mac 2011 running on an
Apple Macintosh computer with an example document created
for this article. The document consists of the single sentence,
“One two three user@comapny.com four five six” followed by
two blank lines. This file was saved three times: as a Microsoft
Word Binary File Format (9) (word1.doc); as a Office Open
XML (10) formatted files (word1.docx); and as an Adobe Porta-
ble Document Format (11) file (word1.pdf) file generated
directly from Microsoft Word (Fig. 2).
The 16-byte sequence user@company.com appears twice in

the file word1.doc: first in a mailto: link at offset 2595 and a
second time at offset 2614 (Fig. 3). Both of these are evident in
the hexdump starting at location a00 shown in Fig. 3.
The file word1.docx does not obviously include the email

address. Microsoft’s “.docx” files are actually ZIP archives, and
the word1.docx archive contains 13 embedded files, including a
thumbnail of the document’s first page, a table of contents, a
table fonts, and other associated metadata (Fig. 4). The archive
also includes a compressed XML file called word/document.xml.
This compressed XML file at inside word1.docx at decimal off-
set 2451 and extends to offset 3225, for a total of 774 com-
pressed bytes (Fig. 5). If the embedded file is extracted from the
ZIP archive and decompressed, the result is 1990-byte XML file
with a email address at offset 1500 (Fig. 6).
Finally, the file word1.pdf is a PDF version 1.3 file that con-

tains three compressed binary streams occupying byte ranges
79–390, 713–3226, and 4278–21696. The first of these streams
contains the email address in question, but it is encoded. An
ASCII representation of the first 407 bytes of the file showing
the first stream, still compressed, appears in Fig. 7. The stream
is a ZLIB (12) compressed binary object. Decompressing the
object reveals the ASCII stream shown in Fig. 8, which is a ser-
ies of Adobe PDF commands. The text can be recovered by
combining the letters between the parentheses, producing the
string “One two three user@company.com four five six.”
All three files contain the email address user@company.com,

but each one encodes the trace evidence differently. Programs
that understand these file types (e.g., Oracle’s Outside In (13))
can extract the email address from all three files, provided that
the files are intact. However, an examiner searching a disk with
regular expressions or visually scanning the disk with a hex edi-
tor will discover only the email address from the file word1.doc,
as the sectors associated with the file word1.docx contain bytes
corresponding to compressed XML, while the sectors for
word1.pdf contains a compressed sequence of PDF commands.

FIG. 1––A Microsoft Word file containing a single sentence followed by a
blank line.

2 JOURNAL OF FORENSIC SCIENCES



Augmenting Extraction with Optimistic Decompression

Digital forensics tools that perform optimistic decompression
operate by searching for byte patterns indicative of compressed
data. When these byte patterns are identified, the tool attempts
to decompress the data. Any resulting data are then analyzed.
The preceding section presents two cases in which it is possi-

ble to recover forensic trace information through the use of opti-

mistic decompression. In the case of word1.docx, a useful
strategy is to search for ZIP local file headers and attempt to
decompress the compressed file data. In case of word1.pdf, a
useful strategy is to search for the six-character sequence
“stream” followed by a newline or a carriage return/newline pair,
a high entropy region, and finally, the nine-character sequence
“endstream”. (Please see (14) for a discussion of the ZIP archive
file format.) The high entropy region is then provided to zlib
(12) for attempted decompression. Sections of the PDF that are
successfully decompressed are then processed by a text extrac-
tion framework, which builds strings by combining the charac-
ters between parentheses. In this way, it is possible to extract
from encoded sections of a file even if the entire file is not pres-
ent or otherwise recoverable.

A Taxonomy of Digital Trace Evidence

Here, we present a classification scheme for describing how
trace evidence may be present on digital media. Because trace
evidence may be in a file or not in a file, and it may be in plain
text or encoded, trace evidence may thus exist on the subject
media in one of four conditions shown in Table 1.
In many cases, the same trace evidence is present in multiple

locations on target media. For example, an email address might
be downloaded as a compressed file but then decompressed in
memory, and the memory might be written to the system swap
partition. In such a case, there would be at least two copies of

FIG. 2––Three files resulting from saving the Microsoft Word file shown in 1 as a “.doc” file, a “.docx”, and a “.pdf.

FIG. 3––Hexdump of a portion of word1.doc showing the embedded email addresses.

FIG. 4––The file word1.docx is actually a ZIP archive; this listing shows
the archive’s component files.

FIG. 5––The ZIP local file header and compressed data for the word/document.xml component inside the file word1.docx. Each ZIP component begins with a
component header consisting of the hexadecimal sequence 50 4B 03 04 (“PK..” above) and ending with a variable length name field (“word/document.xml”)
and an optional “extra” field (not present in this case). ZLIB-compressed data begins at offset 9c1 in the above example.

GARFINKEL . ENCODED DIGITAL TRAVEL EVIDENCE IN NONFILE SPACE 3



the email address, one that was Type EF in the browser cache
and one that was Type PNF in the swap space.
To distinguish trace evidence that can be recovered through

conventional means from that which cannot, we assume that
conventional techniques can recover any feature found in a
recoverable file (types PF and EF), and that unencoded features
can be recovered from raw sectors without the need for
decompression or decoding (type PNF). Both of these assump-
tions overstate the capability of modern tools, resulting in results
that are more conservative than they might otherwise be.

Experimental Design

This experiment relies on bulk_extractor, a research tool can
scan and extract digital trace evidence in binary data using a
variety of recognition approaches such as regular expressions.
The tool can also detect data that are compressed or otherwise
encoded with a variety of algorithms. A list of supported enco-
dings appears in Table 2. Such data, when found, are decom-
pressed or decoded and then reprocessed by both trace evidence
scanners and the encoding detectors, a technique called recursive

FIG. 6––ASCII dump of a portion of the file word/document.xml after being decompressed and extracted from the file word1.docx; the string user@company.
com occurs at offset 5dc. (Line breaks have been added for legibility but do not occur in the source document.)

FIG. 7––ASCII representation of the first 407 characters of the file word1.pdf showing the first compressed stream at byte offsets 79–390. (Line breaks have
been added for legibility but do not occur in the source document.)

FIG. 8––The ASCII text stream produced when the binary stream in Fig. 7 is decompressed. (Line breaks have been added for legibility but do not occur in
the source document.)

4 JOURNAL OF FORENSIC SCIENCES



analysis. Thus, bulk_extractor implements both optimistic
decompression and decoding as described in the introduction.
The bulk_extractor places the trace evidence that it recovers

into a specially formatted text file that includes the offset of the
each trace evidence item, the item itself, and the context in
which the item was found. These items are called features, and
the file is called a feature file. In the event that the item was
compressed, the file includes the offset of the compressed data,
the compression algorithm, and the offset within the decom-
pressed data stream. The bulk_extractor uses the term “forensic
path” to describe such features. Figure 9 shows examples of
both a plain text and a compressed feature.
The bulk_extractor can identify and extract a wide variety of

evidence types, including email addresses, credit card numbers,
and URLs. This article only considers email addresses, but the
findings should be relevant for all kinds of trace evidence.
A tool called identify_filenames.py, distributed with

bulk_extractor, can associate each feature in the feature file with
the file from which the file was extracted. The tool operates by
analyzing the disk image and determining the location of each
file. Next, the tool reads the feature file and, for each feature,
determines whether the location of the feature on the media
corresponds to an existing file. Finally, the tool creates an anno-
tated feature file which includes the offset of each feature, the
feature, the context, the file name in which the feature was
found, and the MD5 hash value of the file.
Existing digital forensic tools can detect the presence of trace

evidence such as email addresses that are in files of types PF,

EF, and PNF; they generally cannot display data in type ENF.
The question that this article seeks to answer, then, is whether or
not there is a significant presence of trace evidence on digital
media that is only present in the Type ENF form.
To perform this analysis for a piece of media, the media is

processed with both the bulk_extractor and the identify_file-
names.py programs. The resulting annotated feature file is pro-
cessed using an analysis program that was specially written for
this study. The program makes a list of each email address and
determines whether the email address is ever present in a file
and ever present without encoding. The following rules are used
for the determination:
Type PF: Plain in File Features that have a purely numerical

offset (e.g., “12345”) and an filename (e.g., “/Windows/Sys-
tem32/User.DLL”).
Type EF: Encoded in File Features that have a forensic path

containing a compression or other encoding method (e.g.,
“56789-GZIP-123”) and an identified file name.
Type PNF: Plain Not in File Features that have a purely

numerical offset but no filename.
Type ENF: Encoded Not in File Features that have a forensic

path containing a compression method and no identified file name.
Email addresses that are only present in the ENF form are

then tabulated.

Source Media

This experiment used 1646 drive images from the Real Data
Corpus (15), a research corpus derived from several thousand
hard drives, memory cards, CD-ROMs, DVDs, USB memory
sticks, and cell phones procured from second-hand computer
stores, open-air markets, and other locations in eight countries
between 2005 and 2013. In each case, a physical image of the
drive was made by copying the data sector-by-sector from the
source device to an image file. Images were created with FTK
Imager (16) and ewfacquire (17). The images were stored at sev-
eral locations on a high-capacity storage array.
Each image was processed with bulk_extractor, identify_file-

names.py, and the postprocessing program described above. For
each drive, a list of the email addresses and each of the encod-
ing types was created. Statistics were tabulated for the total num-
ber of email addresses on each drive and the number of email
addresses that were present as Type ENF and the encoding algo-
rithm for each of these addresses. Summary statistics were then
created for all of the drives. Because the drives are considered
separately, an email address that appears as type PF and ENF on
the same drive will not be counted. However, an email address
that appears as type PF on a first drive and type ENF on a sec-
ond drive will be counted as a single-encoded email address.

Results

This section first reviews the summary results of all the ways
that ENF email addresses were found on the subject drives. It
then analyzes a variety of representative EF and the ENF email

TABLE 2––The kinds of encodings that can be decoded by bulk_extractor,
and the amount of context required for the decoding.

Encoding Requires

GZIP The beginning of a zlib-compressed stream
BASE64 The beginning of a BASE64-encoded stream
HIBER Any fragment of a hibernation file can generally be

decompressed, as each Windows 4K page is separately
compressed and the beginning of each compressed page in the
hibernation file is indicated by a well-known sequence

PDF Any PDF stream compressed with ZLIB bracketed by stream
and endstream

ZIP The local file header of a ZIP-file component

TABLE 1––A taxonomy of the conditions that digital trace evidence may be
found on a forensic disk image.

Condition Example

PF Plain in File An email address in the file word1.doc.
EF Encoded in

File
An email address in the file word1.docx.

PNF Plain Not in
File

An email address from Case 1 in which the file has
been deleted and both the file system metadata and
a portion of the file have been overwritten.*

ENF Encoded Not
in File

An email address from Case 2 in which the file has
been deleted and both the file system metadata and
a portion of the file have been overwritten.

*Swap and hibernation files are treated as NF space.

FIG. 9––Two lines of output from the bulk_extractor program. Each line represents a piece of digital trace evidence extracted from a piece of digital piece.
The first column indicates the offset of the evidence (in decimal), the second column indicates the trace evidence itself, and third column shows the local context
in which the trace evidence was found. In the case of the second line, the email address user@company.com was found inside a block of data that first needed
to be decompressed. The compressed region was found at byte offset 3,772,517,888 and was compressed with the GZIP compression algorithm. The email
address was found at an offset of 28,322 bytes from the start of the compressed region.

GARFINKEL . ENCODED DIGITAL TRAVEL EVIDENCE IN NONFILE SPACE 5



addresses to determine the reason that the email addresses were
present in the particular encoding.

Summary Results

A total of 961 drives were found to have email addresses in
any of the four forms presented earlier; there were 1351 distinct
email addresses per drive on average, with a minimum of 0 and
a maximum of 178,201 on drive 1044. Detailed results can be
found in Table 3.
By far, the majority of email addresses in this set were plain

but not present in any file (type PNF). These email addresses
can be recovered with traditional text processing operations such
as carving and string search. Significant numbers of email
addresses were found in files as well (types PF and EF). These
can be recovered with traditional forensic file processing.
However, consistent with this article’s hypothesis, a signifi-

cant number of encoded email addresses were found in nonfile
space of many drives. Email addresses were found encoded
using BASE64, GZIP, PDF, HIBER (Microsoft XPress), and
ZIP algorithms. Furthermore, while a majority of the encoded
email addresses found were encoded with a single algorithms,
thousands of distinct email addresses were found on dozens of
drives that were sequentially encoded with multiple algorithms.
Such email addresses can only be recovered through the kind of
recursive processing exhibited by the bulk_extractor program.
Although there are a wide variety of ENF email addresses pres-

ent in our sample, it was clear from a manual examination of the
email addresses that not all were of equal forensic importance.
Some encodings are clearly the result of email addresses included
in software distributions, while others are clearly the result of
user-generated content. In general, forensic examiners are more
concerned with user-generated content, but there may be cases
where the software present on subject media is equally important.
The following sections review representative email addresses

that were found in various encodings in the corpus. In some

cases, the email addresses were found to come from publicly
available documents. In those cases, example output from
bulk_extractor is provided.

BASE64 Encoding

BASE64 is scheme that allows arbitrary binary sequences to
be encoded with printable letters (both uppercase and lowercase),
numerals, the plus sign, and a forward slash (18). BASE64 is
widely used to encode Internet email attachments and SSL certif-
icates, as well as to represent binary information inside XML
documents.
A manual examination of representative NF BASE64-encoded

email addresses in the corpus found that the majority were from
email messages. In many cases, the context was clearly HTML.
Much of the HTML was formatted in lines terminated with CR/
LF pairs (the standard end-of-line encoding for email messages),
rather than bare LF characters (common for web pages down-
loaded by HTTP). In some cases, the email addresses appear to
be taken from Email headers.
We hypothesize that BASE64-encoded HTML resulted from

email messages that were sent as attachments. Such encoding is
common with modern email clients such as Microsoft Outlook
and Mozilla Thunderbird. Manual examination confirmed that
the majority of email addresses encoded as BASE64 were pri-
vacy-sensitive user-generated content.

Base64-GZIP

The GZIP compression algorithm is commonly used by web
servers to transparently compress web pages, and by software
developers for distributing source code. Data that are BASE64-
GZIP encoded were first compressed with GZIP and then with
BASE64. This does not correspond to the way that web servers
would encode data, but is how one would expect to find com-
puter source code that is sent as an email attachment.

TABLE 3––Summary statistics for the number of distinct email addresses found on each drive in each coding variant. A total of 1646 drives were examined, of
which 961 were found to contain at least one email address.

Coding Drives with >1 Email Addrs Total Distinct Email Addresses Avg per Drive Max per Drive r

(1) Plain in File 739 81,920 110 4206 253
(2) Encoded in File 355 19,711 55 5454 388
(3) Plain Not in File 860 195,605 2274 178,073 9248
(4) Encoded Not in File 474 165,481 349 59,376 2889
BASE64 54 219 4 50 7
BASE64-GZIP 2 64 32 37 5
BASE64-GZIP-GZIP 2 2 1 1 0
GZIP 234 66,195 282 9103 981
GZIP-BASE64 7 44 6 11 3
GZIP-GZIP 15 12,663 844 11,845 2944
GZIP-GZIP-BASE64 2 38 19 30 11
GZIP-GZIP-GZIP 4 58 14 38 14
GZIP-GZIP-ZIP 1 12 12 12 0
GZIP-PDF 5 38 7 30 11
GZIP-ZIP 6 49 8 30 9
HIBER 79 1433 18 217 44
HIBER-GZIP 1 2 2 2 0
PDF 162 2352 14 238 31
ZIP 388 85,252 219 59,369 3025
ZIP-BASE64 5 30 6 13 5
ZIP-BASE64-GZIP 2 65 32 38 5
ZIP-BASE64-GZIP-GZIP 2 2 1 1 0
ZIP-GZIP 14 261 18 132 34
ZIP-PDF 26 115 4 18 4
ZIP-ZIP 67 430 6 48 8
ZIP-ZIP-ZIP 3 9 3 6 2

6 JOURNAL OF FORENSIC SCIENCES



A manual examination of email addresses and local context
encoded with as BASE64-GZIP found that the data could be
readily traced to publicly available software repositories. For
example, drive il2-0027 contains this sequence:

path: 151336103-BASE64-5102-GZIP-375099
feature: schwartz@cs.tu-berlin.de
context: b'artin Schwartz schwartz@cs.tu-ber-
lin.de creator of ''la'

Web searching reveals that the context is part of the READ-
ME file for the Antiword software package.
Another example taken from the same disk:

path: 101814559-BASE64-0-GZIP-239191
feature: vajper@datorklubben.ml.org
context: b'Henrik Persson (vajper@datorklubben.
ml.org) brand:

Although this snippet appears to contain private PII, the text
actually is a configuration file for the Philips VCR3 infrared
remote control system and is part of the Linux Infrared Remote
Control package available for download at http://lirc.sourceforge.
net/remotes/philips/VCR3.
Additional manual exploration confirmed that the majority of

the email addresses encoded BASE64-GZIP are from source
code, many as evidenced by the fact that the email addresses are
closely followed by a copyright claim.

GZIP Encoding

Our examination of GZIP-encoded email addresses in NF space
found that they came from a wide variety of sources, including
downloaded web pages, JSON objects, and open-source software.
In general, the email addresses found in GZIP-encoded HTML
and in close proximity to copyright statements appeared to be
publicly available, while email addresses contained in JSON
sequences appeared to be private information.

HIBER Encoding

The HIBER-encoding method is used exclusively by Win-
dows-based computers to compress RAM before it is written to
the HIBERFIL.SYS file when the computer goes into hiberna-
tion. As expected, email addresses encoded with HIBER in NF
space take on all of the forms of email addresses that are found
in system RAM. Although some email addresses are clearly
from web pages and email messages, the majority seem to be
embedded in some kind of binary data structure.
A significant number of the HIBER-encoded email identified

by bulk_extractor were actually false positives—that is, they
were character strings that appear to be email addresses but
which were not, such as the string FRANCES@WWW.MS.
This study confirmed our assumption that HIBER-encoded

data present on storage media are invariably result from data that
was in RAM and was written to disk as part of a Windows
hibernation. Thus, the same techniques used for analyzing
data in RAM can be productively applied to analyzing these data
as well. However, HIBER-encoded ENF data are likely to be
older than data in RAM, as the pages were removed
from the file system as a result of the hibernation file being
deleted by the user or relocated as part of a file system defrag-
mentation.

PDF Encoding

Many drives in the corpus contain email addresses in PDF
streams. In the case of drives that had just a few PDF-encoded
email addresses, these addresses appeared to come from com-
puter documentation. For example, drive cn4-06 contains this
feature which appears to be from a PDF describing how to con-
figure an email client:

path: 1361681035-PDF-7
feature: yourname@provider.co.jp
context: mailto:yourname@provider.co.jp #

A few drives in the corpus contained hundreds or thousands
of PDF-encoded email addresses. Manual inspection of these
cases indicated that they were overwhelmingly email addresses
corresponding to individuals and that the PDFs are not publicly
available. Presumably, a user had generated a PDF file contain-
ing email addresses and that PDF file was later deleted and par-
tially overwritten. As a result, PDF-encoded email addresses
could contain case-relevant trace evidence if the original PDF
was relevant to the case at hand. Because the email addresses
were ENF, they would be missed by conventional forensic tools.

ZIP

Features are reported as being ZIP encoded if they were found
in a fragment of a ZIP file. Although ZIP was originally devel-
oped as a compressed container file for archiving and distribut-
ing collections of files, today ZIP is also used for an astonishing
number of applications, including Java byte code libraries,
Android and iPhone applications, Microsoft and Open Office
document files, and distributing source code. Not surprisingly,
ENF email addresses found with ZIP encoding appear to come
from a wide variety of sources.
Analysis of the ZIP-encoded email addresses finds that they

are dominated by email addresses from Java libraries. For exam-
ple, drive PS01-070 contains 450 copies of an email address and
associated verbiage from the Apache Software License, presum-
ably from a Java JAR file:

path: 3333029290-ZIP-1283
feature: apache@apache.org
context: please contact apache@apache.org. * *
5. Produ

ZIP-PDF

We hypothesized that email addresses that were found with
ZIP-PDF encoding presumably came from PDF files containing
email addresses that were bundled together into a ZIP archive,
written to the storage device, and then partially overwritten. In
an actual case, such trace evidence might be the result of data
theft or exfiltration.
In our analysis, we found that the majority of the ZIP-PDF-

encoded features appear to come from private documents. In a
few cases, we found that the PDFs were publicly available. For
example, disk il3-0184 contained the following feature:

path: 3076019889-ZIP-174034-PDF-2969
feature: SOAP4fun@the-beach.com
context: n t name I-want: SOAP4fun@the-beach.
com . 68

GARFINKEL . ENCODED DIGITAL TRAVEL EVIDENCE IN NONFILE SPACE 7



This feature was found with a web search and attributed to
the gSOAP 2.6.0 User Guide; we downloaded a copy from
http://alien.cern.ch/cache/gsoap-2.6/soapcpp2
/soapdoc2.pdf.
In the majority of the cases, however, ZIP-PDF-encoded email

addresses came from private documents.

ZIP-ZIP-ZIP Encoding

The majority of the email addresses that were encoded ZIP-
ZIP-ZIP were from documents that accompanied various WinZip
software distributions, including the WinZip 5.5 Registration
Form and the WinZip 8.1 Registration and Order Information
form. We hypothesize that this text file was included in a ZIP
archive that was part of a WinZip distribution that itself was com-
pressed into a WinZip archive and redistributed as a self-extract-
ing ZIP archive. We did not find a single case in which a ZIP-
ZIP-ZIP-encoded email address contained user-generated content.

Discussion

In our sample of 961 storage devices acquired around the
world, roughly one-in-four contained email addresses that were
not in plain encoded but did not reside in a file. Many of these
email addresses came from user-generated content. Because
these email addresses were encoded, they were not in plain text
and, as such, would be invisible to the majority of today’s digi-
tal forensic tools.
Drives in the sample came from the Real Data Corpus and

were restricted to drives that already had at least one email
address. Filtering the RDC in this manner avoided including
drives in the count that only contained JPEGs or that had been
properly sanitized before being sold on the secondary market.
We found that some kinds of encoding formats were used

almost exclusively for email addresses originating in user-gener-
ated content. For example, email addresses that were encoded with
BASE64 largely originated in email attachments, and specifically
other email messages that were forwarded as attachments. Of our
sample, 54 drives had more than one email address that was
encoded with the BASE64 algorithm and not in a file (ENF), or
roughly 1 in 30. Likewise, email addresses with GZIP were likely
to be from user-generated content; 234 drives contained ENF
email addresses.

Suppressing Nonuser-generated Content

It is clear that many of the email addresses found by the
bulk_extractor do not result from user-generated content and, as
such, may have limited role in many investigations. For exam-
ple, the email addresses iemand@microsoft.com and mon-
nom@msn.com were found on many disks, but iemand is Dutch
for someone and mon nom is French for my name, both of which
are reasonable-looking test email addresses for native speakers
of those languages.
One approach for suppressing email addresses and other fea-

tures that are not user-generated is to build stop lists of features
that appear in default software distributions. A detailed approach
for doing this with context-specificity appears in (4).

Conclusion

Digital forensics is a powerful tool that is widely used by differ-
ent investigators for many different purposes. Some investigations

are limited in scope, the kinds of tools that may be used, and the
information that may be examined. For example, in some cases,
investigators are free to search unallocated space, whereas in
others investigators are limited to examining allocated files. In
circumstances where the investigation has unlimited access to
subject media, investigators who do not consider encoded email
addresses that are in nonfile space are potentially missing impor-
tant trace evidence.

Acknowledgments

I gratefully acknowledge Josiah Dykstra, Kyle Gorak, Aubin
James Heffernan, and Carolina Zarate for their useful feedback
on previous versions of this article.

References

1. Garfinkel S, Shelat A. Remembrance of data passed. IEEE Secur Priv
2003;1(1):17–27.

2. Carrier B. File system forensic analysis. Upper Saddle River, NJ: Pear-
son Education, 2005.

3. Beverly R, Garfinkel S, Cardwell G. Forensic carving of network packets
and associated data structures. Proceedings of the Eleventh Annual
DFRWS Conference; 2011 Aug 1-3; New Orleands, LA. Elsevier, 2011.

4. Garfinkel S. Stream-based digital media forensics with bulk_extractor.
Comput Secur 2013;32:57–72.

5. Suiche M. Windows hibernation file for fun ‘n’ profit. In: Black hat,
2008; http://sebug.net/paper/Meeting-Documents/BlackHat-USA2008/
BH_US_08_Suiche_Windows_hibernation.pdf (accessed December 3,
2011).

6. Garfinkel S, Migletz J. New XML-based files: implications for forensics.
IEEE Security & Privacy Magazine 2009 March/April;7(2):38–44; http://
simson.net/clips/academic/2009.IEEE.DOCX.pdf.

7. Digital Assembly. Adroit photo forensics, 2011; http://digital-assembly.
com/ (accessed December 3, 2011).

8. Grenier C. Photorec, 2011; http://www.cgsecurity.org/wiki/PhotoRec
(accessed December 3, 2011).

9. Microsoft Corp. [ms-doc]: Word (.doc) binary file format, February 11
2013; http://msdn.microsoft.com/en-us/library/cc313153 (accessed Febru-
ary 23, 2013).

10. Office open xml, ecma-376, and iso/iec 29500, February 2011; http://
msdn.microsoft.com/en-us/library/office/gg607163 (accessed February 23,
2013).

11. Adobe Systems Incorporated. PDF reference and adobe extensions to the
pdf specification, 2013.

12. Roelofs G, Adler M. zlib: a massively spiffy yet delicately unobtrusive
compression library (also free, not to mention unencumbered by patents),
May 2, 2012; http://www.zlib.net (accessed February 23, 2013).

13. Oracle. Oracle outside in technology, 2013; http://www.oracle.com/us/
technologies/embedded/025613.htm (accessed February 23, 2013).

14. Katz P. APPNOTE.TXT — .ZIP File Format Specification. Technical
report, PKWare, Inc., September 28 2007; http://www.pkware.com/docu-
ments/casestudies/APPNOTE.TXT.

15. Garfinkel SL, Farrell P, Roussev V, Dinolt G. Bringing science to digital
forensics with standardized forensic corpora. Proceedings of the 9th
Annual Digital Forensic Research Workshop; 2009 Aug 17-19; Montreal,
Canada. Elsevier, 2009.

16. Access Data. Forensic toolkit (FTK), 2011; http://accessdata.com/prod-
ucts/computer-forensics/ftk (accessed December 3, 2011).

17. Metz J. libewf: Project info, 2008; http://sourceforge.net/projects/libewf/
(accessed December 3, 2011).

18. Josefsson S. The Base16, Base32, and Base64 Data Encodings. RFC 4648
(Proposed Standard), October 2006; http://www.ietf.org/rfc/rfc4648.txt.

Additional information and reprint requests:
Simson L. Garfinkel, Ph.D.
Naval Postgraduate School
Compuer Science
1186 North Utah Street
Arlington, VA 22201-4758
E-mail: simsong@acm.org

8 JOURNAL OF FORENSIC SCIENCES


