
	 28	 computer	 Published by the IEEE Computer Society	 0018-9162/12/$31.00 © 2012 IEEE

Cover Fe ature

There are many limitations when using file hashes to
identify known content. Because changing just a single
bit of a file changes its hash, pornographers, malware au-
thors, and other miscreants can evade detection simply by
changing a comma to a period or appending a few random
bytes to a file. Likewise, hash-based identification will not
work if sections of the file are damaged or otherwise un-
recoverable. This is especially a problem when large video
files are deleted and the operating system reuses a few
sectors for other purposes: most of the video is still present
on the drive, but recovered video segments will not appear
in a database of file hashes.

SECTOR HASHING
We are developing alternative systems for detecting

target files in large disk images using cryptographic hashes
on sectors of data rather than entire files. Modern file sys-
tems align the start of most files with the beginning of a
disk sector. Thus, when a megabyte-sized video is stored on
a modern hard drive, the first 4 kibibytes are stored in one
disk sector, the second 4 KiBytes are stored in another disk
sector, typically the adjacent one, and so on. (In our work,
we distinguish between power-of-two-based sizes of digital
artifacts, such as kibibytes, and power-of-ten-based sizes,
such as kilobytes. See the “Decimal versus Binary Prefixes”
sidebar for more details.) Furthermore, by sampling ran-
domly chosen sectors from the drive, it is only necessary
to read a tiny fraction of the drive to determine with high
probability if a target file is present. This enables rapid triage
of drive images.

We compare drive sector hashes to a hash database of
fixed-sized file fragments, which we call blocks. The terms
“sector” and “block” are often used incorrectly as syn-

F orensic examiners frequently search disk drives,
cell phones, and even network flows to determine
if specific known content is present. For example,
a corporate security officer might examine a sus-

picious employee’s laptop for unauthorized documents;
law enforcement officers might search a suspect’s home
computer for illegal pornography; and network analysts
might reconstruct Transmission Control Protocol streams
to determine if malware was downloaded. In these and
many other cases, examiners typically identify files by
computing their cryptographic hash—often with MD5 or
SHA1 hash algorithms—and then searching a database for
the resulting hash value.

Use of hash values for file identification is pervasive
in digital forensics—every popular forensics pack-
age has built-in support. One of the most widely used
databases is the National Software Reference Library
(NSRL) Reference Data Set (RDS). Version 2.36, released
in March 2012, contains 25,892,924 distinct file hashes
(www.nsrl.nist.gov). Other databases are available to
customers of specific companies and to law enforcement
organizations.

Using an alternative approach to traditional
file hashing, digital forensic investigators
can hash individually sampled subject
drives on sector boundaries and then
check these hashes against a prebuilt da-
tabase, making it possible to process raw
media without reference to the underlying
file system.

Joel Young, Kristina Foster, and Simson Garfinkel, Naval Postgraduate School

Kevin Fairbanks, Johns Hopkins University

Distinct
Sector Hashes
for Target File
Detection

 	 DECEMBER 2012	 29

onyms. For clarity, we use “sector” and “block” to refer to
chunks of data extracted from drive images and files or file
systems, respectively. Our approach depends on the exis-
tence of file blocks that only occur in a single distinct file.
Experiments show that such distinct blocks comprise the
vast majority of both executable files and user-generated
content. Matches against block hashes shown not to occur
elsewhere are strong evidence that a corresponding target
file is or was present.

As the “Previous Work” sidebar describes, little
work has been done on the use of sector hashes for
file identification. However, sector hashing has numer-
ous advantages over file hashing in forensic analysis.
In many cases, using sector hashing with full media
analysis—comparing every sector of the drive to an
appropriate database—can detect a single block from a
file that was once present. Alternatively, sector hashing
can be combined with random sampling, making it pos-
sible to scan a terabyte-sized drive for the presence of
select data in just a few minutes.

While sector hashing offers advantages when used for
file detection in a forensic context, it also presents techni-
cal difficulties.

BLOCK SIZE AND HASH ALGORITHM
Two important design choices for using sector hashes

are the block size and the hash algorithm.
Clearly, the block size must be small enough so that

file blocks will align with drive sectors. The easiest way
to assure this is to use a block size of 512 bytes, the sector

size of most mass storage systems from the 1970s until
quite recently. When presented with a device that has a
larger sector size—for example, 2 KiBytes in CD-ROMs or
4 KiBytes in modern drives—the sectors could be divided
into 512-byte blocks and hashed accordingly.

However, 512 bytes might be smaller than necessary.
Many file systems use a 4-KiByte allocation size (NTFS has
a default cluster size of 4 KiBytes for drives smaller than
16 Tbytes). In addition, using a 4-KiByte block size would
reduce the hash value database’s size by a factor of eight.
The danger with a 4-KiByte block size is that a file system
with a 4-KiByte allocation size might be used to write to a
device with 512-byte sectors. If the blocks are not aligned
on an eight-sector boundary, there is a risk that each set
of eight sectors hashed would contain part of one block
and part of another. The result is that no distinct blocks
would be found.

This problem can be avoided in devices with 512-byte
sectors by reading 15 sectors at a time, producing eight
hashes: the first from sectors 0-7, the second from sectors
1-8, and so on. While multiple hashing does increase the
computational costs of both hashing and database opera-
tions, the need for such hashing will decrease over time as
512-byte-sector devices are phased out of use.

We chose the MD5 hash algorithm, which is widely used
within the forensic community and computationally fast.
Although MD5 is no longer collision resistant, our tech-
nique relies on using hashes to match adversary data to
target content—in fact, collisions actually facilitate the
process.

Decimal versus Binary Prefixes

T oday there are two standards for representing sizes of files,
storage systems, and memory banks: SI (International System of

Units) decimal prefixes and IEC (International Electro-technical
Commission) binary prefixes. SI decimal prefixes are commonly used
to represent metric quantities. For example, the SI prefix giga-
multiplies the value that follows by 109; thus, a gigabyte (Gbyte) is
109 = 1,000,000,000 bytes. In contrast, the IEC prefix gibi- multiplies
the value that follows by 230; a gibibyte (GiByte) is thus 230 =
1,073,741,824 bytes.

The confusion over prefixes dates back to the early days of com-
puting, when K and M meant 1,024 and 1,048,576 when describing
memory systems but 1,000 and 1,000,000 when describing storage
systems. The difference in terminology resulted from the way that
these systems were addressed. Memory was addressed by a series of
binary lines, while electromechanical drums and disks were addressed
by specifying a head, a track, and sector numbers: such numbers only
map to even powers of two when the number of heads, tracks, and
sectors are also even powers of two, and this is rarely the case due to
manufacturing concerns.

For much of computing history, the fact that 1K sometimes meant
1,000 and sometimes 1,024 was not a major problem, as the correct
size could be inferred from context and, in any event, the difference
between 1,000 and 1,024 is not that great. However, the distinction
became an issue in the 1990s as memory capacity mushroomed and

commonly used prefixes went from Ks to Ms and then Gs, resulting in
a larger divergence between the power-of-two measurement and the
corresponding power-of-ten measurement. The IEC accordingly pro-
posed binary prefixes in 1996 and standardized their use in 1999. In
2008, the International Organization for Standardization adopted the
IEC standard with the addition of prefixes for describing exbi- (260),
zebi- (270), and yobi- (280) byte quantities.

Despite this standardization effort, we live in a world in which
4-Gbyte memory sticks sold as system RAM can store 4,294,967,296
bytes of data but 4-Gbyte microSD (Secure Digital) cards for cell
phones are only warranted to store 4,000,000,000 bytes of data. How-
ever, since those 4 billion bytes are organized in 512-byte logical
sectors, the microSD card typically stores 7,812,500 (or more) sectors,
a number that does not make much sense technically but makes a
great deal of sense when the design of flash-based storage systems is
considered. That is, flash systems contain more physical memory than
they advertise, with the system removing bad blocks from service as
the device ages. Thus, a “4-Gbyte” microSD card might actually have
8 million or even 9 million physical sectors, but those extra physical
sectors are invisible to the operating system.

We expect use of IEC binary prefixes to increase with time. We use
them here to describe block size and sector size, as they are typically
multiples of 512 (29). We use SI decimal prefixes to describe disk sizes,
since that is the way they are sold by manufacturers.

	 30	 computer

Cover Fe ature

UNDERSTANDING DISTINCT BLOCKS
Identifying files with sector hashes relies on the pres-

ence of distinct file blocks. A distinct block is one that does
not occur anywhere more than once except as a block in a
copy of the original file. Using distinct blocks as a forensic
tool leverages two hypotheses:

•• if a block of data from a file is distinct, then a copy of
that block found on a data storage device is evidence
that the file is or was once present; and

•• if the blocks of that file are shown to be distinct with
respect to a large and representative corpus, then
those blocks can be treated as if they are universally
distinct.1

The first hypothesis is trivially true if we could know
that a particular block is indeed distinct. Unfortunately,
it is impossible to know this. On the other hand, we can
determine the frequency of blocks in large collections of
real files.

The frequency of distinct blocks
We counted the number of blocks in several million-file

corpora that occurred once, twice, or more frequently.
We call these singleton, paired, and common blocks, re-
spectively. If paired and common blocks are extremely
unusual, then it is reasonable to believe that singleton
blocks are indeed universally distinct. Also, by examin-
ing the context of paired and common blocks, we might
understand the root causes of their nondistinctness: a
common method used to generate the data, an extrinsic
process that created similar files, or some other kind of
data-sharing mechanism.

For these experiments, we used three corpora modified
to remove all duplicate files:

•• Govdocs, a collection of 974,741 freely redistributable
files downloaded from US government webservers
(average file size: 493 KiBytes);2

•• OpenMalware 2012, a collection of 2,998,898 malware
samples (average file size: 417 KiBytes);3 and

•• the 2009 NSRL RDS, a set of 12,236,979 block hashes
for a collection of known, traceable software applica-
tions (average file size: 235 KiBytes).

To our knowledge, no previous studies have analyzed
the co-occurrence of blocks across such a large number of
files and file types. Using these corpora let us make some
general conclusions about the frequency of distinct blocks.

We analyzed each corpus using both 512-byte and
4-KiByte blocks—the sector size of older and modern
hard drives, respectively—except in the case of the 2009
NSRL RDS, for which 512-byte block hashes were not yet
available. We also compared OpenMalware 2012 to the
2009 NSRL RDS to find the most common blocks across
legitimate and malicious executables. Table 1 lists the in-
cidence of singletons, pairs, and common sectors in the
three corpora.

The vast majority of blocks in the corpora correspond
to single, specific files. This is not surprising given that
high entropy data approximates a random function. A
truly random 512-byte block contains 4,096 bits of en-
tropy. There are thus 24,096 ≈ 101,200 possible different blocks,
and all are equally probable. It is inconceivable that two

PREVIOUS WORK

W hile at the US Department of Defense Cyber Crime Center, Nick
Harbour developed the dcfldd disk imaging tool (http://

dcfldd.sourceforge.net), based on GNU dd, that would compute a
hash on a disk image as it was created. Harbour subsequently
modified dcfldd to compute hashes over segments of the disk image
so that if it was inadvertently modified, a chain of custody could be
maintained for at least part of the image. He called this piecewise
hashing. Jesse Kornblum’s md5deep (http://md5deep.sourceforge.
net) extended piecewise hashing to multiple files.

As part of his solution to the 2006 Digital Forensics Research
Workshop (DFRWS) Data Carving Challenge, Simson Garfinkel intro-
duced a new technique dubbed “the MD5 trick.”1 After finding the
original challenge documents based on text fragments from the
challenge description, Garfinkel computed the MD5 hash of 512-
byte file blocks and searched the challenge drive for matching
512-byte sectors. Using this technique, he identified all of the chal-
lenge files including a fragmented Microsoft Word file.

Three years later, Naval Postgraduate School researchers
released frag_find, a tool that automates this process.2 Sylvain Col-
lange and colleagues called this approach hash-based data carving3
and explored the use of GPUs to speed the hashing load. They found
that, with a powerful enough GPU, it is possible to simultaneously
hash a block of data on subsector boundaries—for example, 1,024
bytes of data can be hashed in 512-byte chunks on 4-byte boundar-
ies, creating 128 distinct hash values—although doing so dramatic-
ally increases pressure on the database.

In 2009, Simon Key developed the File Block Hash Map Analysis
(FBHMA) EnScript, a dual-purpose tool that creates a hash map of file
blocks from a master file list and searches selected areas of a target
drive for the blocks.4 Like frag_find, however, FBHMA EnScript does
not support billion-block hash databases or sufficiently fast lookup
speeds to use sector hashing in full media analysis or random
sampling.

References
	 1.	 S.L. Garfinkel, “DFRWS 2006 Challenge Report,” 2006; http://sandbox.

dfrws.org/2006/garfinkel/part1.txt.
	 2.	 S. Garfinkel, “Announcing frag_find: Finding File Fragments in Disk

Images Using Sector Hashing,” 1 Mar. 2009; http://tech.groups.yahoo.
com/group/linux_forensics/message/3063.

	 3.	 S. Collange et al., “Using Graphics Processors for Parallelizing Hash-
Based Data Carving,” Proc. 42nd Hawaii Int’l Conf. System Sciences (HICSS
09), IEEE CS; http://hal.archives-ouvertes.fr/docs/00/35/09/62/PDF/
ColDanDauDef09.pdf.

	 4.	 S. Key, “File Identification and Recovery Using Block Based Hash
Analysis,” lab presented at the annual Computer Enterprise and
Investigations Conf. (CEIC), 2012; www.ceicconference.com/AJAX/
courseScheduleLightbox.aspx?id=1000018721.

	 DECEMBER 2012	 31

randomly generated blocks would have the same
content. The randomness of user-generated content
is less than 8 bits per byte, of course, but even for
content that has entropy of 2 bits per byte, a 512-
byte block still contains 1,024 bits of entropy, again
making it very unlikely that two blocks will be the
same.

As Table 1 shows, all kinds of user-generated con-
tent, including word processing files, photos, and
video, contain sectors that are not seen elsewhere—
that is, distinct blocks according to our definition.
The frequency of distinct blocks in the OpenMalware
2012 and 2009 NSRL RDS datasets is significantly
lower but still quite high. However, our experiments
make it clear that it is impossible to assume a priori
that a given singleton block is distinct.

Origin of nondistinct blocks
To better understand the root causes of nondistinct

blocks, we analyzed the most common blocks from each
corpus. Our original intuition was that blocks that had low
entropy or that contained repeating byte patterns would
occur frequently. We found that many of the common
blocks indeed had these characteristics.

As expected, the block of all NUL (0×00) bytes was
the most common block across all corpora. But we found
other examples as well. For instance, there were more than
200,000 occurrences of an Adobe PDF internal data struc-
ture in the Govdocs corpus. Likewise, we found several
common blocks that contained Microsoft Office internal
structures.

Several high-entropy blocks were common in the
OpenMalware 2012 dataset. We found that these blocks
occurred in different files but always at the same byte
offset. Further analysis revealed that the containing files
were actually different variants of the same malware, as
reported by several antivirus tools on VirusTotal.com. The
repeated blocks did not appear in any legitimate files listed
in the 2009 NSRL RDS corpus. Clearly, these blocks are
unique to a specific malware family and not general ex-
ecutables or other system files.

Although traditional file identification techniques re-
quire each variant’s hash, our findings show that shared
blocks can identify some malware variants. We suspect
that these common malware blocks are the result of hand-
patching existing malware and code reuse, or elementary
attempts to change a file hash by adding bytes to the end
of the file.

BLOCK HASH DATABASE
To develop a useful system for performing sector analy-

sis, it is not enough to choose which or what size blocks
should be used to capture a target dataset. It is necessary
to, first, efficiently store the hashes for the target blocks

and, second, check quickly enough to determine whether
disk sectors are present in the dataset.

Performance requirements
Our goal is to create a database of one billion file block

hashes that can be field deployed on a laptop. The data-
base should be fast enough to support searches of hashes
that are created by reading a consumer hard drive at the
maximum I/O transfer rate (assuming that hashing is free).
Given that it takes approximately 200 minutes to read the
contents of a Tbyte-size hard drive, this translates to a
database that can perform roughly 150,000 hash lookups
per second. With a billion 512-byte block hashes, the data-
base would allow identification of 512 gigabytes of known
content, a number that is sufficient for many applications.
Because hash values are evenly distributed, the database
can be trivially parallelized using prefix routing.4 A cluster
with 1,000 such databases could thus support 1012 block
hashes and address half a petabyte of known content.

Instead of hashing every sector of the drive, it is possible
to conduct an exhaustive investigation sampling only one
million randomly chosen sectors. Although the sample con-
tains only 0.05 percent of the drive, there is a 98.17 percent
chance of detecting 4 Mbytes of known content, provided
that each of those 8,000 blocks is in the database.

This is an instance of the well-known “urn problem” in
statistics, which describes the probability of pulling some
number of red beans out of an urn that contains a mix of
randomly distributed red and black beans. In this case, the
red beans are distinct sectors, there are 8,000 (C) of them
distributed randomly, there are two billion beans in total
(N), and one million (n) are selected randomly. The prob-
ability p of not finding even a single red bean in n draws is

p =1 −

N − (i − 1)() − C()
N − (i − 1)()

i − 1

n

∏ .

Applying this equation to 500,000 and 250,000 randomly
selected sectors, we find that the chance of detecting

Table 1. Incidence of singleton, paired, and common sectors
in three file corpora.

No. of blocks Govdocs OpenMalware 2012 2009 NSRL RDS

Block size: 512 bytes

Singleton 911.4 M (98.93%) 1,063.1 M (88.69%) N/A

Pair 7.1 M (.77%) 75.5 M (6.30%) N/A

Common 2.7 M (.29%) 60.0 M (5.01%) N/A

Block size: 4 kibibytes

Singleton 117.2 M (99.46%) 143.8 M (89.51%) 567.0 M (96.00%)

Pair 0.5 M (.44%) 9.3 M (5.79%) 16.4 M (2.79%)

Common 0.1 M (.11%) 7.6 M (4.71%) 7.1 M (1.21%)

	 32	 computer

Cover Fe ature

4 Mbytes of known content, provided each of the 8,000
blocks is in the database, is 86.47 percent and 63.21 per-
cent, respectively.

Note that the 4 Mbytes might be a single high-resolution
JPEG or 40 medium-resolution JPEGs—the key issue is that
there are 8,000 distinct blocks stored on sectors of the
drive, and each random choice represents another chance
to find one of them. Furthermore, because each sample
is random, the distribution of the sectors on the drive is
irrelevant—the chance of finding them with a random
search is the same whether they are randomly distributed
or clustered in a single location.

A 7,200-rpm hard drive can perform approximately 300
seeks per second. If the million randomly chosen sectors
are sorted in advance, most systems could read all of them
in 30 minutes; it is possible to read more data in the same
time by increasing the read size to 8, 64, or even 128 sec-
tors, although the statistical calculation becomes more
complicated because many of the samples are now corre-
lated, not strictly random. Thus, for the random sampling
application, a database lookup of a few thousand transac-
tions per second might be sufficient.

Designing the database
Neither conventional SQL databases such as MySQL,

PostgreSQL, and SQLite nor NoSQL databases such as
MongoDB have sufficient performance to support even
high-speed random sampling. Using recent versions of
each database on a Dell R510 server equipped with Dual
Xeon E5620 2.4-GHz processors (each with 16 cores, a
12-mibibite cache, and 128-gibibite main memory), we got
less than 1,000 lookups per second for databases contain-
ing one billion hashes.

To achieve better performance, we created our own
purpose-built key-value pair store, where the key is a cryp-
tographic block hash and the value identifies the source file
and offset. We tested various custom-built solutions using
hash maps, B-trees, red/black trees, and sorted vectors. In
keeping with our goal for field deployment, the database
is precomputed, finalized, and distributed to the client as
a single file.

When looking for known content, we expect few of the
sector hashes from a subject drive to actually be present
in the database. We leverage this by checking a Bloom
filter5 before checking the database. Bloom filters facilitate
efficient probabilistic set-membership checking with a zero
false-negative rate and a false-positive rate dependent on

the filter’s parameters—the number of bits used in each
hash (M) and the number of hash functions used (k).

When storing an item in the Bloom filter, we first hash
the item k times, yielding k M-bit integers. We then set the
corresponding bits in the filter. To test membership, we
repeat the process, but instead of setting the bits, we check
them, and if one or more bits are not set, the item cannot
be in the filter. Note, however, that if all k bits are set, the
item might or might not be present, as the bits might be
aliases set for other items.

As we are storing the 128-bit MD5 hash values for
the block, we do not need to compute k new hashes, but
instead can partition the MD5 hash into M bit chunks.
The resulting Bloom filter consumes 2M bits or 2M/8 =
2M–3 bytes. When M = 32, for example, the result is only
k = 128/32 = 4 hashes, and the Bloom filter occupies
512 MiBytes of disk space. The theoretical false-positive
rate of such a filter with a billion items is 13.48 percent,
approximated by Pfp = (1 – e–kn/m)k. Doubling the size of the
filter lowers the false-positive rate to 1.92 percent.6

One typically implements red/black trees, flat maps
(essentially sorted vectors), and hash maps as in-memory
data structures. To achieve persistence, we developed a
data structure based on the boost::interprocess library,
which allows transparently placing Boost C++ container
implementations into memory-mapped files. For the
B-tree back end, we selected Beman Dawes’ proposed
boost::btree library (https://github.com/Beman/Boost-
Btree) and adapted our framework to support this back
end. We used the Naval Postgraduate School’s Bloom filter
implementation.

After the user finalizes the database, the framework
packs the data structures and releases extra space. In ad-
dition, it rewrites the B-tree with fully packed nodes at
maximum density, enabling it to preload part of the tree
into RAM.

Finally, the framework supports sharding the database
into multiple chunks by the high-order bits in the key type.

Our key type is the 128-bit MD5 hash, and the record
type is 64 bits partitioned to represent a file identifier and
an offset yielding a 24-byte-per-record minimum cost. The
flat map and B-tree back ends are most efficient, using less
than 25 bytes per element, while the red/black tree and
hash maps are less efficient, using 64 and 61 bytes per
element, respectively. The red/black tree overhead comes
from the tree nodes, while the hash map overhead results
from unused buckets.

As cryptographic hashes are designed to be unpredict-
able, there is no similarity from one hash to the next, thus
there is little locality of reference that the operating system
can exploit when building the database. System RAM thus
becomes the dominant factor in determining the time re-
quired. On one Intel Xeon E5620-based server (2.4 GHz,
12-MiByte L2 cache) with 32 GiBytes of RAM, it took 29

Our goal is to create a database of one
billion file block hashes that can be
field deployed on a laptop.

	 DECEMBER 2012	 33

days to create a billion-record hash map, while it took less
than four hours on a slower, AMD Opteron 6174-based
system (2.2 GHz, 512-KiByte L2 cache) with 256 GiBytes
of RAM.

We found that creating some locality by first building
the database as a flat map and then converting to either a
B-tree or hash map was faster than generating the B-tree
or hash map directly. Likewise, we found that tuning
the Linux operating system parameters dirty_ratio,
dirty_background_ratio, and dirty_expire_centisecs
to allow dirty pages to stay in memory longer improved
performance by helping the OS use the disk cache more
efficiently.

When fielding systems using the block hash database,
system memory and I/O speed are the prime drivers. A
drive triage system must be able to read disk sectors as fast
as possible from a subject drive and test hashes of those
sectors against the database. Large RAM allows caching
more of the database, reducing I/O pressure. The database
should be stored on a solid state drive (SSD) to further
speed I/O, since every lookup will require one or more
random seeks within the database file.

For systems supporting fixed sites, such as a customs
and immigration checkpoint, a large memory server or
cluster can maintain the entire database in RAM and sup-
port several triage stations over a gigabit network.

Back-end testing
We performed back-end testing with databases contain-

ing 100 million and 1 billion records. The tests were done
on a laptop with 8 GiBytes of RAM, a 2.67-GHz processor,
and a 250-Gbyte SSD attached via eSATA and USB2 drives.
We performed additional testing on a desktop system with

24 GiBytes of RAM and spinning media. All runs were per-
formed with 50/50 random blends of database hits and
misses, which might be unrealistically pessimistic. To
guarantee that no part of the database was already loaded
in memory, we directed the OS to stop caching all disk files
by syncing the disks and then writing a “3” into /proc/sys/
vm/drop_caches between each run.

Table 2 shows the read transactions per second against
the 100 million and one billion record databases after one
million lookups (2-384 seconds, depending on the row) and
at 1,200 seconds, obtained with the four back-end strate-
gies and B-tree with and without preload. Performance
graphs for all of the runs are available at http://domex.
nps.edu/deep.

The hash map offered the best performance at 100 mil-
lion records, followed in order by the red/black tree, the flat
map, and the B-trees. There was a factor-of-eight difference
for queries that were present, but only a 40 percent spread
for queries that were not present. In all cases, we observed
that database misses were dramatically faster than hits, a
result of prefiltering with the Bloom filter. The back-end
performance is still relevant for misses, however, due to
the false positives. We also observed that very large Bloom
filters negatively impacted speed because of increased
memory pressure. At one billion records, we obtained the
best performance with M = 33 for the no-preload B-tree.
Note that while the hash map outperformed the other strat-
egies at 100 million records, B-trees overall dominated all
other strategies by a factor of almost 30 (300 times better
than the classic databases). The USB2 drive was roughly
half the speed of the eSATA drive.

In sum, for billion-record hash databases, the B-tree
is the best choice. For smaller datasets, the hash map

Table 2. Total transactions per second (TPS) for best execution.

Bloom filter Database TPS at 1 M lookups TPS at 1,200 seconds

k M Size Strategy Size Present Absent Present Absent

100 million records

3 31 257 MiBytes B-tree (preload) 2.3 GiBytes 35.3 K 49.5 K 161.3 K 1.8 M

3 31 257 MiBytes B-tree 2.3 GiBytes 11.6 K 565.8 K 156.8 K 2.3 M

3 31 257 MiBytes Hash map 5.3 GiBytes 13.9 K 656.9 K 641.9 K 3.0 M

3 31 257 MiBytes Flat map 2.2 GiBytes 28.2 K 746.9 K 356.4 K 2.6 M

3 31 257 MiBytes Red/black tree 6.0 GiBytes 12.9 K 694.5 K 187.0 K 2.7 M

1 billion records

3 34 2.1 GiBytes B-tree (preload) 23 GiBytes 2.2 K 6.1 K 3.6 K 23.1 K

3 33 1.1 GiBytes B-tree 23 GiBytes 2.6 K 85.8 K 3.7 K 114.9 K

3 33 1.1 GiBytes Hash map 57 GiBytes – – 0.3 K 3.1 K

3 34 2.1 GiBytes Flat map 22 GiBytes – – 0.4 K 4.0 K

3 33 1.1 GiBytes Red/black tree 60 GiBytes – – 0.1 K 1.4 K

Dashes indicate that 1 million queries were not completed in the 1,200 seconds allowed.

Cover Fe ature

	 34	 computer

is the fastest, but the flat map offers the best compro-
mise between space and time (being among the smallest
and tied for second place in speed), while the B-tree
offers the poorest (requiring the most space and being
the slowest). In either case, database lookups can be
performed faster than sectors can be read from a drive
being triaged.

SECTOR HASHING IN DIFFERENT
FILE SYSTEMS

An advantage of sector hashing is the ability to process
raw media without reference to the underlying file system.
Doing so requires aligning the file data on sector boundar-
ies. Fortunately, most file systems in use today align files in
data units that consist of multiple disk sectors. These allo-
cation units are variously called clusters, blocks, or sectors.

Current file systems
The FAT (File Allocation Table) file system, introduced

by Microsoft with DOS, has become the de facto format for
storage devices such as thumb drives, external hard disks,
and Secure Digital (SD) cards. All three FAT variants (12,
16, and 32) block-align data.

Microsoft developed exFAT (extended FAT) to address
FAT’s file size and performance limitations. It lacks the
NTFS security features, but it can support file sizes greater
than 4 GiBytes. Like its predecessors, exFat has a block-
aligned data region.

NTFS (New Technology File System) is the default file
system for the current generation of Windows. It uses a
master file table (MFT) that has an entry for every file
and directory. NTFS block-aligns large files but not files
smaller than 1,024 bytes, which can be contained entirely
in the MFT. The advent of 4-KiByte physical sector drives
raises an issue, as they are not supported by products
prior to Windows 8 and Server 2012. Instead, NTFS uses
an “emulation mode” 512e to return a logical sector. While
emulation can occur transparently, it also can induce
file system clusters to cross physical sector boundaries,
causing every physical sector to contain parts of differ-
ent contiguous clusters. The techniques for working with
512-byte physical sector sizes also address alignment
problems.

Ext4 is the default file system for most Linux distri-
butions, including newer versions of Android. A major
difference between Ext4 and Ext3 is that the former uses
extents, while the latter employs a block pointer system.

Despite this, Ext3 and Ext4 base their allocation on blocks,
so file data is invariably aligned with the underlying stor-
age media.

Next-generation file systems
Newer file systems handle data storage quite differ-

ently than their predecessors. Differences include data
and metadata integrity mechanisms, copy-on-write
transactions instead of journals, and built-in support for
snapshots. However, sector hashing should work on these
systems.

ZFS is the most mature next-generation file system,
and the only one used in production environments. ZFS
“blocks” are dynamically sized extents consisting of
multiple sectors. If a file requires more space than the
maximum block size, the system allocates multiple blocks.
Since blocks are always aligned with the underlying stor-
age media, there is no impact on sector hashing.

The B-tree file system (Btrfs) is poised to become the
file system of choice for Linux. Although Btrfs uses extents
of blocks to store large files, it can pack small files into
the leaf block of the B-tree used to store file attributes.
Thus, the system might not sector-align files smaller than
4 KiBytes.

The Resilient File System (ReFS) is Microsoft’s upcoming
innovation. Like Btrfs, ReFS makes extensive use of B-trees
and extents. ReFS will block-align data, but whether it will
pack small files into the B-trees is currently unknown.

Encrypted file systems
If an application such as Adobe Acrobat encrypts a file

and transfers it to a different system, the encrypted data
blocks will remain the same on the target media. Thus,
sector hashing can aid in revealing the presence of en-
crypted files, provided they have not been re-encrypted.

Encrypted file systems, in contrast, present a significant
problem. BitLocker for NTFS and ReFS and FileVault 2 for
Apple’s HFS+ encrypt data blocks as they are written to
the storage medium and decrypt them when they are read
back. Because each drive is encrypted with a different key,
the same data will be encrypted differently on different
drives. Thus, sector hashing will not work with these drives
unless the block device is read through the file system
after the decryption key has been loaded or the drive is
otherwise decrypted.

Q uickly detecting documents or images of interest in
digital media is critical to the forensic investigation
process. Given a large disk or set of disks, an inves-

tigator requires an efficient triage process to determine
if known bad or illegal files or previously unseen files
that require additional analysis are present. Traditionally,
forensic investigators use file-hashing tools to analyze the
file system. However, file hashing has several shortcom-

Sector hashing can aid in revealing the
presence of encrypted files, provided
they have not been re-encrypted.

	 DECEMBER 2012	 35

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

ings: it does not work with files that have been modified
in any way, it requires files to be intact, and it requires the
ability to extract both allocated and deleted files from the
subject media in a forensically sound manner.

Our approach for forensic identification of data searches
disk sectors for distinct file blocks, rather than searching
the file system for distinct files. Our method is agnostic to
the file system and file type, and can analyze all portions
of the media including unallocated space, metadata, and
encrypted content. Sector hashing can also be parallelized
since each sector is processed independently of all others.

Using sector hashes presents several challenges.
The first is choosing an appropriate file block size that
balances the ability to identify distinct chunks of files
with the amount of data that needs to be stored and
analyzed. A block hash database’s large size makes it
necessary to design a custom data store for this ap-
plication. It is also useful to identify disk sectors that
are likely to be nondistinct to minimize the number of
queries made to the database without missing critical
distinct file blocks.

A potential critique of our approach is that an attacker
could defeat it by adding or removing semantically empty
data to files, thereby changing the sector alignment. In
response, we note that it would be easier to encrypt the
entire drive and that many people are still not doing this.

Although sector hashing will be a powerful tool for
media forensics, the size of the block hash database will
surely hamper widespread adoption. Consequently, sector
hashing is more likely to appeal to large organizations
searching for stray copies of their own files and new vari-
ants of malware that they have already encountered,
rather than by small organizations seeking to match their
media against a database distributed by a vendor or the
US government.

Acknowledgments
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the US government. The US gov-
ernment is authorized to reproduce, distribute, or authorize
reprints for any reason notwithstanding any copyright an-
notations thereon.

References
	 1.	 S. Garfinkel et al., “Using Purpose-Built Functions and Block

Hashes to Enable Small Block and Sub-File Forensics,”
Digital Investigation, Aug. 2010, pp. S13-S23; www.dfrws.
org/2010/proceedings/2010-302.pdf.

	 2.	 S. Garfinkel et al., “Bringing Science to Digital Forensics
with Standardized Forensic Corpora,” Digital Investigation,
Sept. 2009, pp. S2-S11; www.dfrws.org/2009/proceedings/
p2-garfinkel.pdf.

	 3.	 D. Quist, “State of Offensive Computing,” blog, 7 July 2012;
www.offensivecomputing.net/?q=node/1868.

	 4.	 E.M. Bakker, J. van Leeuwen, and R.B. Tan, “Prefix Routing
Schemes in Dynamic Networks,” Computer Networks and
ISDN Systems, Dec. 1993, pp. 403-421.

	 5.	 B.H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Comm. ACM, July 1970, pp. 422-426.

	 6.	 P. Farrell, S.L. Garfinkel, and D. White, “Practical Appli-
cations of Bloom Filters to the NIST RDS and Hard Drive
Triage,” Proc. Ann. Computer Security Applications Conf.
(ACSAC 08), IEEE CS, 2008, pp. 13-22.

Joel Young is an assistant professor in the Department of
Computer Science at the Naval Postgraduate School. His
research interests include computer forensics, algorithm
design, and machine learning. Young received a PhD in
computer science from Brown University. He is a member
of the Association for the Advancement of Artificial Intel-
ligence. Contact him at jdyoung@nps.edu.

Kristina Foster is a student at the Naval Postgraduate
School. Her research interests include computer forensics
and computer security. Foster received an MS in engineer-
ing, electrical engineering, and computer science from
the Massachusetts Institute of Technology. Contact her at
kmfoster@nps.edu.

Simson Garfinkel is an associate professor in the De-
partment of Computer Science at the Naval Postgraduate
School. His research interests include computer forensics,
security visualization, and information policy. Garfinkel
received a PhD in computer science from the Massachusetts
Institute of Technology. He is a member of IEEE and ACM.
Contact him at slgarfin@nps.edu.

Kevin Fairbanks is a cybersecurity research engineer in
the Applied Physics Laboratory at Johns Hopkins Univer-
sity. His research interests include digital forensics and
computer security. Fairbanks received a PhD in electrical
and computer engineering from the Georgia Institute of
Technology. He is a member of IEEE. Contact him at kevin.
fairbanks@jhuapl.edu.

