Digital Investigation 9 (2012) S80-S89

journal homepage: www.elsevier.com/locate/diin

Contents lists available at SciVerse ScienceDirect

Digital Investigation

Lessons learned writing digital forensics tools and managing a 30TB

digital evidence corpus

Simson Garfinkel*

Naval Postgraduate School, Computer Science, 900 N Glebe Rd, Arlington, VA 2203, United States

ABSTRACT

Keywords:
Digital forensics
Lessons learned
Digital corpora

Writing digital forensics (DF) tools is difficult because of the diversity of data types that
needs to be processed, the need for high performance, the skill set of most users, and the
requirement that the software run without crashing. Developing this software is
dramatically easier when one possesses a few hundred disks of other people’s data for

testing purposes. This paper presents some of the lessons learned by the author over the
past 14 years developing DF tools and maintaining several research corpora that currently

total roughly 30TB.

Published by Elsevier Ltd.

1. Introduction

As the field of digital forensics (DF) continues to grow,
many people find themselves engaged in the once obscure
practice of writing DF software. Few of today’s forensic tool
developers have formal training in software development
or design—many do not even see themselves as program-
mers. They say that they are writing “scripts,” not
programs, apologize that their efforts are neither efficient
nor elegant, and explain that their scripts are simply stop-
gap measures until professional, seasoned programmers
can be hired to sort things out.

This situation is reminiscent of the Internet’s early days.
The people we now call Internet “pioneers” did not regard
themselves so grandly. The tradition of titling Internet spec-
ifications as “Request For Comment” started because “[m]ost
of us were graduate students and we expected that a profes-
sional crew would show up eventually to take over the
problems we were dealing with” (Reynolds and Postel, 1987).
Instead, the graduate students became the professionals.

Likewise, no professional crew is coming to take over
our DF problems. If we want better tools, we must build
them ourselves.

* Tel.: +1 617 876 6111.
E-mail address: simsong@acm.org.

1742-2876($ - see front matter Published by Elsevier Ltd.
doi:10.1016/.diin.2012.05.002

By digital forensics software I mean software that is used
to analyze disk images, memory dumps, network packet
captures, program executables, office documents, web
pages and container files. That is, it is software that can be
used to analyze any information that might be found on
a computer or sent over a network during the course of an
investigation. Fortunately, the same tools can frequently be
used with many different modalities—the EXIF from a JPEG
can be usefully analyzed no matter whether the JPEG was
extracted from disk sectors or reassembled from IP packets.

[also take the word investigation to be quite broad:
although some practitioners focus on the use of DF tools in
criminal investigations, these tools are also used in civil
investigations, internal investigations, and even audits, all
of which have different standards for chain-of-custody,
admissibility, and scientific validity. This broad scope
means that many DF tools and techniques that might be
improper to use in one context might be routine in others.

Despite the expansiveness of this definition, some areas
are clearly outside DF. I exclude multimedia forensics—for
example, the analysis of a JPEG to determine if it has been
altered—agreeing with Béhme et al. (2009) that multi-
media forensics is not digital forensics. This article also
ignores advances in search and text retrieval and natural
language processing, as those are simply not my area of
research. Rather than being a jack of all trades, I attempt to

S. Garfinkel / Digital Investigation 9 (2012) S80-S89 S81

develop software that focuses on structure and metadata,
rather than content, and has a plug-in architecture, so that
expert developers in those fields can transparently meld
their software with mine.

This article is written in the first person and is neces-
sarily personal. I hope it will allow others to learn not
merely from my research papers, but from my unreported
experiences as well as my mistakes that were made along
the way.

1.1. Outline

This concludes the introduction. Section 2 explains why
DF tools are harder to develop than other kinds of software;
it also argues why market conditions justify such software
development directly funded by governments. Section 3
presents problems that I encountered in creating the Real
Data Corpus. Section 5 lists some other articles that you
should also read. Section 6 concludes.

2. Digital forensics is different

Several aspects of DF software development make it
fundamentally different than other areas. These include:
data diversity; data scale; temporal diversity; human
capital; and the so-called “CSI effect.”

2.1. The challenge of data diversity

A fundamental distinction between DF and other kinds
of software is the range of data that must be analyzed. Most
software development is confined to a particular problem
domain. DF is concerned with the totality of information
that can be stored or transmitted using computer systems:
any computer used for any purpose might need to be
analyzed as part of a criminal investigation, civil lawsuit, or
military operation. As there are many more developers
writing general-use software than DF tools, the percentage
of data types that can be analyzed, by DF tools is likely to
decrease over time.

The need to process incomplete or corrupt data further
complicates the task of the DF developer. In most
computing contexts tools validate their inputs and refuse to
run if the data are inconsistent. DF tools cannot refuse to
run—they must make a best effort attempt to show
whatever data are present on the subject media.

DF tools also need to determine why data will not vali-
date. Sometimes it is because data have been corrupted by
partial overwriting. Other times there have been deliberate
attempts at falsification or information hiding. Minor
inconsistencies can indicate tampering. Unfortunately
much of the redundant information on modern computers
is not validated for internal consistency by modern DF
tools. For example there are multiple time stamps associ-
ated with activities on a Windows systems, but most
programs concentrate on just a few time stamps, ignoring
others (Nelson, 2012). Such inconsistencies should be
detected and reported.

Rather than directly detecting inconsistent informa-
tion, an alternative is to eliminate data that are consistent
or otherwise explainable. That is, eliminate the truth

and the improbable, and whatever remains must be
impossible—and therefore falsified. Data that are
improbable should be examined for steganography.

2.2. Data scale

A second problem in DF tool development is the amount
of data that must be processed and the never-ending battle
with storage and performance bottlenecks. These problems
result from the fact that investigators invariably need to
analyze recently purchased computer systems. We are thus
using top-of-the-line systems to analyze top-of-the-line
systems, and we typically need to analyze in hours (or
days) what a subject spent weeks, months, or even years
assembling. We will never get ahead of the performance
curve. When we finally move to cloud-based analysis, we
will need to analyze the multi-terabyte results of investi-
gating cloud-based crime.

Somewhat surprisingly, it has been difficult to apply
many “big data” solutions from other fields to DF. For
example, most cluster computers are designed for prob-
lems such as weather modeling and finite element analysis,
which require large working sets in memory and high-
speed communications between nodes, but which do not
ingest terabytes of heterogeneous data for each run. High-
energy physics experiments generate large amounts of
data, but the data can be locally processed and reduced.
Also, state and local investigators do not have the budgets
or personnel that would let them adapt the data manage-
ment practices of the world’s leading physics laboratories.

One solution to the performance bottleneck is to adopt
sub-linear algorithms that operate by sampling data.
Sampling is a powerful technique and can frequently find
select data on a large piece of media with a high degree of
precision: at NPS we developed a technique for deter-
mining the amount of encrypted data on a 2 Terabyte (TB)
hard drive in less than 10 min (Garfinkel et al., 2010). But
sampling cannot prove the absence of data: the only way to
establish that there are no written sectors on a hard drive is
to read every sector.

I believe that scale and performance bottlenecks dictate
that forensic researchers develop new approaches that rely
on the inherent advantages of governments, such as the
ability to correlate email addresses—just as Automated
Fingerprint Identification Systems (AFIS) revolutionized
law enforcement in the 1990s (Snow 2007, p.111). Such
capabilities can reduce the need to perform traditional
forensic processes.

2.3. Temporal diversity: the never-ending upgrade cycle

Many computer users have learned that upgrades are
a disruptive process that need to be carefully managed. As
a result, many organizations run out-of-date operating
systems and only move to newer ones when they buy new
hardware.

DF practitioners do not have this luxury. They must
continually update their software, for the simple reason
that examinations routinely involve the newest software
and hardware on the market. In no other field of computing
is it necessary to upgrade software the very moment that

S82 S. Garfinkel / Digital Investigation 9 (2012) S80-S89

new software comes out—many websites work fine with
browsers that are three years old, and vice versa. But when
it comes to forensics, failure to upgrade invariably means
failure to analyze.

When upgrading tools, there are two version numbers
that need to be considered. The first is the tool’s target
version, the version of the operating system that it can
analyze. The second is the tool’s host version, the version of
the operating system required to run the tool.

My practice is to upgrade my own computers as soon as
new software comes out, for the simple reason that I would
rather discover compatibility problems with my software
than place the burden on my users. Upgrading my host system
also makes it easier for me to support the host as a target.

To be clear, upgrading a DF tool to support a new host
operating system does not mean dropping support for an
older host operating system—many users cannot upgrade.
Each operating system release therefore means supporting
a broader set of platforms. And indeed, forensic software
running on older host operating systems must support the
most up-to-date targets.

Support of target operating systems is even more
complicated. Not only must tools support new targets
within days of their release, but they must continue to
support old target releases forever. EnCase Forensic cannot
run on Windows 3.1 but it must be able to analyze Windows
3.1 systems, since an investigator might come across an old
computer system that needs analysis. The problem is worse
for programs that analyze web services. Facebook and
Google constantly change their HTML, JavaScript, JSON and
XML formats. As a result, a computer that is seized today
may have data from a hundred different versions of Face-
book in its cache; all must be analyzed by a single tool.

We have two options. Either DF tools must become
geometrically more complex over time, or they must adopt
a combination of pattern matching, machine learning, and
automated code analysis to infer what captured data
probably means. The certainty (or lack of it) must then be
shared with the examiner. An example of this approach can
be found in Walls et al. (2011a).

2.4. Human capital demands and limitations

Hibshi et al. (2011) found that users of DF software come
overwhelmingly from law enforcement, with little or no
background in computer science. They are generally
deadline-driven and over-worked. Examiners that have
substantial knowledge in one area (e.g., NTFS semantics)
will routinely encounter problems requiring knowledge of
other areas (e.g., Macintosh malware) for which they have
no training. Certifications and masters’ degrees are helpful,
but cannot fundamentally address the diversity problem as
any examiner might reasonably be expected to analyze any
information that their organization might possibly
encounter on digital media. This is one of the reasons that it
typically takes two years to train a DF examiner to the point
of being able to work a case on their own, even after they
have achieved some kind of certification.

Among developers, the human capital problem plays out
in a different way. Data diversity means that developers
require knowledge of all levels of the computing stack, from

individual opcodes, multi-threading, the organization of
processes and operating system structures, networking, and
supercomputing. It is exceedingly hard to find individuals
with such background—Ilet alone pay what they are worth.
As a result, many organizations that develop software need
to train their own developers to the task. Coincidentally, it
also seems to take about two years for a programmer to
become proficient at developing computer forensics tools;
am not sure why this is the case.

2.5. The CSI effect

Much has been written regarding the so-called CSI Effect,
a hypothesis that television shows portraying Crime Scene
Investigations and forensic science cause juries, judges and
even prosecutors to have unreasonable expectations
regarding what forensic examinations can actually conclude
(Shelton, 2008; Lawson, 2009). In recent years DF has
become a staple of many such shows. On the screen nearly
every DF investigator is trained on every tool; correlation is
easy and instantaneous; there are never false positives;
overwritten data can frequently be recovered; encryption
can frequently be cracked; it is all but impossible to delete
anything; and tools never crash.

Reality is not so kind. Overwritten data cannot be
recovered (Wright et al.,, 2008) and modern encryption
algorithms can only be decrypted with password cracking.
As aresult, most examiners spend their time looking for data
that the suspect did not observe or neglected to erase. Such
data rarely answers specific questions or establishes guilt.

Complicating the public’s perception of DF is that fact
that forensic tools perform functions that are fundamen-
tally similar to programs like Windows Explorer, Outlook,
and Google. That is, tools can list files, display email
messages, and perform search. A person who is skilled in
using computers may believe that they have a good
understanding of forensic investigation and underestimate
the complexity and uncertainty inherent in the process.

The head of an academic research lab once told me that
recovering data from hard drives wasn’t all that difficult,
and if I really wanted to apply my talents, I should develop
covert ways of downloading files from terrorist websites.
The researcher was wrong. Terrorist web servers are
designed to provide information to terrorists: the only
difficulty is pretending to be one. Recovering data from
hard drives typically involves decoding data that is frag-
mented or partially overwritten, and that can no longer be
processed by the terrorists’ own tools. That is fundamen-
tally hard.

The differences between Windows Explorer and EnCase
Forensic are not obvious to the uninitiated. DF is a difficult
process that looks easy. This is not a good formula for
continued funding. It is vital that we convey to those
outside our field the scope of the technical difficulties that
we face; if we do not, we are sure to see a decrease in both
funding and future recruits.

2.6. The cost of development and the role of government

DF tool development is exceedingly expensive and the
resulting software has a limited user base. The more

S. Garfinkel / Digital Investigation 9 (2012) S80-S89 S83

sophisticated the analysis, the smaller the market. There is
an obvious commercial market for file recovery tools, for
example. But there is no market for tools that extract email
addresses from fragments of Windows hibernation files
and correlate them with email addresses from the address
books of cell phones. Not surprisingly, few DF companies
have been commercially successful. Some have an initial
success with their product and scale up staff accordingly,
only to discover that the initial release saturated the
market. It is not that DF is an immature market with
customers being mostly in the government: it is that DF is
a mature market with development costs that are high and
increasing. It is important to note that Guidance Software,
despite a successful initial public offering in 2006, did not
have a profitable quarter until the 3 months ending 2011-
SEP-30, when it made just $510,000 on $27.26M in rev-
enue—a profit margin of less than 2% (Guidance Software,
2011).

High development costs combined with a user base that
is almost entirely within federal, state and local govern-
ments limits the applicability of the traditional commercial
software development model. It may be more appropriate
for development costs to be paid up front by governments,
either with internally developed software or through
contract vehicles, and then to freely distribute the resulting
software to qualified users. This is why, after watching
numerous DF companies (including my own) fail, I devoted
my efforts to writing open source DF tools.

3. Lessons learned managing a research corpus

A key part of my research program has been the acqui-
sition, curation, use, and distribution of DF data. This project
started in 1998 and has expanded to include data from hard
drives, cell phones, digital cameras and other devices. Today
the corpus includes nearly a million redistributable files
downloaded from US Government web servers, disk images
from thousands of hard drives purchased around the world,
and several terabytes of “realistic” scenarios manufactured
by students. More details of the corpus can be found in
Garfinkel et al. (2009).

This section describes the rationale for using real data in
computer forensics research (§3.1), then presents some of the
technical (§3.2) and policy (§3.3) issues that I encountered.

3.1. History: how I started acquiring used data

In 1998 I purchased six very obsolete used computers at
a local computer store to test a multi-line telephone
scanner Sandstorm Enterprises was developing. Before
reformatting the hard drives, I discovered that the
machines had sensitive information from previous users. |
reported my finding to the store owner, who asked that I
wipe the machines. I wondered whether or not other used
equipment might contain sensitive data, and started
purchasing used hard drives on eBay, at computer stores,
and flea markets. I called this the “Drives Project.”

I had amassed a personal collection of more than 150
hard drives when I entered the MIT Computer Science PhD
program in the fall of 2002. Needing a research project, I
decided to scavenge the drives for sensitive information left

behind by previous users. I tried programs created for law
enforcement such as EnCase and FTK and found that while
they could recover deleted files and perform keyword
searches, they were less useful for finding loosely defined
“sensitive stuff.” Shelat and I developed software that
scanned for email addresses and credit card numbers,
allowing us to select from the many drives, the few that
contained the most spectacular collections of sensitive
data. These were manually investigated and reported in
Garfinkel and Shelat (2003). In Garfinkel (2005) I showed
how usability failures in modern operating systems led
directly to the data leakage.

My strategy of scanning for “sensitive stuff” had far-
reaching consequences. Traditionally DF was used as
a conviction support tool. That is, law enforcement seized
computers belonging to people that were already suspects,
and the computers, typically searched with a warrant,
provided evidence of guilt. My new strategy re-purposed
DF as a tool for investigations and intelligence, with the
goal of finding leads by focusing on unusual signals that
were likely to be probative. To use the language of machine
learning, the detectors were set to a point where recall was
low but accuracy was high. The implicit assumption was
that significant data, once found, could be used to find
additional significant data through correlation.

It turns out that I entered my PhD program at a pivotal
time. A year following the terrorist attacks of September 11,
2001, there was a growing realization that the attacks had
happened because a “ ‘wall’ had been built between intel-
ligence and law enforcement” organizations within the
Federal Government (Shelby, 2002). The “wall” prevented
“connecting the dots... in ways that good intelligence
analysts are expected to do.”

One reason thatit’s hard to connect the dots is that there
are too many of them. My approach of searching hard
drives for information that was sensitive and unusual
created a system that found just a few dots, but the dots
were easy to connect.

3.2. Corpus management—technical issues

I quickly learned that it is invariably easier to collect
data than to analyze it. This section discusses some of the
more interesting technical problems that arose and were
solved between 2006 and 2012, more-or-less in the order
that they were encountered.

3.2.1. Imaging ATA drives

Most of the drives that I personally purchased between
1998 and 2006 were ATA drives. Lacking a write-blocker
and not needing chain-of-custody, I attached the drives to
a computer through the on-board ATA interface and
imaged the drives with the Unix dd command. Contrary to
popular belief, I learned that ATA hardware supports hot-
swapping of ATA drives while the system is running,
making it easy to build a system that could image multiple
drives at once, allowing me to swap drives without
rebooting. This saved a substantial amount of time. Lesson:
read the documentation for the computer that you are using.

Initially I kept disk images in raw format. When I ran out
of storage, I decided to compress the images with gzip. I

S84 S. Garfinkel / Digital Investigation 9 (2012) S80-S89

then wrote software that analyzed each compressed image
as a single stream, using zcat to decompress the file and
then processing the decompressed stream on standard
input. This approach did not let me mount the file systems,
but it was sufficient for finding sensitive information. This
naturally lead me to the development of stream-based
forensic processing that ignores files and instead relies on
bulk data processing. Lesson: make the most of the tools that
you have and follow the technical innovations they force upon
you.

3.2.2. Automation as the key to corpus management

Once I had more than a few dozen drives it became clear
that I would need to automate as much of the process as
possible if I wanted to make any scientific use of the data
that I was accumulating. I developed an accession process
for each drive that involved automatically capturing the
make, model, serial number, where the drive was
purchased, for how much, the eBay auction ID, the ID of the
seller, and so on, and automatically stored this information
in a MySQL database. Over time I learned that information
in a database is hard to move from system to system—it
does not automatically follow the disk image. For this
reason I started work developing an evidence file format in
which I could embed arbitrary information. Lesson: auto-
mation is key; any process that involves manual record
keeping is going to introduce inaccuracies that will be hard to
detect and correct. Lesson: useful data will outlive the system
in which it is stored, so make provisions to move the data
when you design the system.

3.2.3. Evidence file formats

During the summer of 2005 1 explored several
approaches for storing arbitrary evidence and metadata in
a single file. The obvious solution was Berkeley DB, but it
did not have an appropriate open source license. GNU SDB
did, but it created sparse files that had large “holes” in them
and couldn’t be easily moved from one computer to
another. The ZIP file format was probably the right solution,
but ZIP32 was too limiting and I did not have a clean ZIP64
implementation. Instead of writing an open source ZIP64,
which was the correct choice, I created my own container
file format which I called AFF (Garfinkel et al., 2006).

Storing arbitrary name-value pairs was quite flexible,
and it proved relatively easy to add chain-of-custody and
strong cryptography to the format and the implementation
(Garfinkel, 2009). In 2009 Michael Cohen contacted me and
asked about addressing some of the performance bottle-
necks caused by AFF's simple design. I suggested that we
abandon my container format and move to ZIP64, which
we did (Cohen et al., 2009).

Since then I have largely abandoned AFF, as most of my
users have standardized on the EnCase file format. Fortu-
nately I am able to read and write the EnCase “E01” file
format using libewf (Metz, 2011). Lesson: avoid developing
new file formats whenever possible. Lesson: kill your darlings.

3.2.4. Crashes from bad drives

Occasionally my FreeBSD system would crash when
imaging a faulty ATA drive. Analyzing the crashes, it
appeared that parts of kernel memory had been

overwritten. I concluded that the faulty drive was trans-
ferring data into the operating system using the ATA DMA
facilities and that the OS was not defended against transfers
to incorrect memory locations. This was an important
discovery, because it likely meant that PC system memory
could be imaged through specialized hardware attached to
the ATA interface, similar to the way that system memory
can be imaged from a firewire device. It is possible that the
USB interface can also be used for imaging RAM. To the best
of my knowledge no one has ever built such a device, which
seems a missed opportunity given that there are ATA
interfaces on most motherboards. Lesson: many technical
options remain unexplored.

3.2.5. Drive failures produce better data

Many of the drives I purchased were dead-on-arrival.
Others could only partially be imaged. I learned of ddres-
cue (Diaz, 2012) would read as far as possible going from
the first sector of the disk to the last sector, then, upon
encountering errors, would jump to last sector of the hard
drive and then repeatedly skip toward the front of the
drive, read a few sectors, and repeat. This algorithm works
for a single bad spot on the hard drive, but it doesn’t work if
there are multiple errors. I developed a disk imaging
program called aimage which implemented a variety of
recovery algorithms, such as attempting to repeatedly re-
read the problematic section; randomly seeking and
reading; jumping ahead a few hundred kilobytes at each
error, and reading from the last sector toward the first.

It appears that those who were selling broken drives on
eBay didn’t bother to sanitize them. I once bought a 24-
drive RAID array on eBay. Most of the drives had been
wiped, but several of the drives had been swapped out of
the RAID and had bad sectors. Lesson: Drives with some bad
sectors invariably have more sensitive information on them
than drives that were in working condition when they were
decommissioned.

I found it difficult to maintain aimage because of
frequent changes to the low-level Linux and FreeBSD I/O
subsystems that the program required. As a result I aban-
doned aimage. Those looking for an AFF-aware imaging tool
should use FTKimager (Access Data, 2011) or guymanager
(Voncken, 2012). Lesson: do research, and only to maintain
software that implements a particular function when no other
software is available.

3.2.6. Numbering and naming

Initially 1 gave each disk image a unique number.
Occasionally I made a mistake and gave the same number
to more than one disk image, causing confusion. I experi-
mented with using a randomly generated 128-bit number,
with the rationale that no such number would ever be
randomly generated twice. I learned that is annoying to
work with file names containing 32 random hexadecimal
numbers and abandoned this approach. Lesson: Names must
be short enough to be usable but long enough to be distinct.

When [started acquiring data outside the US I discov-
ered that the country of origin was the most important
characteristic of a disk image. I adopted a naming scheme
in which the first two characters are the ISO country code,
followed by a two-digit batch number, a dash, and a four

S. Garfinkel / Digital Investigation 9 (2012) S80-S89 S85

digit item number. (For example, CN07-0045 is the 45th
disk of the 7th batch acquired from China.) Assigning
a batch number allows different individuals in the same
country to assign their own numbers. Lesson: although it is
advantageous to have names that contain no semantic
content, it is significantly easier to work with names that have
some semantic meaning.

3.2.7. Path names

With thousands of disk images, tens of thousands of EO1
files, and roughly a million individual files downloaded
from US Government web servers, the full corpus has
grown to roughly 30TB (Table 1). Very few systems in my
organization have sufficient storage to hold the entire
corpus. Fortunately, most users do not need access to the
entire corpus in order to get their work done. Students copy
to their personal workstations only the portions of the
corpus that are relevant to their research.

To help structure the corpus we have implemented
a directory structure that is the same for every machine
that has a copy of the corpus. Originally we organized our
files according to modality, legal status, and origin, in that
order; recently I reorganized the corpus so that the top-
level directory is origin and legal status, followed by
modality. This has made it significantly easier to implement
appropriate security and access controls, as researchers
that have not had appropriate IRB training are not allowed
access to the directory containing human subject data
(Table 2)—and indeed, they can get most of their work
done solely with /corp/nps/. The placement of the M57-
Patents scenario was complicated by the fact that the
scenario contained disk images, memory dumps, and
network packet captures: in some cases it is useful to have
the materials grouped together, in others it is useful to have
them grouped with their modality. I finally decided to place
each modality with other files of the same type, and to
create a scenarios hierarchy containing symbolic links
pointing elsewhere. Lesson: place access-control information
as near to the root of a path name as possible.

3.2.8. Anti-virus and indexing

The forensic corpora have caused unexpected problems
on computers that periodically scan all files for viruses and
for full-text indexing. Because the corpora contains large
amounts of viruses and damaged files, we have seen them
cause scanners to either crash or perform improperly. For
example, Apple’s “Spotlight” search engine repeatedly
crashed when attempting to scan a directory and then
proceeded to attempt re-scans. The result was excessive
CPU load and, in one case, an index file that grew without
bound until the indexing was disabled.

Table 1
Current size of various forensic corpora.
Corpus Subset Comp. Size Files
Real Data Corpus: 29,000 GB 2394
GOVDOCS1 Corpus 490 GB 987,283
M57-Patents Scenario
drives 417 GB 83
RAM 43 GB 89
net 4GB 49

Table 2
Sample paths in the corpora.
Path Contents
[corp/ Top-level directory for corpus

[corp/nist/
[corp/nps/
corp/nps/drives/
corp/nps/files/
corp/nps/files/govdocs1m
corp/nps/files/govdocs1m
/123/123456.jpg
[corp/nps/malware/
[corp/nps/malware/windows
[corp/nps/packets/
[corp/nps/scenarios/

Data from NIST, including the NSRL
Data produced at NPS

Disk images manufactured at NPS
Individual files produced at NPS
The Million Document Corpus

File number 123456 in the million
document corpus.

Malware acquired by NPS

Malware for Windows

Network packets produced at NPS
Worked scenarios containing disk
images, packets, RAM, and ancillary
materials

The Non-US Real Data Corpus

The US Persons Real Data Corpus
(not present on NPS machines)

—_——— —

[corp/nus/
[corp/us/

Lesson: Configure anti-virus scanners and other indexing
tools (e.g., Apple’s build_hd_index (Apple Computer, 2012)) to
ignore directories that might contain raw forensic data.

3.2.9. Distribution and updates

There is no good way to distribute a 30TB data set. One
approach is to manually split the data set up, put it on
separate drives (we use internal SATA drives with docks)
and ship them. This is our preferred method to give other
organizations snapshots of the corpus, and I am developing
an offline synchronization system that uses terabyte-sized
external drives.

We have tried using rsync (Tridgell and Mackerras,
1996), but network connections are rarely fast enough. I
am investigating efficient ways to send terabyte-sized files
over gigabit Internet links with UDP-based file transfer
protocols, which appear to have better utilization than TCP-
based protocols. While scientists who work in the areas of
high-energy physics and astronomy have similar band-
width requirements, they typically have larger budgets,
bigger teams, better Internet connections, longer time
horizons, and data that are more-or-less uniform.

Lesson: solutions developed by other disciplines for
distributing large files rarely work well when applied to DF
without substantial reworking.

3.3. Corpus management-policy issues

Policy issues frequently arise when working with
collections of sensitive data.

3.3.1. Privacy issues

In 1988 the US Supreme Court held that there is no
privacy interest in trash (US Supreme Court, 1988). It seems
reasonable to extend this ruling to hold that there is no
privacy interest in the contents of data carrying devices
that are sold on the secondary market. A similar conclusion
also arises from a straightforward application of the “First
Sale” doctrine (US Supreme Court, 1908) in copyright law.
Although it would be inappropriate and probably immoral
for me to release the contents of the drives that I purchase

S86 S. Garfinkel / Digital Investigation 9 (2012) S80-S89

on the secondary market, I do not believe that it would be
illegal to do so. In practice, I treat the information in the
corpus as if it is private and confidential. Lesson: just
because something is legal, you may wish to think twice
before you do it.

3.3.2. Illegal content—financial, passwords, and copyright

The vast majority of media that we encounter have
some kind of illegal content, typically illegally copied
music. The criminal offense provisions of the US Copyright
Act (17 USC §506) only apply to a person who “willfully
infringes a copyright...for purposes of commercial advan-
tage or private financial gain.” This clearly does not apply to
me, as [am not making money on the corpus. Lesson: never
sell access to DF data, even if you have personal ownership.

It is also my assertion that assembling and distributing
the corpus itself is “Fair Use” under 17 USC §107. US law
defines a four-part test to determine whether or not Fair
Use holds. The test considers 1) the purpose and character
of the use (including whether the use is commercial or for
non-profit educational purposes); 2) the nature of the
copyrighted work; 3) the amount of the work that is
copied; 4) the impact of the use on the market value for the
copyrighted work. While the corpus clearly contains
copyrighted data, I believe that my use of it for scientific
research is clearly covered under Fair Use. Lesson: under-
stand Copyright Law before copying other people’s data.

Many media in the corpus also contain passwords and
credit cards, both considered “access devices” under US
law. The Computer Fraud and Abuse Act (18 USC §1029)
states that anyone who “knowingly and with intent to
defraud possesses fifteen or more devices which are
counterfeit or unauthorized access devices” is committing
a crime. I believe that the operative word here is intent.
Clearly, my intent is research, not fraud. Lesson: make sure
your intent is scientific research, not fraud, so that any
collection of access devices you create does not constitute
criminal activity.

3.3.3. Illegal content—pornography

In the US it is illegal to expose minors to pornography. On
the other hand, pornography is widely distributed on the
Internet and many seized computer systems contain
pornography. It is thus likely that there is pornography in my
disk corpus. Lesson: do not give minors access to real DF data;
do not intentionally extract pornography from research corpora.

Child pornography presents a special problem. In
general only law enforcement organizations may know-
ingly posses child pornography, and then only in conjunc-
tion with a criminal investigation. In two instances [have
found file names that were highly suggestive of child
pornography in the corpus:

1. In 2006 a disk was found with suggestive file names, but
the file contents were overwritten with numerous copies
of the movie Monsters Inc. Although I knew the source of
the drive, the FBI chose not to investigate because no
actual child pornography appeared to be present.

2. In 2011 one of my research affiliates discovered data on
several drives with content and file names that were

highly suggestive of sexual assaults against children. A
government investigator determined individuals were
not actually children. The investigation was terminated,
since the images were apparently legal pornography
that had been intentionally mislabeled.

Despite the outcome, in both cases I purged the disk
images from the corpus and told my research partners to
remove their copies as well. Lesson: although there is no
legal requirement to purge simulated child pornography from
your corpus, its discovery will take up a lot of your time. It’s
better to get rid of data that may be incorrectly mistaken for
child porn, rather than having to engage in lengthy
explanations.

3.3.4. Institutional Review Boards

Federally funded research in the US that involves human
subjects or private data that is personally identifiable must
be approved by an Institutional Review Board (IRB) holding
an appropriate Federal assurance.

Some DF practitioners are confused to discover that
federally funded research with used hard drives purchased
on eBay, borrowed from students, or collected during the
course of criminal investigations requires approval from an
IRB. “We are clearly not working with human subjects,” one
researcher told me. He was wrong, as the so-called
“Common Rule” clearly states:

45 CFR §46.102 Definitions.
f Human subject means a living individual about whom an
investigator (whether professional or student) conducting
research obtains
1. Data through intervention or interaction with the
individual, or
2. Identifiable private information.

I have written elsewhere about the growing involve-
ment of IRBs in computer science research (Garfinkel and
Cranor, 2010) and how the mission of IRBs is slowly
expanding (Garfinkel, 2008). Here I write about strategies
for avoiding IRB review and problems that I have encoun-
tered with IRBs at other institutions.

An improper way to avoid IRB oversight would be to
publish the contents of the hard drives on the Internet.
While doing so would make the data literally non-private,
eliminating the IRB overview, it would not be moral or
ethical to do so.

A better approach is to avoid doing “research,” which is
defined in §46.102(d) as “a systematic investigation,
including research development, testing and evaluation,
designed to develop or contribute to generalizable knowl-
edge.” For example, tool testing is not research, provided
that the tools and the algorithms they contain are devel-
oped using artificially constructed or fake data.

Personally I find it useful to use real data for research, so
I obtain IRB approval for my work and require my collab-
orators to either obtain IRB approval from their own insti-
tutions or to affirm that they will not be performing
research with the data as defined under Federal Law. So far
I have experienced two notable problems:

S. Garfinkel / Digital Investigation 9 (2012) S80-S89 S87

e An IRB at one institution issued an approval but pro-
hibited the PI from sharing his application with me. The
IRB said the application was proprietary university
information. I resolved this case by refusing to provide
the researcher with the data, since I didn’t know what
he was approved to do.

e In two cases IRBs at other universities have concluded
that research with the Real Data Corpus is exempt under
the Common Rule. Even though the IRBs were clearly
wrong, I abided by their by ruling, as it is not my job to
police other IRBs and the researchers promised to keep
the data private and not redistribute them without prior
approval.

Lesson: While IRBs exist to protect human subjects, many
have expanded their role to protect institutions and experi-
menters. Unfortunately this expanded role occasionally
decreases the protection afforded human subjects. And even with
the IRB watching over you, it's important to watch your back.

4. Lessons learned developing DF tools

This section discusses software engineering and design
issues we have encountered while developing DF tools.

4.1. Platform and language

While Windows is clearly the dominant platform used
by computer forensics practitioners, Linux and MacOS
seem to be the dominant platforms used by forensics
researchers. I have found that I cannot mandate a platform
and instead need to deliver software that can be used on all
three.

The easiest way to write multi-platform tools is to write
command-line programs in C, C++, C#, Java or Python, as
programs written in these languages can easily transfer
between the three platforms. Although C has historically
been the DF developer’s language of choice, we have shifted
to C++ so that we can use the STL collection and container
classes. We have also been able to significantly improve the
resistance of our programs to corrupt input data by putting
all bounds and error checking in the C++ accessor methods
so that they are systematically applied to all data accesses.
The penalty for such checks is negligible on modern
hardware.

Java has a reputation of running significantly slower
than C/C++. Testing so far indicates that this reputation
was only partially deserved. I created parallel imple-
mentations of several programs in C++ and Java including
the NPS Bloom filter implementation, a hash-based carving
prototype, and an early version of bulk_extractor. |
measured the OpenSSL MD5 implementation and found
that it was three times faster than Java’'s built-in MD5
implementation; I never published this work because I
never finished the project. My goal was to replace Java’s
built-in MD5 implementation with OpenSSL called through
the JNI or JNA interfaces. It might be faster, but I don’t know.

Bruce Allen and I translated an early single-threaded
version of bulk_extractor into Java using JFlex (Klein,
2009) and found that it ran three times faster than the

single-threaded C++ implementation. This may have
because the Java JIT re-optimizes object code during
execution, or it may that Java was performing memory
management in another thread, gaining some parallelism.
The difference is relevant, because if the improved perfor-
mance was due to opportunistic multi-threading in the
Java’'s memory system, that advantage would be lost
against the multi-threaded C++ bulk_extractor. This is an
area that requires additional research.

While it is easy to write programs in Python, experience
to date has shown that these programs are slow and
memory-intensive. This is not a problem for programs that
process evidence the size of files or memory dumps, or for
most programs that process DFXML files, but it is a problem
for processing entire disk images.

Lately we have been trying to move new software
development to C#, as the CLR runs C# nearly as fast as
C++ on Windows and C# has improved safety and type
checking. Unfortunately there is only one implementation
of C# for Mac and Linux, the implementation is several
years behind Microsoft’s, and its future is uncertain. So
while we are exploring C#, we continue to use C++ for the
majority of our development.

4.2. Parallelism and high performance computing

The data scale problem has forced me to spend a signif-
icant amount of effort on “plumbing” issues such multi-
threading and high performance computing in an effort to
squeeze additional performance. So far our efforts are
mixed. In 2009 and 2010 my group spent a substantial effort
developing MD5, SHA1 and AES implementations that could
process data at many gigabytes per second on an IBM Cell
Broadband Engine blade system (Dinolt et al., 2010), only to
discover that the 10-Gig interface module would not be
supported. A similar project at another school developed
fast hash implementations on GPU co-processors: that
project was terminated when the group discovered that the
I/O bottleneck on modern GPUs was so slow that it was
faster to hash on the host processor. On the other hand, our
efforts at making bulk_extractor multi-threaded have been
staggeringly successful.

4.3. All-in-one tools vs. single-use tools

Because there are many different kinds of forensic
investigations, the same tool frequently needs to be applied
to the same kind of data but for different purposes. One
examiner might need to extract the visible text from
a Microsoft Word file, while another might want the
deleted text, a third might want residual metadata that
indicates the document was edited on multiple computers,
and a fourth might want proof as to whether or not the file
was modified using a hex editor. Such wildly different use
cases significantly complicate the task of tool development,
documentation, and training. My experience argues that it
is better to have a single tool than many:

o If there are many tools, most investigators will want to
have them all. Splitting functionality into multiple tools

S88 S. Garfinkel / Digital Investigation 9 (2012) S80-S89

complicates tool management without providing any
real benefit to practitioners.

e Much of what a DF tools does—data ingest, decoding
and enumerating data structures, preparing a report—is
required no matter what kind of output is desired.

e There is a finite cost to packaging, distributing, and
promoting a tool. When a tool has many functions this
cost is amortized across a wider base.

One way to address the problem of different use casesis to
have tools organize output into different sections or files,
with one section providing information that is useful for
typical cases, and another containing all of the extracted data.
Outputs should ideally be both human and machine readable.

In the case of the Microsoft Word decoder example
above, it would be possible to structure the tool’s output
such that it starts with a section that contains the Word
file’s text, followed by a section with the metadata and
deleted text, and a final section containing all decoded
internal structures in XML. Most forensic users will just
refer to the text or the metadata, some will read the final
section, and a few will write software to process it the final
section as part of another tool chain. The XML could even
be embedded in a PDF report as an attachment.

4.4. Evidence container file formats

Because of the diversity of tools and the general lack of
user training, forensic software should be able to process
inputs in any format. In practice a single input layer should
allow tools to transparently handle disk images in raw,
split-raw, EnCase or AFF formats. SleuthKit's img layer
provides this capability but is not widely used for this
purpose. (I don’t use it in bulk_extractor, for example, due to
usability problems.) AFFLIB provided an abstract facility to
read both disk images and metadata, but I put AFFLIB3 into
maintenance mode after the AFF4 announcement (Cohen
et al., 2009); sadly, the production release of AFF4 has
been delayed, and it remains unclear if AFF4 will read AFF3,
raw, split-raw, and EnCase file formats.

Instead, I created a C++ iterator that allows bulk_ex-
tractor to read disk images in raw, split-raw, EnCase and
AFF formats. The iterator is not sufficiently general for
others to use, but it may be in the future.

With network packets the situation is better, with pcap
being the universal format. Since taking over the tcpflow
project (Elson and Garfinkel, 2011) I have modified the
program to output flow data in DFEXML format (§4.5). This
summer it should be further modified to product data in
a binary netflow format.

4.5. DFXML metadata and provenance

As I continued development of DF tools, I repeatedly
encountered the need to represent data that was complex,
highly structured, and frequently incomplete. For example,
for a project on file carving, I wanted to be able to represent
the number of fragments and the fragments’ physical
position for each fragment in a file. For another project on
carving, I wanted to be able to represent metadata

extracted from those fragments. For a feature extractor, I
wanted to be able to represent files containing features.

The original approach of most DF tool developers was to
create a separate file format for each of these tasks. For
example, SleuthKit has a “body file” format that stores
some kinds of metadata. This approach had the advantage
of being fairly easy to implement and reasonably efficient
for a single tool, but had numerous disadvantages:

e Because each output file is designed for a specific task,
every program produces an output file with slightly
different structures.

e Every program that wants to read the file needs to
implement its own parser.

e Minor changes to the file format requires modifying
every program that reads the files.

In addition to storing the results of forensic processes, I
soon discovered that there was provenance information I
wanted to store for each run of a program, including;:

The version of the program that was run.

The computer on which the program had been compiled.
The computer on which the program was run.

When the program was run.

The amount of CPU time that was required.

The names of the input file.

The obvious way to address the scaling problem and to
store the additional information was to use some kind of
tagged file format. This would allow me both to store
arbitrary name/value pairs and to tag any name or value
with own set of name/value pairs. Thankfully I realized that
this was the key insight of XML. I developed a new XML
language called Digital Forensics XML (DFXML) which is
specifically designed to represent the results of forensic
processing, including all of the information in the SleuthKit
body file and all of the provenance information mentioned
above. Additional details can be found in (Garfinkel 2012).

Some practitioners have criticized my decision to use
XML, arguing that other representations are superior. I
disagree. Well-formatted XML can be read by both humans
and software, and the overhead of XML is rarely material in
the forensic context.

It turned out to be remarkably easy to get the developers
of open source DF tools to support DFXML: I simply wrote
the patches myself and provided them. Grenier was quite
gracious in taking the patches for Photorec (Grenier, 2011),
and Kornblum was gracious to take them for md5deep
(Kornblum, 2011). I am working to have the format adopted
by other open source tools and hope that commercial
vendors will follow.

5. Related work

There have been several efforts to share DF lessons
learned. Casey (2002) presented “practical lessons” in
confronting encryption during the course investigations.
More recently, Kim et al. (2009) shared lessons learned in
creating a reference data set of Korean-language software.

S. Garfinkel / Digital Investigation 9 (2012) S80-S89 S89

Walls et al. (2011b) shares the authors’ experience in
developing digital forensic tools for use by law enforcement
organizations. The authors explain that while success in DF
is “strongly driven by practitioners who can readily adapt
cutting-edge research,” a variety of systematic barriers
challenge these practitioners.

Harrison (2002) proposed creating a “Lessons Learned
Repository.” That effort and others have met with resis-
tance from law enforcement practitioners, many of whom
feel that such a repository could be used by defense attor-
neys to discredit examiners.

6. Conclusion

Digital Forensics is an exciting area in which to work, but
itis exceedingly difficult because of the diversity of data that
needs to be analyzed, the size of the data sets, and the
mismatch between the technical skills of users and the
difficulty of the work. These problems are likely to get worse
over time, and our only way to survive the coming crisis is to
concentrate on the development of new techniques that
leverage our advantage—the ability to collect and maintain
large data sets of other people’s information. My research
corpora are analogous to the kind of data that is acquired
during the course of operations by law enforcement and the
military; in building and maintaining this corpus I have
encountered many problems that are increasingly relevant
to others in the field. This paper describes some of the
lessons that I have learned in the course my research in this
area.

Acknowledgments

My introduction to computer programming was a “pro-
grammed instruction” book that I found at the Franklin
Institute in Philadelphia’s library. I was hooked. Sadly, in
this age of Facebook and Cell phones it seems surprisingly
harder for children to get exposure to programming at an
early age. We must address this problem if we wish for our
technological society to survive.

Beth Rosenberg and Joel Young read previous drafts of this
article and provided useful comments. The feedback provided
by the DFRWS anonymous reviewers was invaluable.

The views and opinions expressed in this document
represent those of the authord and do not reflect those of
the US Government or the Department of Defense. This
document is a work of a US Government employee and as
such is not subject to copyright.

References

Access Data. FTK imager; 2011.

Apple Computer. Apple Remote Desktop: how to disable build_hd_index;
2012.

B6hme R, Freiling FC, Gloe T, Kirchner M. Multimedia forensics is not
computer forensics. In: IWCF'09: proceedings of the 3rd international
workshop on computational forensics. Berlin, Heidelberg: Springer-
Verlag; 2009. p. 90-103.

Casey E. Confronting encryption in computer investigations: practical
lessons. In: Proceedings of the 2002 DFRWS conference; 2002.

Cohen M, Garfinkel S, Schatz B. Extending the advanced forensic format
to accommodate multiple data sources, logical evidence, arbitrary

information and forensic workflow. In: Proceedings of DFRWS 2009.
Montreal, Canada: Elsevier; 2009.

Diaz AD. GNU ddrescue manual; 2012.

Dinolt G, Allen B, Canright D, Garfinkel S. Parallelizing SHA-256, SHA-1
MD5 and AES on the cell Broadband engine. Technical Report NPS-CS-
10-11. Monterey, CA: Naval Postgraduate School; 2010.

Elson], Garfinkel S. Tcpflow; 2011.

Garfinkel S. Digital Forensics XML. Digital Investigation; 2012:8:161-174.

Garfinkel S, Cranor L. Institutional review boards and your research.
Communications of the ACM; 2010:38-40.

Garfinkel S, Nelson A, White D, Roussev V. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. In: Proc.
of the tenth annual DFRWS conference. Portland, OR: Elsevier; 2010.

Garfinkel S, Shelat A. Remembrance of data passed. IEEE Security and
Privacy 2003;1(1):17-27.

Garfinkel SL. Design principles and patterns for computer systems that
are simultaneously secure and usable. Ph.D. thesis; MIT; Cambridge,
MA; 2005.

Garfinkel SL. IRBs and security research: myths, facts and mission creep.
In: Usability, psychology and security 2008 (Co-located with the 5th
USENIX symposium on Networked Systems Design and Imple-
mentation (NSDI'08)). San Francisco, CA: Usenix; 2008.

Garfinkel SL. Providing cryptographic security and evidentiary chain-of-
custody with the advanced forensic format, library, and tools. The
International Journal of Digital Crime and Forensics 2009;1:1-28.

Garfinkel SL, Farrell P, Roussev V, Dinolt G. Bringing science to digital
forensics with standardized forensic corpora. In: Proceedings of the
9th Annual Digital Forensic Research Workshop (DFRWS). Quebec,
CA: Elsevier; 2009.

Garfinkel SL, Malan DJ, Dubec KA, Stevens CC, Pham C. Disk imaging with
the advanced forensic format, library and tools. In: Research advances
in digital forensics (Second annual IFIP WG 11.9 international
conference on digital forensics). Springer; 2006.

Grenier C. Photorec; 2011. http://www.cgsecurity.org/wiki/PhotoRec
[accessed 03.12.11].

Guidance Software. Form 10-q; 2011.

Harrison W. A lessons learned repository for computer forensics. In:
Proceedings of the 2002 DFRWS conference; 2002.

Hibshi H, Vidas T, Cranor L. Usability of forensics tools: a user study. In: IT
Security Incident Management and IT Forensics (IMF), 2011 sixth
international conference on. IEEE; 2011. p. 81-91.

Kim K, Park S, Chang T, Lee C, Baek S. Lessons learned from the
construction of a Korean software reference data set for digital
forensics. In: Proceedings of the 2009 DFRWS conference; 2009.

Klein G. Jflex: the fast scanner generator for java; 2009.

Kornblum J. md5deep and hashdeep—Ilatest version 4.1; 2011. http://
md5deep.sourceforge.net/ [accessed 18.02.12].

Lawson TF. Before the verdict and beyond the verdict: the CSI infection
within modern criminal jury trials. Loyola University Chicago Law
Journal 2009;41(1).

Metz]. libewf: project info; 2011. http://sourceforge.net/projects/libewf/
[accessed 03.12.11].

Nelson AJ. RegXML: XML conversion of the Windows Registry for forensic
processing and distribution. In: Chow KP, Shenoi S, editors. Advances
in digital forensics VIII, in press. Springer; IFIP Advances in Informa-
tion and Communication Technology; 2012.

Reynolds JK, Postel]J. RFC 1000: request for comments reference guide;
1987. Obsoletes RFC0999.

Shelby RC. September 11 and the imperative of reform in the U.S. Intel-
ligence Community; 2002. Additional Views of Senator Richard C.
Shelby Vice Chairman, Senate Select Committee on Intelligence.

Shelton DE. The ‘CSI Effect’: does it really exist? NIJ Journal 2008;259.

Snow RL. Technology and law enforcement: from gumshoe to gamma
rays. Greenwood Publishing Group; 2007.

Tridgell A, Mackerras P. The rsync algorithm. Technical Report TR-CS-96-
05; ANU Computer Science Technical Reports; 1996.

US Supreme Court. Bobbs-Merrill Co. v. Straus; 1908. 210 US 339.

US Supreme Court. California v. Greenwood; 1988. 486 US 35.

Voncken G. Guymanager; 2012. http://guymager.sourceforge.net/.

Walls R], Learned-Miller E, Levine BN. Forensic triage for mobile phones
with decOde. In: Proceedings of the 20th USENIX security sympo-
sium. USENIX; 2011a.

Walls R], Levine BN, Liberatore M, Shields C. Effective digital forensics
research is investigator-centric. In: Proc. USENIX workshop on Hot
Topics in Security (HotSec); 2011b.

Wright C, Kleiman D, Shyaam Sundhar RS. Overwriting hard drive data:
the great wiping controversy. In: Lecture notes in computer science/
ICISS 2008. Springer; 2008. p. 243-57.

