
Automating Disk Forensic Processing
with SleuthKit, XML and Python

Simson Garfinkel, Ph.D.
Associate Professor
Naval Postgraduate School
http://faculty.nps.edu/slgarfin/

May 20, 2009
SADFE 2009

http://faculty.nps.edu/slgarfin/
http://faculty.nps.edu/slgarfin/

Location: Monterey, CA

1500 Students:
 US Military (All 5 services)

 US Civilian (SFS & SMART)

 Foreign Military (30 countries)

Campus Size: 627 acres

4 Schools:
 Business & Public Policy

 Engineering & Applied Sciences

 Operational & Information Sciences

 International Graduate Studies

NPS is the Navy’s Research University.

2

These tools are great for:
 FIle recovery

 Search

These tools were not created for research or automation.

Today's forensic tools are designed for performing
forensic investigations.

3

Encase:
- GUI Closed Source

SleuthKit:
- Command-line Open Source

Forensics needs research and automation.

4

Students (and researchers) need an easy-to-program
environment for conducting forensic experiments.

It's hard to work with forensic data — All the details matter
 Many different file systems.

 Many different file types.

Good research requires working with large data sets.
 Even small "pilot studies" should be tested on multiple data sources.

 Otherwise, you aren't doing research on forensics — you are researching a particular
object.

5

Several of today's tools allow some degree of programmability:
 EnCase — EScript

 PyFlag — Flash Script & Python

 Sleuth Kit — C/C++

But writing programs for these systems is hard:
 Many of the forensic tools are not designed for easy automation.

 Programming languages are procedural and mechanism-oriented

 Data is separated from actions on the data.

Faced with this, a standard approach is to leverage the database:
 Extract everything into an SQL database.

 Use multiple SELECT statements to generate reports.

6

Today there is no good match between forensic tools
and the needs of researchers.

Question: how much time can we save in forensic
analysis by processing files in sector order?

Currently, forensic programs process in directory order.
for (dirpath,dirnames,filenames) in os.walk(“/mnt”):
 for filename in filenames:
 process(dirpath+”/”+filename)

Advantages of processing by sector order:
 Minimizes head seeks.

Disadvantages:
 Overhead to obtain file system metadata (but you only need to do it once).

 File fragmentation means you can’t do a perfect job:

7

file 1 part 1 file 1 part 2file 2 file 3 file 4

Using the architecture presented here,
I performed the experiment.

Here’s most of the program:

 t0 = time.time()
 fis = fiwalk.fileobjects_using_sax(imagefile)
 t1 = time.time()
 print "Time to get metadata: %g seconds" % (t1-t0)

 print "Native order: "
 calc_jumps(fis,"Native Order")
 fis.sort(key=lambda(a):a.byteruns()[0].img_offset)
 calc_jumps(fis,"Sorted Order")

With this XML framework, it took less than 10 minutes to write the
program that conducted the experiment.

8

Answer: Processing files in sector order can improve
performance dramatically.

9

Unsorted Sorted

Files processed: 23,222 23,222

backwards seeks 12,700 4,817

Time to extract
metadata: 19 seconds 19 seconds

Time to read files: 441 seconds 38 seconds

Total time: 460 seconds 57 seconds

disk image: nps-2009-domexusers1

The approach breaks forensic processing into three key parts:
1.Extraction of forensic metadata.

2.Representation of the extracted metadata.

3.Processing.

You can start using this framework today.
You can easily expand it.

This talk presents a new approach for automated
forensic analysis and research

10

<XML> Output

1 32

fiwalk extracts metadata from disk images.

fiwalk is a C++ program built on top of SleuthKit

$ fiwalk [options] -X file.xml imagefile

Features:
 Finds all partitions & automatically processes each.

 Handles file systems on raw device (partition-less).

 Creates a single output file with forensic data data from all.

Single program has multiple output formats:
 XML (for automated processing)

 ARFF (for data mining with Weka)

 "walk" format (easy debugging)

 SleuthKit Body File (for legacy timeline tools)

 CSV (for spreadsheets)*

11

XML ARFF Body

<XML> Output

1 32

fiwalk provides limited control over extraction.

Include/Exclude criteria:
 Presence/Absence of file SHA1 in a Bloom Filter

 File name matching.
fiwalk -n .jpeg /dev/sda # just extract the .jpeg files

File System Metdata:
 -g — Report position of all file fragments

 -O — Do not report orphan or unallocated files

Full Content Options:
 -m — Report the MD5 of every file

 -1 — Report the SHA1 of every file

 -s dir — Save files to dir

12

<XML> Output

1 32

fiwalk has a plugable metadata extraction system.

Configuration file specifies Metadata extractors:
 Currently the extractor is chosen by the file extension.

*.jpg dgi ../plugins/jpeg_extract
*.pdf dgi java -classpath plugins.jar Libextract_plugin
*.doc dgi java -classpath ../plugins/plugins.jar word_extract

 Plugins are run in a different process for safety.

 We have designed a native JVM interface which uses IPC and 1 process.

Metadata extractors produce name:value pairs on STDOUT

Manufacturer: SONY
Model: CYBERSHOT
Orientation: top - left

Extracted metadata is automatically incorporated into output.

13

<XML> Output

1 32

XML is ideally suited for representing forensic data.

Forensic data is tree-structured.
 Case > Devices > Partitions > Directories > Files

 Files

—file system metadata

—file meta data

—file content

 Container Files (ZIP, tar, CAB)

—We can exactly represent the container structure

—PyFlag does this with “virtual files”

—No easy way to do this with the current TSK/EnCase/FTK structure

—(Note: Container files not currently implemented.)

14

<XML> Output

1 32

fiwalk produces three kinds of XML tags.

Per-Image tags
<fiwalk> — outer tag
<fiwalk_version>0.4</fiwalk_version>
<Start_time>Mon Oct 13 19:12:09 2008</Start_time>
<Imagefile>dosfs.dmg</Imagefile>
<volume startsector=”512”>

Per <volume> tags:
<Partition_Offset>512</Partition_Offset>
<block_size>512</block_size>
<ftype>4</ftype>
<ftype_str>fat16</ftype_str>
<block_count>81982</block_count>

Per <fileobject> tags:
<filesize>4096</filesize>
<partition>1</partition>
<filename>linedash.gif</filename>
<libmagic>GIF image data, version 89a, 410 x 143</libmagic>

15

<XML> Output

1 32

fiwalk XML example

<fileobject>
<filename>WINDOWS/system32/config/systemprofile/「开始」菜单/程序/附件/_rf55.tmp</
filename>
<filesize>1391</filesize>
<unalloc>1</unalloc>
<used>1</used>
<mtime>1150873922</mtime>
<ctime>1160927826</ctime>
<atime>1160884800</atime>
<fragments>0</fragments>
<md5>d41d8cd98f00b204e9800998ecf8427e</md5>
<sha1>da39a3ee5e6b4b0d3255bfef95601890afd80709</sha1>
<partition>1</partition>
<byte_runs type=’resident’>
 <run file_offset='0' len='65536'
 fs_offset='871588864' img_offset='871621120'/>
 <run file_offset='65536' len='25920'
 fs_offset='871748608' img_offset='871780864'/>
</byte_runs>
</fileobject>

16

<XML> Output

1 32

<byte_runs> specifies data's physical location.

One or more <run> elements may be present:

<byte_runs type=’resident’>

 <run file_offset='0' len='65536'
 fs_offset='871588864' img_offset='871621120'/>

 <run file_offset='65536' len='25920'
 fs_offset='871748608' img_offset='871780864'/>

</byte_runs>

This file has two fragments:
 64K starting at sector 1702385 (871621120 ÷ 512)

 25,920 bytes starting at sector 1702697 (871780864 ÷ 512)

Additional XML attributes may specify compression or encryption.
 Note: Currently <byte_runs> not provided for compressed or MFT-resident files.

17

<XML> Output

1 32

XML incorporates the extracted metadata.

fiwalk metadata extractors produce name:value pairs:

Manufacturer: SONY
Model: CYBERSHOT
Orientation: top - left

These are incorporated into XML:
<fileobject>
...
<Manufacturer>SONY</Manufacturer>
<Model>CYBERSHOT</Model>
<Orientation>top - left</Orientation>
...
</fileobject>

—Special characters are automatically escaped.

18

<XML> Output

1 32

Resulting XML files can be distributed with images.

The XML file provides a key to the disk image:
$ ls -l /corp/images/nps/nps-2009-domexusers/

-rw-r--r-- 1 simsong admin 4238912226 Jan 20 13:16 nps-2009-realistic.aff
-rw-r--r-- 1 simsong admin 38251423 May 10 23:58 nps-2009-realistic.xml

$

XML files:
 Range from 10K — 100MB.

—Depending on the complexity of the disk image.

 Only have files & orphans that are identified by SleuthKit

—You can easily implement a "smart carver" that only carves unallocated sectors.

19

<XML> Output

1 32

fiwalk.py: a Python module for automated forensics.

Key Features:
 Automatically runs fiwalk with correct options if given a disk image

 Reads XML file if present (faster than regenerating)

 Creates fileobject objects.

Multiple interfaces:
 SAX callback interface

fiwalk_using_sax(imagefile, xmlfile, flags, callback)

—Very fast and minimal memory footprint

 SAX procedural interface
objs = fileobjects_using_sax(imagefile, xmlfile, flags)

—Reasonably fast; returns a list of all file objects with XML in dictionary

 DOM procedural interface
(doc,objs) = fileobjects_using_dom(imagefile, xmlfile, flags)

—Allows modification of XML that’s returned.

20

<XML> Output

1 32

The SAX and DOM interfaces both return fileobjects!

The Python fileobject class is an easy-to-use
abstract class for working with file system data.

Objects belong to one of two subclasses:
fileobject_sax(fileobject) — for the SAX interface
fileobject_dom(fileobject) – for the DOM interface

Both classes support the same interface:
—fi.partition()

—fi.filename(), fi.ext()

—fi.filesize()

—fi.ctime(), fi.atime(), fi.crtime(), fi.mtime()

—fi.sha1(), fi.md5()

—fi.byteruns(), fi.fragments()

—fi.content()*

21

<XML> Output

1 32

Example: calculate average file size on a disk

Using DOM interface:
import fiwalk

objs = fileobjects_using_sax(imagefile, xmlfile, flags)
print "average file size: ",sum([fi.filesize() for fi in objs]) / len(objs)

(For the Python-impaired:)
import fiwalk

objs = fileobjects_using_sax(imagefile, xmlfile, flags)
sum_of_sizes = 0
for fi in objs:
 sum_of_sizes += fi.filesize()
print "average file size: ",sum_of_sizes / len(objs)

22

<XML> Output

1 32

Example: Find and print all the files 15 bytes in length.

Using DOM interface:
import fiwalk

objs = fileobjects_using_sax(imagefile, xmlfile, flags)
for fi in filter(lambda x:x.filesize()==15, objs):
 print fi

(For the Python-impaired:)
import fiwalk

objs = fileobjects_using_sax(imagefile, xmlfile, flags)
for fi in objs:
 if fi.filesize()==15:
 print fi

23

<XML> Output

1 32

The fileobject class allows direct access to file data.

byteruns() is an array of “runs.”
<byte_runs type=’resident’>

 <run file_offset='0' len='65536'
 fs_offset='871588864' img_offset='871621120'/>

 <run file_offset='65536' len='25920'
 fs_offset='871748608' img_offset='871780864'/>

</byte_runs>

Becomes:
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Each byterun object has:
run.start_sector() — Starting Sector #
run.sector_count()
run.img_offset - Disk Image offset
run.fs_offset - File system offset
run.bytes - number of bytes
run.content() - content of file

24

<XML> Output

1 32

The fileobject class allows direct access to file data.

byteruns() returns that array of “runs”
for both the DOM and SAX-based file objects.

>>> print fi.byteruns()
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Accessor Methods:
 fi.contents_for_run(run) — Returns the bytes from the linked disk image

 fi.contents() — Returns all of the contents

 fi.file_present(imagefile=None) — Validates MD5/SHA1 to see if image has file

 fi.tempfile(calMD5,calcSHA1) — Creates a tempfile, optionally calculating hash

25

<XML> Output

1 32

We are building several interconnected applications
with this framework.

imap.py
 reads a disk image or XML file and prints a “map” of a disk image.

igroundtruth.py
 reads multiple disk images (different generations of the same disk)

 uses earlier images as “maps” for later images.

 Outputs new XML file

iverify.py
 Reads an image file and XML file.

 Reports which files in the XML file are actually resident in the image.

iredact.py
 reads a disk image (or XML file) and a “redaction file”

 Produces new disk image.

26

The redaction language is flexible.

Language: {CONDITION} {ACTION}
Conditions:
 FILENAME filename

 FILEPAT file*name

 DIRNAME dirname/

 MD5 d41d8cd98f00b204e9800998ecf8427e

 SHA1 da39a3ee5e6b4b0d3255bfef95601890afd80709

 FILE CONTAINS user@company.com

 SECTOR CONTAINS user@company.com

Actions:
 FILL 0x44

 ENCRYPT

 FUZZ (changes instructions but not strings)

27

mailto:user@company.com
mailto:user@company.com

We have also built a USB transfer kiosk.

The kiosk:
 Reads a USB drive using fiwalk & fiwalk.py

 Displays list of files in GUI

 Transfers selected files to “quarantine” without mounting the disk image.

 Virus scans

 Transfers scanned files to SMB server without mounting the file server.

Key features:
 Functionality could not be implemented without forensic tools

 fiwalk & fiwalk.py allows forensics to be abstracted away

 Kiosk program is mostly GUI, not forensics

—filelist.py — 110 lines

—kiosk.py — 368 lines

—loginpanel.py — 70 lines

—smb.py — 90 lines

—watcher.py — 152 lines

28

Publishing XML for disk images enables our remote
exploitation methodology...

29

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

Publishing XML for disk images enables our remote
exploitation methodology...

29

AFF

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

Publishing XML for disk images enables our remote
exploitation methodology...

29

AFF

XML

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

Publishing XML for disk images enables our remote
exploitation methodology...

29

AFF

XML
http

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

Publishing XML for disk images enables our remote
exploitation methodology...

29

AFF

XML
http

xmlrpc

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

Publishing XML for disk images enables our remote
exploitation methodology...

29

AFF

XML
http

xmlrpc

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

In summary, XML and Python can make forensic
research and application development easier.

fiwalk — Batch procesisng of disk images.
XML — A widely understood data model.
python tools — Easy to create new forensic applications.

Available from http://www.afflib.org/

Acknowledgments:
 NPS:

—Jessy Cowan-Sharp

—George Dinolt

—Beth Rosenberg

 NIST

 Anonymous Reviewers

30

Questions?

http://www.afflib.org
http://www.afflib.org

