NDS]

19\“09
\W

Automating Disk Forensic Processing

with SleuthKit, XML and Python

Simson Garfinkel, Ph.D. May 20, 2009

- SADFE 2009
Associate Professor

Naval Postgraduate School
http://faculty.nps.edu/slgarfin/

http://faculty.nps.edu/slgarfin/
http://faculty.nps.edu/slgarfin/

M

Location: Monterey, CA Campus Size: 627 acres
1500 Students: 4 Schools:

= US Military (All 5 services) » Business & Public Policy

= US Civilian (SFS & SMART) » Engineering & Applied Sciences

» Foreign Military (30 countries) » Operational & Information Sciences

= International Graduate Studies

Today's forensic tools are designed for performing

forensic investigations.

Encase: SleuthKit:
- GUI Closed Source - Command-line Open Source

These tools are great for:

* Flle recovery
» Search

These tools were not created for research or automation.

Students (and researchers) need an easy-to-program
environment for conducting forensic experiments.

~"

\ W h shift s holsl with
\ il

It's hard to work with forensic data — All the details matter

* Many different file systems.
* Many different file types.

Good research requires working with large data sets.

* Even small "pilot studies” should be tested on multiple data sources.

» Otherwise, you aren't doing research on forensics — you are researching a particular
object.

Today there is no good match between forensic tools

and the needs of researchers.

Several of today's tools allow some degree of programmability:

» EnCase — EScript
» PyFlag — Flash Script & Python
= Sleuth Kit — C/C++

But writing programs for these systems is hard:
= Many of the forensic tools are not designed for easy automation.
* Programming languages are procedural and mechanism-oriented
» Data is separated from actions on the data.

Faced with this, a standard approach is to leverage the database:
» Extract everything into an SQL database.
» Use multiple SELECT statements to generate reports.

Question: how much time can we save in forensic

analysis by processing files in sector order?

Currently, forensic programs process in directory order.

for (dirpath,dirnames,filenames) in os.walk(“/mnt”):
for filename in filenames:
process (dirpath+”/”+filename)

Advantages of processing by sector order:
* Minimizes head seeks.

Disadvantages:

» Overhead to obtain file system metadata (but you only need to do it once).
* File fragmentation means you can’t do a perfect job:

Using the architecture presented here,

| performed the experiment.

Here’s most of the program:

t0 = time.time ()

fis = fiwalk.fileobjects using sax(imagefile)

tl = time.time()

print "Time to get metadata: %g seconds" % (t1-tO0)

print "Native order: "

calc_jumps(fis, "Native Order")
fis.sort(key=lambda(a):a.byteruns()[0].img offset)
calc_jumps(fis, "Sorted Order")

With this XML framework, it took less than 10 minutes to write the
program that conducted the experiment.

Answer: Processing files in sector order can improve

performance dramatically.

Unsorted Sorted
Files processed: 23,222 23,222
backwards seeks 12,700 4,817
Time to extract 19 seconds 19 seconds
metadata:
Time to read files: 441 seconds 38 seconds
Total time: 460 seconds 57 seconds

disk image: nps-2009-domexusers

This talk presents a new approach for automated

forensic analysis and research

The approach breaks forensic processing into three key parts:

1.Extraction of forensic metadata.
2.Representation of the extracted metadata.

>
1 2

You can start using this framework today.
You can easily expand it.

3.Processing.

10

fiwalk extracts metadata from disk images.

fiwalk is a C++ program built on top of SleuthKit
S fiwalk [options] -X file.xml imagefile

Features:
* Finds all partitions & automatically processes each.
* Handles file systems on raw device (partition-less).
» Creates a single output file with forensic data data from all.

Single program has multiple output formats: | xuL ARFF Body
= XML (for automated processing)
= ARFF (for data mining with Weka)
» "walk” format (easy debugging)

» SleuthKit Body File (for legacy timeline tools)
= CSV (for spreadsheets)*

11

fiwalk provides limited control over extraction.

Include/Exclude criteria:

= Presence/Absence of file SHA1 in a Bloom Filter

* File name matching.
fiwalk -n .jpeg /dev/sda # just extract the .jpeg files

File System Metdata:

= -g — Report position of all file fragments
* -0 — Do not report orphan or unallocated files

Full Content Options:
* -m — Report the MD5 of every file
» -1 — Report the SHA1 of every file
= -5 dir — Save files to dir

12

fiwalk has a plugable metadata extraction system.

S d Ig‘> I%> Output
1 2 3

Configuration file specifies Metadata extractors:
» Currently the extractor is chosen by the file extension.

*.jpg dgi ../plugins/jpeg extract
*,.pdf dgi java -classpath plugins.jar Libextract plugin
*.doc dgi java -classpath ../plugins/plugins.jar word extract

» Plugins are run in a different process for safety.
= We have designed a native JVM interface which uses IPC and 1 process.

Metadata extractors produce name:value pairs on STDOUT

Manufacturer: SONY
Model: CYBERSHOT
Orientation: top - left

Extracted metadata is automatically incorporated into output.

13

XML is ideally suited for representing forensic data.

Forensic data is tree-structured.
= Case > Devices > Partitions > Directories > Files

* Files
—file system metadata
—file meta data
—file content

= Container Files (ZIP, tar, CAB)
—We can exactly represent the container structure
—PyFlag does this with “virtual files”
—No easy way to do this with the current TSK/EnCase/FTK structure
— (Note: Container files not currently implemented.)

14

fiwalk produces three kinds of XML tags.

Per-Image tags

<fiwalk> — outer tag

<fiwalk version>0.4</fiwalk version>
<Start_time>Mon Oct 13 19:12:09 2008</Start_ time>
<Imagefile>dosfs.dmg</Imagefile>

<volume startsector="512">

Per <volume> tags:

<Partition Offset>512</Partition_ Offset>
<block size>512</block size>
<ftype>4</ftype>

<ftype str>fatl6</ftype str>
<block_count>81982</block_count>

Per <fileobject> tags:
<filesize>4096</filesize>
<partition>l</partition>
<filename>linedash.gif</filename>
<libmagic>GIF image data, version 89a, 410 x 143</libmagic>

15

fiwalk XML example

<fileobject>
<filename>WINDOWS/system32/config/systemprofile/ "Hin) RKE/IEF/MF/ _r£55.tmp</

filename>
<filesize>1391</filesize>
<unalloc>1</unalloc>
<used>1</used>
<mtime>1150873922</mtime>
<ctime>1160927826</ctime>
<atime>1160884800</atime>
<fragments>0</fragments>
<md5>d41d8cd98£00b204e9800998ec£f8427e</md5>
<shal>da39a3ee5e6b4b0d3255bfef95601890a£fd80709</shal>
<partition>l</partition>
<byte runs type='resident’>
<run file offset='0' len='65536"
fs offset='871588864' img offset='871621120"'/>
<run file offset='65536' len='25920'
fs offset='871748608' img offset='871780864"'/>
</byte_ runs>
</fileobject>

16

<pyte_runs> specifies data's physical location.

One or more <run> elements may be present:

<byte runs type='resident’>

<run file offset='0"' len='65536"
fs offset='871588864"' img offset='871621120'/>

<run file offset='65536' len='25920"
fs offset='871748608' img offset='871780864"'/>

</byte_ runs>

This file has two fragments:
= 64K starting at sector 1702385 (871621120 =+ 512)
= 25,920 bytes starting at sector 1702697 (871780864 =+ 512)

Additional XML attributes may specify compression or encryption.
» Note: Currently <byte_runs> not provided for compressed or MFT-resident files.

17

XML incorporates the extracted metadata.

fiwalk metadata extractors produce name:value pairs:

Manufacturer: SONY
Model: CYBERSHOT
Orientation: top - left

These are incorporated into XML:

<fileobject>
<Manufacturer>SONY</Manufacturer>
<Model>CYBERSHOT</Model>

<Orientation>top - left</Orientation>

</fileobject>

—Special characters are automatically escaped.

18

Resulting XML files can be distributed with images.

The XML file provides a key to the disk image:

$ 1s -1 /corp/images/nps/nps-2009-domexusers/

-rw-r--r-- 1 simsong admin 4238912226 Jan 20 13:16 nps-2009-realistic.aff
-rw-r--r-- 1 simsong admin 38251423 May 10 23:58 nps-2009-realistic.xml

$

XML files:
= Range from 10K — 100MB.
—Depending on the complexity of the disk image.
* Only have files & orphans that are identified by SleuthKit
—You can easily implement a "smart carver” that only carves unallocated sectors.

19

fiwalk.py: a Python module for automated forensics.

Key Features:

= Automatically runs fiwalk with correct options if given a disk image
= Reads XML file if present (faster than regenerating)
» Creates fileobject objects.

Multiple interfaces:

= SAX callback interface
fiwalk using sax(imagefile, xmlfile, flags, callback)

—Very fast and minimal memory footprint

= SAX procedural interface
objs = fileobjects using sax(imagefile, xmlfile, flags)

—Reasonably fast; returns a list of all file objects with XML in dictionary

= DOM procedural interface
(doc,objs) = fileobjects using dom(imagefile, xmlfile, flags)

—Allows modification of XML that’s returned.

20

The SAX and DOM interfaces both return fileobjects!

The Python fileobject class is an easy-to-use
abstract class for working with file system data.

Objects belong to one of two subclasses:

fileobject sax(fileobject) — for the SAX interface
fileobject dom(fileobject) — for the DOM interface

Both classes support the same interface:
—fi.partition()
—fi.filename(), fi.ext()
—fi.filesize()
—fi.ctime(), fi.atime(), fi.crtime(), fi.mtime()
—fi.shai(), fi.md5()
—fi.byteruns(), fi.fragments()
—fi.content()*

21

Example: calculate average file size on a disk

Using DOM interface:

import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
print "average file size: ",sum([fi.filesize() for fi in objs]) / len(objs)

(For the Python-impaired:)
import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
sum_of sizes = 0
for fi in objs:
sum of sizes += fi.filesize()
print "average file size: ",sum of sizes / len(objs)

22

Example: Find and print all the files 15 bytes in length.

Using DOM interface:

import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
for fi in filter(lambda x:x.filesize()==15, objs):
print fi

(For the Python-impaired:)

import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
for fi in objs:
if fi.filesize()==15:
print fi

23

The fileobject class allows direct access to file data.

byteruns() is an array of “runs.”

<byte runs type=’'resident’>

<run file offset='0' len='65536"
fs offset='871588864' img offset='871621120'/>

<run file offset='65536' len='25920"
fs offset='871748608' img offset='871780864"'/>

</byte_ runs>

Becomes:
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Each byterun object has:

run.start_sector () — Starting Sector #
run.sector_count ()

run.img_offset - Disk Image offset
run.fs_offset - File system offset
run.bytes - number of bytes
run.content () - content of file

24

The fileobject class allows direct access to file data.

byteruns() returns that array of “runs”
for both the DOM and SAX-based file objects.

>>> print fi.byteruns()
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Accessor Methods:
» fi.contents_for_run(run) — Returns the bytes from the linked disk image
* fi.contents() — Returns all of the contents
= fi.file_present(imagefile=None) — Validates MD5/SHA1 to see if image has file
= fi.tempfile(calMD5,calcSHA1) — Creates a tempfile, optionally calculating hash

25

We are building several interconnected applications

with this framework.

imap.py

» reads a disk image or XML file and prints a “map” of a disk image.

igroundtruth.py

» reads multiple disk images (different generations of the same disk)
» uses earlier images as “maps” for later images.
» Qutputs new XML file

iverify.py
» Reads an image file and XML file.
» Reports which files in the XML file are actually resident in the image.

iredact.py

* reads a disk image (or XML file) and a “redaction file”
* Produces new disk image.

26

The redaction language is flexible.

Language: {CONDITION} {ACTION}

Conditions:
= FILENAME filename
» FILEPAT file*name
= DIRNAME dirname/
* MD5 d41d8cd98f00b204e9800998ecf8427¢
» SHA1 da39a3eebeb6b4b0d3255bfef95601890afd80709
= FILE CONTAINS user@company.com
= SECTOR CONTAINS user@company.com

Actions:

» FILL Ox44
= ENCRYPT
» FUZZ (changes instructions but not strings)

27

mailto:user@company.com
mailto:user@company.com

We have also built a USB transfer kiosk.

The kiosk:

» Reads a USB drive using fiwalk & fiwalk.py

= Displays list of files in GUI

* Transfers selected files to “quarantine” without mounting the disk image.
= Virus scans

* Transfers scanned files to SMB server without mounting the file server.

Key features:
» Functionality could not be implemented without forensic tools
» fiwalk & fiwalk.py allows forensics to be abstracted away
= Kiosk program is mostly GUI, not forensics

—filelist.py — 110 lines
—kiosk.py — 368 lines
—loginpanel.py — 70 lines
—smb.py — 90 lines
—watcher.py — 152 lines

28

Publishing XML for disk images enables our remote

exploitation methodology...

YVanTuumg

Concord Lexington Lynn
Malden
Medford
Revere

mbndge Boston
ewlon Brookline

Asilomar Pacifi
Gargl\’lec Sai V E R I ham Mmilton "Quincy
M5 Meese @2008 NAVIEQM
Monterey T S

~t, LC-:..E
Pebble

Beach

008 Google Map

! pN\ESTANTIA PER SCIENTIA
\190/

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

M

29

Publishing XML for disk images enables our remote

exploitation methodology...

YVanTuumg

Concord Lexington Lynn
Malden
Medford
Revere

mbndge Boston
ewlon Brookline

Asilomar Pacifi
Gargl\’lec Sai V E R I ham Mmilton "Quincy
o Pvese @2008 NAVIEQM
Monterey T S
.’_I»i_ :Afg- te
Pebble
Beach
008 Google Map k

AFF

! pN\ESTANTIA PER SCIENTIA
\190/

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

M

29

Publishing XML for disk images enables our remote

exploitation methodology...

gstiomar, Pacific

Grove Sai
Monterey
Jel Monte
.....
Pebble
Beach
008 Google Map

! pN\ESTANTIA PER SCIENTIA
\190/

Extract metadata in Boston.
Search from Monterey.

M

Just download what you need.

XML

VIE

YVanTuumg

Concord Lexington Lynn
Malden
Medford
Revere

monage " Boston
ewlon Brookline

R I ham Mmilton "Quincy
ham

o1 REYaRe @2008 NAVIEQ™

AFF

TAS

29

Publishing XML for disk images enables our remote

exploitation methodology...

YVanTuumg

Saugus Marbiehead
Concord Lexington sk Lynn
k Medford _: ¥
— Revere
mbndge Boston
Asillomar Pacific \ ewlon Brookline
Grove San XML V E R I ham . Milton ‘Quincy
http Mo Meyoss @2008 NAVIEQM
Del Monte
Pebble S
Beach
008 Google Map k

AFF

! pN\ESTANTIA PER SCIENTIA
\190/

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

M

29

Publishing XML for disk images enables our remote

exploitation methodology...

YVanTuumg

Saugus Marbiehead
Concord Lexington sk Lynn
k Medford _: ¥
— Revere
mbndge Boston
Asillomar Pacific \ ewlon Brookline
Grove San XML V E R I ham . Milton ‘Quincy
http Mo Meyoss @2008 NAVIEQM
Del Monte
Pebble S
Beach
008 Google Map k

xmirpc

AFF

! pN\ESTANTIA PER SCIENTIA
\190/

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

M

29

Publishing XML for disk images enables our remote

exploitation methodology...

YVanTuumg

Saugus Marbiehead
Concord Lexington Lynn
Malden
k Medford
- Revere
mbndge Boston
Asillomar Pacific \ ewlon Brookline
Grove San XML V E R I ham Mmilton "Quincy
http Mo Meyoss @2008 NAVIEQM
Del Monte
Pebble S
Beach

008 Google

AN

AFF

(DRAESTANTIA PER SCIENT}4

\

M

Extract metadata in Boston.
Search from Monterey.
Just download what you need.

29

In summary, XML and Python can make forensic

research and application development easier.

fiwalk — Batch procesisng of disk images.
XML — A widely understood data model.
python tools — Easy to create new forensic applications.

Available from http://www.afflib.org/

Acknowledgments:
= NPS:
—Jessy Cowan-Sharp
—George Dinolt
—Beth Rosenberg
= NIST

= Anonymous Reviewers
Questions?

30

http://www.afflib.org
http://www.afflib.org

